3D Shape Analysis with
Multi-view Convolutional Networks
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3D model repositories
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3D geometry acquisition

[KinectFusion - video]



3D shapes come in various “flavors”

Polygon meshes Analytic surfaces Point Clouds

May have different resolution, non-manifold geometry,
arbitrary or no texture and interior, disjoint parts, noise...



We need algorithms that “understand” shapes
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We need algorithms that “understand” shapes

Office chair
B back
B seat
B base

Geometric
representation

Corresponences
(structure, function, style, point-based)



Why shape understanding?
Generative models of shapes



Why shape understanding?
Generative models of shapes

Kalogerakis, Chaudhuri, Koller, Koltun, SIGGRAPH 2012



Why shape understanding? Scene design

Lun, Kalogerakis, Wang, Sheffer, SIGGRAPH ASIA 2016



Why shape understanding?
Texturing
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Why shape understanding?
Character Animation
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How can we perform shape understanding?

It is very hard to perform shape understanding with
manually specified rules & hand- engmeered descriptors
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The importance of good shape descriptors

N
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“Old-style” descriptors: surface curvature, spin images, PCA...



The importance of good shape descriptors
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“Old-style” descriptors: surface curvature, spin images, PCA...



The importance of good shape descriptors
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Need descriptors that capture semantics, function...



From “shallow” mappings...

Old-style approach: output is a direct function of
hand-engineered shape descriptors

(¥) [y=/®=0(w-x)




... to neural nets

Introduce intermediate learned functions that yield
optimized descriptors.
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... to deep neural nets

Stack several layers...




Convolutional neural networks

Think of these intermediate functions
as convolutional filters acting on small
adjacent windows
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Convolutional neural networks

Basic idea: interchange several convolutional and pooling
(subsampling) layers.

Inpurt layer (S1) 4 feature maps

1 (CI) 4 feature maps (52) 6 feature maps  (C2) 6 feature maps
1
L %°

1 convolution layer l sub-sampling layer | convolution layer l sub-sampling layer | fully connected Iayer]

Source: http://deeplearning.net/ tutorial/lenet.html



The image processing “success story”

The convolution filters capture various hierarchical
patterns (edges, sub-parts, parts...). Convnets have
achieved high accuracy in several image-processing tasks.

Low-Level| |Mid-Level| |High-Level Trainable
Feature Feature Feature Classifier

Matthew D. Zeiler and Rob Fergus, Visualizing and Understanding Convolutional Networks, 2014



How can we apply convnets for 3D shapes?

Motivated by the success of image-based architectures and
the fact that 3D shapes are often designed for viewing...




View-based convnets for 3D shapes

... we introduced view-based convnets for 3D shape analysis!

A
Projective *
Convnet

B fuselage

B wing

B vert. stabilizer
B horiz. stabilizer

E. Kalogerakis, M. Averkiou, S, Maji, S. Chaudhuri, CVPR 2017 (oral)



Input: shape as a collection of rendered views

For each input shape, infer a set of viewpoints that
maximally cover its surface across multiple distances.




Input: shape as a collection of rendered views

Render depth & shaded images (normal dot view vector)
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Input: shape as a collection of rendered views

Perform in-plane camera rotations for rotational invariance

&~ L

N AR

0°, 90°, 180°, 270°
rotations

r

L Shaded Depth
images images



Projective convnet architecture

Each pair of depth & shaded images is processed by a
convnet. Views are not ordered (no view correspondence
across shapes). Convnets have shared parameters.
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Projective convnet architecture

The output of each convnet branch is a confidence map per

part label.
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Projective convnet architecture

The output of each convnet branch is a confidence map per
part label.
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Projective convnet architecture

Since we want our output on the surface, we aggragate the
image confidences across all views onto the surface.
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Projective convnet architecture

For each face / surface point, find all pixels that include it
across all views, and use the max of confidence per label.
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Projective convnet archi

tecture: CRF layer

The last layer performs inference in a probabilistic model
defined on the surface to promote coherent labeling.

