Deep learning architectures for 3D shape analysis and synthesis

3D models for architecture

Architect: Thomas Eriksson Courtesy Industriromantik

3D models for digital entertainment

Limit Theory

3D models for cultural heritage

Image from [Lun, Kalogerakis, Sheffer, SIGGRAPH 2015]

Digital representations of 3D shapes

Polygon mesh

Analytic Surface

Models from 3D Warehouse & FlyingArchitecture

Digitizing our imagination

Professional 3D modeling tools [Autodesk Maya]

Digitizing our imagination

Computer-Aided Design tools [Catia]

Digitizing our imagination

General-Purpose Modeling tools [Trimble SketchUp]

3D model repositories

	🕸 3D Warehouse							Upload Model	F.	
	teapot					Search Q			Sign In	
	165 Results ALL	⊸ Re	esults Per Page	✓ Models	✓ Collections		Sort by Rele	evance	~	
						Ċ2		0	7	
	DEMLİK-TEAPOT by: turgut G.		çay kazanı, çay, kazan, by: Gürkan EROL	rize, filiz, 🕁	Teapot from 3ds by: Tony Win	t l	Small Yixing by: Nat7278	s Clay Teapot	L↓	
	Teapot Man by: codytc	t j	Teapot and Cup by: Logic_mtl		Teapot by: Maher		Lucifer'sTea by: casbahsou	apot V.2 nd		
	Russell's Teapot by: carson1977	t i	Teapot by: Maher	¢	Teapot by: SketchUp		dining acce by: CMetric	ssories, cup, plate, t		
ŝ	©:Trimble.		©2017 Tri	mble Inc. Privad	y Terms of Use			English	-	•

[Trimble 3D Warehouse]

3D geometry acquisition

"A Large Dataset of Object Scans" Choi, Zhou, Miller, Koltun 2016

We need algorithms that "understand" shapes

We need algorithms that "understand" shapes

representation

We need algorithms that "understand" shapes

Why shape understanding? Generative models of shapes

Why shape understanding? Generative models of shapes

Kalogerakis, Chaudhuri, Koller, Koltun, SIGGRAPH 2012

Why shape understanding? Scene design

Lun, Kalogerakis, Wang, Sheffer, SIGGRAPH ASIA 2016

Why shape understanding? Texturing

Kalogerakis, Hertzmann, Singh, SIGGRAPH 2010

Why shape understanding? Character Animation

Simari, Nowrouzezahrai, Kalogerakis, Singh, SGP 2009

How can we perform shape understanding?

It is very hard to perform shape understanding with **manually specified rules & hand-engineered descriptors.**

Models from Dosch Design

How can we perform shape understanding?

It is very hard to perform shape understanding with **manually specified rules & hand-engineered descriptors.**

One more complication: arbitrary shape orientation

Models from Dosch Design

How can we perform shape understanding?

It is very hard to perform shape understanding with **manually specified rules & hand-engineered descriptors.**

One more complication: arbitrary shape orientation

The image understanding "success story"

Layers of **convolutional filters** trained to extract descriptors + **learned functions** that map descriptors to high-level concepts.

Source: Mathworks

The image understanding "success story"

Convnet filters capture various hierarchical patterns. Very high accuracy in image-processing tasks.

Matthew D. Zeiler and Rob Fergus, Visualizing and Understanding Convolutional Networks, 2014

How do we apply convnets for 3D shapes?

Geometric representations are **unordered**: arbitrary point order, different #points, different #neighbors per point...

Models from 3D Warehouse & FlyingArchitecture

Geometric representations have artifacts.

(not easily noticeable to the viewer, yet geometric implications on topology, connectedness...)

3D shapes are often **designed for viewing...**

3D shapes are often **designed for viewing...**

3D shapes are often **designed for viewing...**

Empty inside!

A natural extension of image-based convnets are **volumetric convnets** operating on **voxel shape representations**.

Voxel representation wasteful?

Image-based nets can process individual shape renderings.

Su, Maji, Kalogerakis, Learned-Miller, ICCV 2015

Image-based nets can process individual shape renderings.

