3D Shape Analysis with Multi-view Convolutional Networks

Evangelos Kalogerakis

3D model repositories

[3D Warehouse - video]

3D geometry acquisition

[KinectFusion - video]

3D shapes come in various "flavors"

May have different resolution, non-manifold geometry, arbitrary or no texture and interior, disjoint parts, noise...

We need algorithms that "understand" shapes

We need algorithms that "understand" shapes

We need algorithms that "understand" shapes

Why shape understanding? Generative models of shapes

Why shape understanding? Generative models of shapes

Kalogerakis, Chaudhuri, Koller, Koltun, SIGGRAPH 2012

Why shape understanding? Scene design

Lun, Kalogerakis, Wang, Sheffer, SIGGRAPH ASIA 2016

Why shape understanding? Texturing

Kalogerakis, Hertzmann, Singh, SIGGRAPH 2010

Why shape understanding? Character Animation

Simari, Nowrouzezahrai, Kalogerakis, Singh, SGP 2009

How can we perform shape understanding?

It is very hard to perform shape understanding with manually specified rules & hand-engineered descriptors

The importance of good shape descriptors

- Motorbike
- Not Motorbike

"Old-style" descriptors: surface curvature, spin images, PCA...

The importance of good shape descriptors

"Old-style" descriptors: surface curvature, spin images, PCA...

The importance of good shape descriptors

Need descriptors that capture semantics, function...

From "shallow" mappings...

Old-style approach: output is a direct function of hand-engineered shape descriptors

... to neural nets

Introduce **intermediate learned functions** that yield optimized descriptors.

... to deep neural nets

Stack several layers...

Convolutional neural networks

Convolutional neural networks

Basic idea: interchange several **convolutional** and **pooling** (subsampling) **layers**.

The image processing "success story"

The convolution filters capture various hierarchical patterns (edges, sub-parts, parts...). Convnets have achieved high accuracy in several image-processing tasks.

Matthew D. Zeiler and Rob Fergus, Visualizing and Understanding Convolutional Networks, 2014

How can we apply convnets for 3D shapes?

Motivated by the success of image-based architectures and the fact that 3D shapes are often designed for viewing...

View-based convnets for 3D shapes

... we introduced view-based convnets for 3D shape analysis!

E. Kalogerakis, M. Averkiou, S, Maji, S. Chaudhuri, CVPR 2017 (oral)

Input: shape as a collection of rendered views

For each input shape, infer a set of viewpoints that **maximally cover its surface** across multiple distances.

Input: shape as a collection of rendered views Render depth & shaded images (normal dot view vector)

Input: shape as a collection of rendered views

Perform in-plane camera rotations for rotational invariance

Each pair of depth & shaded images is processed by a convnet. Views are not ordered (no view correspondence across shapes). Convnets have shared parameters.

The output of each convnet branch is a **confidence map** per part label.

The output of each convnet branch is a **confidence map** per part label.

Since we want our output on the surface, we aggragate the image confidences across all views onto the surface.

For each face / surface point, find all pixels that include it across all views, and use the **max** of confidence per label.

The last layer performs inference in a probabilistic model defined on the surface to promote coherent labeling.

It has the form of a **Conditional Random Field** whose unary term represents the surface-based label confidences

$$P(R_1, R_2, R_3, R_4... | \text{shape}) = \frac{1}{Z} \left[\prod_{f=1..n} P(R_f | \text{views}) \prod_{i,j} P(R_f, R_{f'} | \text{surface}) \right]$$

Unary factor (convnet)

Pairwise terms favor same label for triangles or points with similar surface normals and small geodesic distance

$$P(R_1, R_2, R_3, R_4... | \text{shape}) = \frac{1}{Z} \prod_{f=1..n} P(R_f | \text{views}) \prod_{i,j} P(R_f, R_{f'} | \text{surface})$$

Pairwise factor (geodesic+normal dist.)