Rl’ R2, R3, R4...
random variables
taking values: —
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Projective convnet architecture: CRF layer

It has the form of a Conditional Random Field whose unary
term represents the surface-based label confidences

1
P(R,R,,R,,R,...| shape) = | | P(R, | views)] | P(R,.R,.|surface)
f=l.n ]

Unary factor
(convnet)



Projective convnet architecture: CRF layer

Pairwise terms favor same label for triangles or points with
similar surface normals and small geodesic distance

L I ,
1
P(R,,R,,R,,R,...|shape) = [ ] P(R, | views)[ | P(R,, R, |surface
f=l..n i,]
Pairwise factor

(geodesic+normal dist.)



Projective convnet architecture: CRF layer

Inference aims to find the most likely joint assignment to
all surface random variables (optimization problem)

L I - ,
max
P(R,R,,R,,R,. |shape) ~ HP(Rf|Vlews)HP(Rf,R | surface)
f=l..n
MAP assignment

(mean-field inference)



Training

The architecture is trained end-to-end with analytic gradients.
Training starts from a pretrained image-based net (VGG16)
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Training

The architecture is trained end-to-end with analytic gradients.
Training starts from a pretrained image-based net (VGG16)
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What are the learned filters doing?

Activated in the presence of certain surface patterns / patches
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Dataset used in experiments

Evaluation on ShapeNetCore (human labeled shapes).
50% used for training / 50% used for test split per category.
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[Yi et al. 2016]



ShapeNetCore: 8% improvement in labeling accuracy

for complex categories (vehicles, furniture etc)

#train/test

#part

shapes |labels ShapeBoost|Guo et al.|ShapePFCN
Airplane ||250/250| 4 85.8 87.4 90.3
Bag 38/38 2 93.1 91.0 94.6
Cap 271728 2 85.9 85.7 94.5
Car 2507250 4 79.5 80.1 86.7
Chair ||250/250| 4 70.1 66.8 82.9
Earphone || 34 /35 3 81.4 79.8 84.9
Guitar |250/250| 3 89.0 89.9 91.8
Knife 196/ 196| 2 81.2 77.1 82.8
Lamp [|250/250| 4 T1.7 71.6 78.0
Laptop ||222/223] 2 86.1 82.7 95.3
Motorbike(| 101/ 101| 6 77.2 80.1 87.0
Mug 92792 2 94.9 95.1 96.0
Pistol 1377138 3 88.2 84.1 91.5
Rocket 33/33 3 79.2 76.9 81.6
Skateboard| 76/76 3 91.0 89.6 91.9
Table 12507250 3 74.5 77.8 84.8




ShapeNetCore: 8% improvement in labeling accuracy

for complex categories (vehicles, furniture etc)

Framn/test) #part ShapeBoost|Guo et al.|ShapePFCN
shapes [labels

_Airplane |[250/250] 4 | 858 | 874 | 903
Bag 38/38 2 93.1 91.0 94.6
Cap 271728 2 835.9 85.7 94.5
Chair (| 250/250]| 4 70.1 66.8 82.9
Earphone || 34 /35 3 81.4 79.8 84.9
Guitar |250/250| 3 89.0 89.9 91.8
Knife 196/ 196 2 81.2 77.1 82.8

__Lamp__1[250/250

Mug 92792 2 94.9 05.1 96.0
Pistol 137/ 138 3 88.2 84.1 91.5
Rocket 33/33 3 79.2 76.9 81.6
Skateboard)| 76/76 3 91.0 89.6 91.9
Table 25072501 3 74.5 77.8 84.8




“ground-truth”  ShapeBoost ShapePFCN
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“ground-truth”  ShapeBoost ShapePFCN




Shape recognition with multi-view CNNs

An earlier version of a view-based CNN for shape recognition
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Summary

Inspired by human vision: view-based convnets analyze
what can be seen under view projections

Aggregate information from multiple views selected to
maximally cover the surface

Fast processing at high-resolutions

Robust to input geometric representation artifacts (e.g.,
irregular tessellation, polygon soups, etc)

Initialized from image-based architectures pretrained on
massive image datasets (filters capture shape+texture)



Thank you!
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