⇒ 83% shape classification accuracy in ModelNet40 (VGG net trained on ImageNet)

Su, Maji, Kalogerakis, Learned-Miller, ICCV 2015

Can we do better? The multi-view approach

Deep architecture that combine **convolution layers for reasoning across multiple rendered shape views**

Su, Maji, Kalogerakis, Learned-Miller, ICCV 2015

Can we do better? The multi-view approach

Deep architecture that combine convolution layers for reasoning across multiple rendered shape views

Su, Maji, Kalogerakis, Learned-Miller, ICCV 2015

Can we do better? The multi-view approach

Deep architecture that combine convolution layers for reasoning across multiple rendered shape views + surface-based probabilistic models for producing a coherent signal on the surface.

Key challenges of multi-view convnets

Deep architecture that combine convolution layers for reasoning across multiple rendered shape views + surface-based probabilistic models for producing a coherent signal on the surface.

Key challenges:

• Joint reasoning about parts across multiple views + surface

Key challenges of multi-view convnets

Deep architecture that combine convolution layers for reasoning across multiple rendered shape views + surface-based probabilistic models for producing a coherent signal on the surface.

Key challenges:

- Joint reasoning about parts across multiple views + surface
- Deal with self-occlusions / surface information loss
Key challenges of multi-view convnets

Deep architecture that combine convolution layers for reasoning across multiple rendered shape views + surface-based probabilistic models for producing a coherent signal on the surface.

Key challenges:

- Joint reasoning about parts across multiple views + surface
- Deal with self-occlusions / surface information loss
- Promote invariance over 3D shape rotations

Outline

1. Multi-view convnets for 3D shape analysis

> Shape Segmentation

- Shape Classification & Retrieval
- > Shape Correspondences
- 2. Multi-view convnets for 3D shape synthesis
- 3. Discussion / Future work

View-based convnets for 3D shapes - Segmentation Pipeline

Kalogerakis, Averkiou, Maji, Chaudhuri, CVPR 2017 (oral)

View-based convnets for 3D shapes - Segmentation Pipeline

Kalogerakis, Averkiou, Maji, Chaudhuri, CVPR 2017 (oral)

... and across multiple distances from the surface.

Render **shaded images** (normal dot view vector) encoding surface normals.

Render also **depth images** encoding surface position relative to the camera.

Perform in-plane camera rotations for **rotational invariance**.

Each pair of depth & shaded images is processed by a FCN.

The output of each FCN branch is a view-based **confidence map per part label.** hor. stabilizer

The output of each FCN branch is a view-based **confidence map per part label.**

Views not ordered (no view correspondence across shapes), thus the FCN branches share the same parameters.

Aggregate & **project** the image confidence maps from all views **on the surface.**

For each surface element, find all pixels painted by it in all views. Surface confidence: max of these pixel confidences per label.

For each surface element (triangle), find all pixels that include it in all views. **Surface confidence**: use **max of these pixel confidences** per label.

For each surface element (triangle), find all pixels that include it in all views. **Surface confidence**: use **max of these pixel confidences** per label.

Surface model for spatially coherent labeling

Last layer performs inference in a probabilistic model defined on the surface.

Surface model for spatially coherent labeling

Probabilistic model consists of unary factors based on **surface-based confidences**

$$P(\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}, \mathbf{R}_{4}... | \text{shape}) = \frac{1}{Z} \prod_{f=1..n} P(\mathbf{R}_{f} | \text{views}) \prod_{f, f'} P(\mathbf{R}_{f}, \mathbf{R}_{f'} | \text{surface})$$

Unary factors
(FCN confidences)

Surface model for spatially coherent labeling

(geodesic+normal distance)

Inference

Infer **most likely joint assignment** to all surface random variables of the probabilistic model (Conditional Random Field)

$$\max_{P(R_1, R_2, R_3, R_4... | \text{shape})} = \frac{1}{Z} \prod_{f=1..n} P(R_f | \text{views}) \prod_{f, f'} P(R_f, R_{f'} | \text{surface})$$

MAP assignment (mean-field inference)

Forward pass

inference (convnet+CRF)

The architecture is trained **end-to-end** with analytic gradients.

Backpropagation / joint training (convnet+CRF)

The architecture is trained end-to-end with analytic gradients.

Backpropagation / joint training (convnet+CRF)

The architecture is trained **end-to-end** with analytic gradients. Training starts from a **pretrained image-based net** (VGG16).

