Deep learning architectures
for 3D shape analysis and synthesis
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3D models for architecture

Architect: Thomas Eriksson
Courtesy Industriromantik



3D models for digital entertainment

Limit Theory



3D models for cultural heritage

Image from [Lun, Kalogerakis, Sheffer, SIGGRAPH 2015]



Digital representations of 3D shapes

Polygon mesh Analytic Surface

Models from 3D Warehouse &
FlyingArchitecture



Digitizing our imagination

Professional 3D modeling tools
[Autodesk Maya]



Digitizing our imagination
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Computer-Alded Desngn tools
[Catia]




Digitizing our imagination
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General-Purpose Modeling tools
[Trimble SketchUp]



3D model repositories
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3D geometry acquisition
i 1 SR

RGB Image &
depth data

Resulting
surface

“A Large Dataset of Object Scans”
Choi, Zhou, Miller, Koltun 2016



We need algorithms that “understand” shapes

Office chair

Geometric
representation



We need algorithms that “understand” shapes

Office chair
B back
B seat
B base

Geometric
representation



We need algorithms that “understand” shapes

Office chair

Geometric
representation
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Corre: ponences
(structure, function, style, point-based)



Why shape understanding?
Generative models of shapes



Why shape understanding?
Generative models of shapes
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Kalogerakis, Chaudhuri, Koller, Koltun, SIGGRAPH 2012



Why shape understanding? Scene design

Lun, Kalogerakis, Wang, Sheffer, SIGGRAPH ASIA 2016



Why shape understanding?
Texturing
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] Back
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Foot

B Tail

Kalogerakis, Hertzmann, Singh, SIGGRAPH 2010



Why shape understanding?
Character Animation

I Ear
] Head

[ Torso
] Back

B Upper arm
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Il Hand
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B Foot

I Tail

Simari, Nowrouzezahrai, Kalogerakis, Singh, SGP 2009



How can we perform shape understanding?

It is very hard to perform shape understanding with manually
specified rules & hand-engineered descriptors.
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How can we perform shape understanding?

It is very hard to perform shape understanding with manually
specified rules & hand-engineered descriptors.

One more complication: arbitrary shape orientation

Models from Dosch Design



How can we perform shape understanding?

It is very hard to perform shape understanding with manually
specified rules & hand-engineered descriptors.

One more complication: arbitrary shape orientation

e

+ arbitrary or no texture m




The image understanding “success story”

Layers of convolutional filters trained to extract descriptors +
learned functions that map descriptors to high-level concepts.
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INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU  POOLING FLATTEN REEY SOFTMAX
CONNECTED
FEATURE LEARNING CLASSIFICATION

Source: Mathworks



The image understanding “success story”

Convnet filters capture various hierarchical patterns.
Very high accuracy in image-processing tasks.

Low-Level i Mid-Level| |High-Level Trainable
Feature Feature Feature Classifier

Matthew D. Zeiler and Rob Fergus,
Visualizing and Understanding
Convolutional Networks, 2014



How do we apply convnets for 3D shapes?

Geometric representations are unordered: arbitrary point
order, different #points, different #neighbors per point...

Polygon mesh Analytic Surface Point clouds

Models from 3D Warehouse &
FlyingArchitecture



Key observations

Geometric representations have artifacts.

(not easily noticeable to the viewer,
yet geometric implications on topology, connectedness...)



Key observations

3D shapes are often designed for viewing...




Key observations

3D shapes are often designed for viewing...




Key observations

3D shapes are often designed for viewing...

Empty inside!



Key observations

A natural extension of image-based convnets are volumetric
convnets operating on voxel shape representations.

Voxel representation wasteful?



Key observations

Image-based nets can process individual shape renderings.

/_____
Image-based ﬁ Chair
network
A
Image-based ﬁ Chair
network

Su, Maji, Kalogerakis, Learned-Miller, ICCV 2015




Key observations

Image-based nets can process individual shape renderings.