Inference aims to find the most likely joint assignment to all surface random variables (optimization problem)

MAP assignment (mean-field inference)

Training

The architecture is trained **end-to-end** with analytic gradients.

Training starts from a pretrained image-based net (VGG16)

Forward pass / joint inference (convnet+CRF)

Backpropagation / joint training (convnet+CRF)

Training

The architecture is trained **end-to-end** with analytic gradients.

Backpropagation / joint training (convnet+CRF)

What are the learned filters doing?

Activated in the presence of certain surface patterns / patches

Dataset used in experiments

Evaluation on ShapeNetCore (human labeled shapes). **50%** used for training / **50%** used for test split **per category**.

[Yi et al. 2016]

ShapeNetCore: 8% improvement in labeling accuracy for complex categories (vehicles, furniture etc)

	#train/test shapes	#part labels	ShapeBoost	Guo et al.	ShapePFCN
Airplane	250 / 250	4	85.8	87.4	90.3
Bag	38 / 38	2	93.1	91.0	94.6
Cap	27 / 28	2	85.9	85.7	94.5
Car	250 / 250	4	79.5	80.1	86.7
Chair	250 / 250	4	70.1	66.8	82.9
Earphone	34 / 35	3	81.4	79.8	84.9
Guitar	250 / 250	3	89.0	89.9	91.8
Knife	196 / 196	2	81.2	77.1	82.8
Lamp	250 / 250	4	71.7	71.6	78.0
Laptop	222 / 223	2	86.1	82.7	95.3
Motorbike	101 / 101	6	77.2	80.1	87.0
Mug	92/92	2	94.9	95.1	96.0
Pistol	137 / 138	3	88.2	84.1	91.5
Rocket	33 / 33	3	79.2	76.9	81.6
Skateboard	76 / 76	3	91.0	89.6	91.9
Table	250 / 250	3	74.5	77.8	84.8

ShapeNetCore: 8% improvement in labeling accuracy for complex categories (vehicles, furniture etc)

	#train/test shapes	#part labels	ShapeBoost	Guo et al.	ShapePFCN
Airplane	250 / 250	4	85.8	87.4	90.3
Bag	38 / 38	2	93.1	91.0	94.6
Cap	27 / 28	2	85.9	85.7	94.5
Car	250 / 250	4	79.5	80.1	86.7
Chair	250 / 250	4	70.1	66.8	82.9
Earphone	34/35	3	81.4	79.8	84.9
Guitar	250 / 250	3	89.0	89.9	91.8
Knife	196 / 196	2	81.2	77.1	82.8
Lamp	250 / 250	4	71.7	71.6	78.0
Laptop	222 / 223	2	86.1	82.7	95.3
Motorbike	101 / 101	6	77.2	80.1	87.0
Mug	92/92	2	94.9	95.1	96.0
Pistol	137 / 138	3	88.2	84.1	91.5
Rocket	33 / 33	3	79.2	76.9	81.6
Skateboard	76 / 76	3	91.0	89.6	91.9
Table	250 / 250	3	74.5	77.8	84.8

"ground-truth" ShapeBoost ShapePFCN

Shape recognition with multi-view CNNs

An earlier version of a view-based CNN for shape recognition

Su, Maji, Kalogerakis, Learned-Miller, ICCV 2015

Summary

- Inspired by human vision: view-based convnets analyze
 what can be seen under view projections
- Aggregate information from multiple views selected to maximally cover the surface
- Fast processing at high-resolutions
- Robust to input geometric representation artifacts (e.g., irregular tessellation, polygon soups, etc)
- Initialized from image-based architectures pretrained on massive image datasets (filters capture shape+texture)

Thank you!

Acknowledgements: NSF (CHS-1422441, CHS-1617333, IIS- 1617917), NVidia, Adobe, Facebook, Qualcomm.

Experiments were performed in the **UMass GPU cluster (400 GPUs!)** obtained under a grant by the MassTech Collaborative.

Our project web page:

http://people.cs.umass.edu/~kalo/papers/shapepfcn/