Backpropagation / joint training (convnet+CRF)

The architecture is trained **end-to-end** with analytic gradients. Training starts from a **pretrained image-based net** (VGG16), then **fine-tune on segmented shape datasets.**

[Yi et al. 2016]

Dataset used in experiments

Evaluation on **ShapeNet + LPSB + COSEG** (46 classes of shapes). **50%** used for training / **50%** used for test split **per Shapenet category**. No assumption on shape orientation.

[Yi et al. 2016]

Results

Labeling accuracy on **ShapeNet** test dataset:

(no assumption on shape orientation)

ShapeBoost	Guo et al.	ShapePFCN
81.2	80.6	87.5

ShapeBoost: JointBoost on geometric descriptors [Kalogerakis et al. 2010] Guo et al.: Convnet on geometric descriptors ShapePFCN: Shape Projective Fully Convolutional Network

Results

Labeling accuracy on **ShapeNet** test dataset:

(no assumption on shape orientation)

Ignore easy classes	ShapeBoost	Guo et al.	ShapePFCN
(2 or 3	81.2	80.6	87.5
part labels)	76.8	76.8	84.7

~8% improvement in labeling accuracy for complex categories (vehicles, furniture)
Results

Labeling accuracy on **ShapeNet** test dataset:

(assume consistent upright orientation + render y-coords)

Ignore easy classes	ShapeBoost	Guo et al.	ShapePFCN
(2 or 3 part labels)	81.2	80.6	89.4
	76.8	76.8	86.6

~10% improvement in labeling accuracy for complex categories (vehicles, furniture)

Object scans from "A Large Dataset of Object Scans" Choi et al. 2016

Outline

1. Multi-view convnets for 3D shape analysis

- > Shape Segmentation
- Shape Classification & Retrieval
- > Shape Correspondences
- 2. Multi-view convnets for 3D shape synthesis
- 3. Discussion / Future work

Su, Maji, Kalogerakis, Learned-Miller, ICCV 2015

Shape recognition with multi-view CNNs

View Pooling

View Pooling

View Pooling

Classification

ModelNet40: Classification & Retrieval

Method	Classification (Accuracy)	Retrieval (mAP)
Spherical Harmonics [Kazhdan et al.]	68.2%	33.3%
LightField [Chen et al.]	75.5%	40.9%
Volumetric Net [Wu et al.]	77.3%	49.2%
ImageNet-trained CNN (VGG-M, 1 view)	83.0%	44.1%
Multi-view convnet (MVCNN)	90.1%	79.5%

ModelNet40: Classification & Retrieval

Method	Classification (Accuracy)	Retrieval (mAP)
Spherical Harmonics [Kazhdan et al.]	68.2%	33.3%
LightField [Chen et al.]	75.5%	40.9%
Volumetric Net [Wu et al.]	77.3%	49.2%
ImageNet-trained CNN (VGG-M, 1 view)	83.0%	44.1%
Multi-view convnet (MVCNN)	90.1%	79.5%

Updates since 2015: new pooling strategies & using depth+normal renderings yield 93.8% classification accuracy for MVCNNs [Wang et al. 17] vs 91.3% for the best volumetric net [Brock et al. 2016, no ensemble]

Outline

1. Multi-view convnets for 3D shape analysis

- > Shape Segmentation
- Shape Classification & Retrieval
- > Shape Correspondences
- 2. Multi-view convnets for 3D shape synthesis
- 3. Discussion / Future work

Huang, Kalogerakis, Chaudhuri, Ceylan, Kim, Yumer (TOG, to appear)

Applications of local descriptors: keypoint prediction & correspondences

(similar colors correspond to points with similar descriptors)

Applications of local descriptors: affordance prediction

Where humans tend to place their palms when they interact with these objects?