—> 83% shape classification accuracy in ModelNet40
(VGG net trained on ImageNet)

Su, Maji, Kalogerakis, Learned-Miller, ICCV 2015



Can we do better? The multi-view approach

Deep architecture that combine convolution layers for reasoning
across multiple rendered shape views

Multi-view
network

Su, Maji, Kalogerakis, Learned-Miller, ICCV 2015



Can we do better? The multi-view approach

Deep architecture that combine convolution layers for reasoning
across multiple rendered shape views

Fine-tune on shape datasets (a form of transfer learning)

Su, Maji, Kalogerakis, Learned-Miller, ICCV 2015



Can we do better? The multi-view approach

Deep architecture that combine convolution layers for reasoning
across multiple rendered shape views + surface-based probabilistic
models for producing a coherent signal on the surface.




Key challenges of multi-view convnets

Deep architecture that combine convolution layers for reasoning
across multiple rendered shape views + surface-based probabilistic
models for producing a coherent signal on the surface.

Key challenges:
 Joint reasoning about parts across multiple views + surface



Key challenges of multi-view convnets

Deep architecture that combine convolution layers for reasoning
across multiple rendered shape views + surface-based probabilistic
models for producing a coherent signal on the surface.

Key challenges:
 Joint reasoning about parts across multiple views + surface
* Deal with self-occlusions / surface information loss



Key challenges of multi-view convnets

Deep architecture that combine convolution layers for reasoning
across multiple rendered shape views + surface-based probabilistic
models for producing a coherent signal on the surface.

Key challenges:

 Joint reasoning about parts across multiple views + surface
* Deal with self-occlusions / surface information loss

* Promote invariance over 3D shape rotations



Outline

1. Multi-view convnets for 3D shape analysis
» Shape Segmentation
» Shape Classification & Retrieval
» Shape Correspondences

2. Multi-view convnets for 3D shape synthesis

3. Discussion / Future work



View-based convnets for 3D shapes
- Segmentation Pipeline

’
View * Multi-view *
Convnet

M fuselage

B wing

B vert. stabilizer
horiz. stabilizer

Kalogerakis, Averkiou, Maji, Chaudhuri, CVPR 2017 (oral)



View-based convnets for 3D shapes
- Segmentation Pipeline

’
View * Multi-view *
Convnet

M fuselage

B wing

B vert. stabilizer
horiz. stabilizer

Kalogerakis, Averkiou, Maji, Chaudhuri, CVPR 2017 (oral)



Input: shape as a collection of rendered views

For each input shape, infer a set of viewpoints that maximally
cover its surface.
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Input: shape as a collection of rendered views

For each input shape, infer a set of viewpoints that maximally
cover its surface.




Input: shape as a collection of rendered views

For each input shape, infer a set of viewpoints that maximally
cover its surface.
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Input: shape as a collection of rendered views

For each input shape, infer a set of viewpoints that maximally
cover its surface.
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Input: shape as a collection of rendered views

... and across multiple distances from the surface.
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Input: shape as a collection of rendered views

Render shaded images (normal dot view vector) encoding

surface normals. ll

N
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Input: shape as a collection of rendered views

Render also depth images encoding surface position relative to
the camera.
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Input: shape as a collection of rendered views

Perform in-plane camera rotations for rotational invariance.

o L

180°, 270° Shaded  Depth
rotations images  images




Projective convnet architecture

Each pair of depth & shaded images is processed by a FCN.

o ol
S anhL/)

Shaded Depth  FCN: Fully Convolutional Net
images images (no fully connected layers)




Projective convnet architecture

The output of each FCN branch is a view-based confidence

map per part label. hor. stabilizer
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Projective convnet architecture

The output of each FCN branch is a view-based confidence

map per part label. wing
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Projective convnet architecture

Views not ordered (no view correspondence across shapes),
thus the FCN branches share the same parameters.
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Projective convnet architecture

Aggregate & project the image confidence maps from all views
on the surface.
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Projective convnet architecture

For each surface element, find all pixels painted by it in all views.
Surface confidence: max of these pixel confidences per label.
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Projective convnet architecture

For each surface element (triangle), find all pixels that include
it in all views. Surface confidence: use max of these pixel
confidences per label.
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Projective convnet architecture

For each surface element (triangle), find all pixels that include
it in all views. Surface confidence: use max of these pixel
confidences per label.
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Surface model for spatially coherent labeling

Last layer performs inference in a probabilistic model defined
on the surface.