Applications of local descriptors: affordance prediction

CNN branches (shared parameters)

Training dataset generation

Non-rigid alignment **per part** from segmented ShapeNetCore

(corresponding points have same color)

Backpropagation

Evaluation: correspondence accuracy

[Kim et al. 2013]

Evaluation: correspondence accuracy

Our method – Local Multi-view CNN (LMVCNN)

Matching 3D point clouds to 3D models

(similar colors correspond to points with similar descriptors)

Note: point clouds are rendered using a sphere per point

Outline

- **1.** Multi-view convnets for 3D shape analysis
 - > Shape Segmentation
 - Shape Classification & Retrieval
 - > Shape Correspondences
- 2. Multi-view convnets for 3D shape synthesis
- **3. Discussion / Future work**

Sketch-based shape synthesis

Lun, Gadelha, Kalogerakis, Maji, Wang (3DV 2017 oral)

Encoder

Decoder

Infer depth and normal maps

Decoder

Infer depth and normal maps

increasingly finer scales

Multi-view decoder

Infer depth and normal maps for several views

"U-Net"

Feature representations in the decoder depend on **previous** layer & encoder's corresponding layer

Isola et al. 2016

Initial training loss

Training: discriminator network

Checks whether the output depth & normals look **real** or **fake**. Trained by treating ground-truth as **real**, generated maps as **fake**.

Training data

Character 10K models

Chair 10K models Airplane 3K models

Models from "The Models Resource" & 3D Warehouse

Training data

Synthetic line drawings

Training data

Training depth and normal maps

Test time

Predict multi-view depth and normal maps!

Multi-view depth & normal map fusion

Multi-view depth & normal maps

Consolidated point cloud

Multi-view depth & normal map fusion

Optimization problem

• Depth derivatives should be consistent with normals

output view 12 Multi-view depth & normal maps

Consolidated point cloud

Multi-view depth & normal map fusion

Optimization problem

- Depth derivatives should be consistent with normals
- Corresponding depths and normals across different views should agree

output view 12 Multi-view depth & normal maps

Consolidated point cloud

Surface reconstruction

Multi-view depth & normal maps

Consolidated point cloud

Surface reconstruction [Kazhdan et al. 2013]

Surface deformation ō ō 6 output view 1 output view 12

Multi-view depth & normal maps

Consolidated point cloud

Surface reconstruction [Kazhdan et al. 2013]

Multi-view depth & normal maps

Consolidated point cloud

SurfaceSurfacereconstruction"fine-tuning"[Kazhdan et al. 2013][Nealen et al. 2005]

Characters (human drawing)

	Our method	Volumetric decoder	Nearest retrieval
Hausdorff distance	0.120	0.638	0.242
Chamfer distance	0.023	0.052	0.045
normal distance	34.27	56.97	47.94
depth map error	0.028	0.048	0.049
volumetric distance	0.309	0.497	0.550

Man-made objects (human drawing)

	Our method	Volumetric decoder	Nearest retrieval
Hausdorff distance	0.171	0.211	0.228
Chamfer distance	0.028	0.032	0.038
normal distance	34.19	48.81	43.75
depth map error	0.037	0.046	0.059
volumetric distance	0.439	0.530	0.560

Single vs two input line drawings

More results

Outline

- **1.** Multi-view convnets for 3D shape analysis
 - Shape Segmentation
 - > Shape Classification & Retrieval
 - > Shape Correspondences
- 2. Multi-view convnets for 3D shape synthesis
- **3. Discussion / Future work**

Summary: multi-view architectures

- Motivated by human vision: view-based convnets analyze
 what can be seen under view projections
- Aggregate information from multiple views selected to maximally cover the surface
- Combine with surface models to **deal with occlusions**
- Robust to input geometric representation artifacts (e.g., irregular tessellation, polygon soups, etc)
- Initialized from image-based architectures pretrained on massive image datasets
Limitations

- Volumetric/interior properties of objects cannot be handled with MVCNNs
- Some redundancy in processing (same surface is visible from multiple views)
- View pooling might cause **some information loss**
- Combine volumetric & multi-view nets, point-based nets?

Combining volumetric & multi-view nets

Han, Li, Huang, Kalogerakis, Yu, ICCV 2017

Combining volumetric & multi-view nets

Han, Li, Huang, Kalogerakis, Yu, ICCV 2017

Combining volumetric & multi-view nets

Han, Li, Huang, Kalogerakis, Yu, ICCV 2017

Thank you!

Acknowledgements: NSF (CHS-1422441, CHS-1617333), NVidia, MassTech Collaborative, Adobe.

Web page with papers, project data, source code, results:

http://people.cs.umass.edu/~kalo/