R], RZ’ R3, R4...
random variables
taking values: —

— M fuselage

B wing

Bl vert. stabilizer
_ M horiz. stabilizer




Surface model for spatially coherent labeling

Probabilistic model consists of unary factors based on surface-
based confidences

1
P(R,R,,R,,R,...| shape) :E H P(R, | views HP(Rf,Rf. | surface)
f=l.n f.f

Unary factors
(FCN confidences)



Surface model for spatially coherent labeling

Pairwise terms favor same label for triangles with:
(a) similar surface normals

(b) small geodesic distance !

L 4

2 2
eXp(_Wdist ) df,f' ) eXp(_Wangle ) mf,f‘ )

1
P(R,,R,,R,,R,...| shape) = 1] P(R, | views]] | P(R,, R, |surface)
f=1..n !

Pairwise factors
(geodesic+normal distance)




Inference

Infer most likely joint assignment to all surface random
variables of the probabilistic model (Conditional Random Field)

max
P(R19R2,R3,R4... | Shape) —

1 .

~ 1] P(R, | views)] | P(R,, R, |surface)
f=l..n ./
MAP assighment

(mean—field inference)



Forward pass

inference (convnet+CRFz




Training

The architecture is trained end-to-end with analytic gradients.

1
L=1g Y “log P(R, = T) + A[|6]]’
seSsS

AR T 5.

Backpropagation / joint training (convnet+CRF)



Training

The architecture is trained end-to-end with analytic gradients.

FCN 9, 1 — P(Ry =1) if | =Ty and I{(m,i,5) = f
——=¢ P(Ry l) if | #£Tyand I{m,1,5) = f
0C(m,1,3,1) 0 otherwise

Backpropagation / joint training (convnet+CRF)



Training

The architecture is trained end-to-end with analytic gradients.
Training starts from a pretrained image-based net (VGG16).
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Backpropagation / joint training (convnet+CRF)



Training

The architecture is trained end-to-end with analytic gradients.
Training starts from a pretrained image-based net (VGG16),
then fine-tune on segmented shape datasets.

—— P e & T i N, 3 M, . . .
= g e A s Bty s, By YT A

body | wing | engine | tail

[Yi et al. 2016]



What are the learned filters doing?

Activated in the presence of certain surface patterns / patches

conv4




What are the learned filters doing?

Activated in the presence of certain surface patterns / patches




What are the learned filters doing?

Activated in the presence of certain surface patterns / patches




What are the learned filters doing?

Activated in the presence of certain surface patterns / patches




Dataset used in experiments

Evaluation on ShapeNet + LPSB + COSEG (46 classes of
shapes). 50% used for training / 50% used for test split per
Shapenet category. No assumption on shape orientation.

[Yi et al. 2016]



Results

Labeling accuracy on ShapeNet test dataset:
(no assumption on shape orientation)

ShapeBoost ShapePFCN

81.2 80.6

ShapeBoost: JointBoost on geometric descriptors [Kalogerakis et al. 2010]
Guo et al.: Convnet on geometric descriptors
ShapePFCN: Shape Projective Fully Convolutional Network




Results

Labeling accuracy on ShapeNet test dataset:
(no assumption on shape orientation)

lgnore ShapeBoost ShapePFCN
easy classes
(2or3 81.2 380.6

87.5
84.7

~8% improvement in labeling accuracy for complex categories
(vehicles, furniture)

art labels
p _)>

76.8 76.8



Results

Labeling accuracy on ShapeNet test dataset:
(assume consistent upright orientation + render y-coords)

lgnore ShapeBoost ShapePFCN
easy classes
(2or3 81.2 380.6

part labels) 76.8 76.8

89.4
86.6

~10% improvement in labeling accuracy for complex categories
(vehicles, furniture)



“ground-truth” ShapeBoost ShapePFCN

" handle
M frame
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B roof
B hood
" frame

B wheel




ShapeBoost

B back
B armrest

B seat
M leg

M top
M leg

M handle
B frame
B seat
Bl tank
B wheel

ShapePFCN

B back
B armrest

M seat
M leg

M top
M leg

M handle
B frame
B seat
B tank
B wheel

Object scans from “A Large
Dataset of Object Scans”
Choi et al. 2016



Outline

1. Multi-view convnets for 3D shape analysis
» Shape Segmentation
» Shape Classification & Retrieval
» Shape Correspondences

2. Multi-view convnets for 3D shape synthesis

3. Discussion / Future work



Goal

Multi-view | | s Global .shape
Convnet descriptor

Su, Maji, Kalogerakis, Learned-Miller, ICCV 2015



Shape recognition with multi-view CNNs

CNN



View Pooling
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View Pooling
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Model!\let40: Classification & Retrieval
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ModelNet40: Classification & Retrieval

Method Classification Retrieval
(Accuracy) (mAP)
Spherical Harmonics [Kazhdan et al.] 68.2% 33.3%
LightField [Chen et al.] 75.5% 40.9%
Volumetric Net [Wu et al.] 77.3% 49.2%
ImageNet-trained CNN (VGG-M, 1 view) 83.0% 44.1%
Multi-view convnet (MVCNN) 90.1% 79.5%




ModelNet40: Classification & Retrieval

Classification Retrieval

Method
(Accuracy) (mAP)
Spherical Harmonics [Kazhdan et al.] 68.2% 33.3%
LightField [Chen et al.] 75.5% 40.9%
Volumetric Net [Wu et al.] 77.3% 49.2%
ImageNet-trained CNN (VGG-M, 1 view) 83.0% 44.1%
Multi-view convnet (MVCNN) 90.1% 79.5%

Updates since 2015: new pooling strategies & using depth+normal
renderings yield 93.8% classification accuracy for MVCNNs [Wang et al. 17]
vs 91.3% for the best volumetric net [Brock et al. 2016, no ensemble]



Outline

1. Multi-view convnets for 3D shape analysis
» Shape Segmentation
» Shape Classification & Retrieval
» Shape Correspondences

2. Multi-view convnets for 3D shape synthesis

3. Discussion / Future work



Goal

Multi-view Local shape

Convnet — descriptor

Huang, Kalogerakis, Chaudhuri, Ceylan, Kim, Yumer (TOG, to appear)



Applications of local descriptors:
keypoint prediction & correspondences

(similar colors correspond to points with similar descriptors)



Applications of local descriptors:
affordance prediction

Where humans tend to place their palms
when they interact with these objects?



Applications of local descriptors:
affordance prediction

How would you place a human body
relative to this object?




Multi-view Local shape
Convnet descriptor

~ - . :S “Local”
| ﬂ[‘ “'!ST *1 rendered views




Local MVCNN
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(shared parameters)



Local MVCNN

CNN branches Local view-based
(shared parameters) descriptors



Local MVCNN
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Local MVCNN

>y

.

J

CNN branches

(shared parameters)

e

), > 4096 dim.

|... cee

@ 128 dim.
: O

O
(—
O
O
O

Dimension reduction

Max-view pooling

Local view-based

descriptors



Training
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Training dataset generation

Non-rigid alignment per part
from segmented ShapeNetCore

(corresponding points have same color)
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Evaluation: correspondence accuracy

[Kim et al. 2013]



Evaluation: correspondence accuracy

%correspondences

Euclidean distance
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Matching 3D point clouds to 3D models

(similar colors correspond to points with similar descriptors)

Note: point clouds are rendered using a sphere per point
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Sketch-based shape synthesis

_} Multi-view

frOeW convnet

side view
Lun, Gadelha, Kalogerakis, Maji, Wang (3DV 2017 oral)

3D shape



Encoder

128

front view e g
128 ol . ;:i’%
512 512
512 512
128
() 64
J Feature representations
side view capturing increasingly larger

context in the sketches



Decoder

Infer depth and normal maps

128

& 32 32404 128
front view 2 e . . gl
* 32 160 sBl B2 | 40 s 15 3264 128
512
512 °12 e " 212 512
256 256
128 128
® 64 64 depth map
} Feature representations
side view generating shape representations

at increasingly finer scales



Decoder

Infer depth and normal maps

128

4 32 3240%% 128
front view 2 e . . gl
* 32 160 sBl B2 | 40 s 15 3264 128
512
512 °12 e " 212 512
256 256
128 128
A 64 64 +normal map
j Feature representations
side view generating shape information at

increasingly finer scales



Multi-view decoder

Infer depth and normal maps for several views

=

output view 1
front view .

=
=

)

side view

output view 12

64



llU_Net”

Feature representations in the decoder depend on previous
layer & encoder’s corresponding layer
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output view 1

front view

T o
X =
. e . output view 12
sideview e T |

U-net: Ronneberger et al. 2015,
Isola et al. 2016



Initial training loss

Penalize per-pixel depth reconstruction error: Z | dped =4y |

pixels
&  per-pixel normal reconstruction error: >’ (1-n

pixels

pred ) ngt)

output view 1

front view

=

=

)

side view

output view 12

U-net: Ronneberger et al. 2015,
Isola et al. 2016



Training: discriminator network

Checks whether the output depth & normals look real or fake.
Trained by treating ground-truth as real, generated maps as fake.

front view

? ->
J

side view

output view 12 cGAN: Isola et al. 2016



Generator: Full training loss

Penalize per-pixel depth reconstruction error: Z 1D prea =g |

pixels

&  per-pixel normal reconstruction error: Z (=n,., n,)

ixels
I ” p

outputs: —log P(real)

n Real?

& “Unrea

Fake?

Generator
Network

front view

Real?
Fake?

output view 12 cGAN: Isola et al. 2016

side view



Training data

Character Chair Airplane
10K models 10K models 3K models

Models from “The Models
Resource” & 3D Warehouse



Training data

Synthetic line drawings




Training data

[
12 views & - Y

Training depth and normal maps



Test time

Predict multi-view depth and normal maps!

=

output view 1
front view oo

=
=

)

side view

output view 12

64



Multi-view depth & normal map fusion

output view 1

output view 12

Multi-view depth  Consolidated
& normal maps point cloud



Multi-view depth & normal map fusion

Optimization problem

* Depth derivatives should
be consistent with normals

output view 1

output view 12

Multi-view depth  Consolidated
& normal maps point cloud



Multi-view depth & normal map fusion

Optimization problem

* Depth derivatives should
be consistent with normals

* Corresponding depths and
normals across different
views should agree

output view 12

Multi-view depth  Consolidated
& normal maps point cloud



Surface reconstruction

output view 1

output view 12

Multi-view depth  Consolidated Surface

& normal maps point cloud reconstruction
[Kazhdan et al. 2013]



Surface deformation

output view 1

output view 12

Multi-view depth  Consolidated Surface

& normal maps point cloud reconstruction
[Kazhdan et al. 2013]



Surface deformation

output view 1

/

output view 12

Multi-view depth  Consolidated Surface Surface

& normal maps point cloud reconstruction “fine-tuning”
[Kazhdan et al. 2013] [Nealen et al. 2005]
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Quantitative results
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Quantitative results

Characters (human drawing)

Our Volumetric Nearest
method decoder retrieval

Hausdorff distance

Chamfer distance 0.052 0.045
normal distance 56.97 47.94
depth map error 0.048 0.049

volumetric distance 0.497 0.550




Quantitative results

Man-made objects (human drawing)

Our Volumetric Nearest
method decoder retrieval

Hausdorff distance
Chamfer distance 0.032 0.038
normal distance 48.81 43.75
depth map error 0.046 0.059
volumetric distance 0.530 0.560




Single vs two input line drawings

Two sketches Resulting shape



More results
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Summary: multi-view architectures

Motivated by human vision: view-based convnets analyze
what can be seen under view projections

Aggregate information from multiple views selected to
maximally cover the surface

Combine with surface models to deal with occlusions

Robust to input geometric representation artifacts (e.g.,
irregular tessellation, polygon soups, etc)

Initialized from image-based architectures pretrained on
massive image datasets



Limitations

Volumetric/interior properties of objects cannot be
handled with MVCNNs

Some redundancy in processing (same surface is
visible from multiple views)

View pooling might cause some information loss
Combine volumetric & multi-view nets, point-based nets?



Combining volumetric & multi-view nets

A

- Fused global
Multi-view d
network I escriptor

_}I/v

Incomplete Shape

Volumetrlc

Han, Li, Huang, Kalogerakis, Yu, ICCV 2017



Combining volumetric & multi-view nets

Incomplete Shape
P P Fused global
p . Multl-wew d
o etwork I escriptor

Volumetrlc ’ —>I/

A
“Patch” ’
Network

Han, Li, Huang, Kalogerakis, Yu, ICCV 2017



Combining volumetric & multi-view nets

Incomplete Shape
- E Fused global
o Multn-vuew d
network I escriptor

Volumetrlc ’ —}I/

ﬁ

Complete shape
patch-by-patch

A
“Patch” ’
Network

Han, Li, Huang, Kalogerakis, Yu, ICCV 2017




Thank you!
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Web page with papers, project data, source code, results:
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