Machine Learning for
Shape Analysis and Processing

3D content

creatna
g P

L 3D model database

Data-driven _
shape analysis & .do Machme
processing learning

Evangelos Kalogerakis

3D sensmg




3D shapes for computer-aided design

Architecture Interior design



3D shapes for information visualization

Geo-visualization Scientific visualization



3D shapes for digital entertainment

Video games



Digitizing our imagination

Professional 3D modeling tools
[Autodesk Maya]



Digitizing our imagination
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Digitizing our imagination
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General-Purpose Modeling tools
[Sketch-up]



3D shape repositories

GOL')gle 3D warehouse |[cat

Models ~| Search | Advanced Search

3D Warehouse Results

[Sorted by relevance -|

CAT 797B Franco Peia
by einstein
El camion mas grande del...

Download to Google SketchUp

MM Tank-Bot V2 [For
Phat. ..

- T

| actually have a reason for...
Download to Google SketchUp 6

MM Plasma Sniper [For
Phat...

by Wil

The Marble Men...

Download to Google SketchUp 6

Cat

by Stefy
Gatto, Felino,

Download to Google SketchUp 6

Mad cat - Timber Wolf
battle. ..

by grenier.dav
This is a mad cat that | drew...

Download to Google SketchUp 6

MM Assault Rifle [Entering

by Wil
Fully automatic Marble Man...
Download to Google SketchUp 6

[Trimble Warehouse]

Results 1 - 12 of many for cat (0.3 seconds) -

cats

by rubicundo2

(2D) tres gatitos para...
Download to Google SketchUp 6

Cat Souvenir

by Piper

From 3D Collections

Download to Google SketchUp 7

Big solar powered Space...
by Shogun(The rarely...

This is a big solar powered...
Download to Google SketchUp

RSS




Shape understanding
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Why shape understanding?
Shape categorization

Sailing Ship, Sailing ship, Military ship,
Galleon Yawl Frigate



Why shape understanding?
3D Modeling

Modeling by Assembly

Fle Edit View
= | CE o

Torso Head Leg Tail Arm |- »
Complete Lower Torso Uppe- >

« & |
- N
“ N

' Search.. 2 XS peed

Chaudhuri, Kalogerakis, Guibas, Koltun, SIGGRAPH 2011
access video: https://www.youtube.com/watch?v=7Abki79WIOY
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Why shape understanding?

Shape synthesis
;}:1
i



Why shape understanding?
Shape synthesis
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Kalogerakis, Chaudhuri, Koller, Koltun, SIGGRAPH 2012



Why shape understanding?
Texturing

B Ear
] Head

L] Upper arm
B Lowerarm
B Hand
B Upperleg
B Lower leg
Foot

B Tail

Kalogerakis, Hertzmann, Singh, SIGGRAPH 2010



Why shape understanding?
Character Animation

I Ear
[ Head

[ Torso
7] Back

B Upper arm
B Lower arm

Il Hand
Il Upper leg
B Lower leg
I Foot

I Tail

Simari, Nowrouzezahrai, Kalogerakis, Singh, SGP 2009



Why data-driven methods
for shape understanding?

It is extremely hard to perform shape understanding with a set
of deterministic, manually specified rules!

We should not treat shapes in complete isolation of all others.

L T isver simet [IeeeS Saataastint etamiorai Tecrnnd 14 s eatal - imskibiiiibesiis 8 e

rierery ! e dad dd 4 0aro Tt d a8 R R ARARARACARSRR RS ERAARRALF AR HE e i THATR I=mA e | FRARAARTAR T e tr ezt chpinbiRnnblines ol ienpuiiiyesopd e LR EL 0 HRneRuerRineRuoRp=bocrerpnh by
qmqﬁz? it st st bibe 2t res bt LEELE S LELETER R ERPECE EECEREERTES R T e e e
imiﬂﬂﬂﬁﬂ%éuﬁ?wﬁﬁ zfﬁu‘*r#wi . 'Hvzzrﬁna :'Eﬁr'rPr—HEEE*ELE‘“'LE—L‘%WM%E%W fhahlers

ﬁ%&ié?igiﬁmiﬂ;ﬁa%? gza; BRABEEM Eﬁﬁnﬁﬁ%%ﬁ%ﬂﬁwm

Cek %@E%@é@%&?

-l
-o




Pipeline of data-driven methods
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Data collection
& preprocessing
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Pipeline of data-driven methods
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Pipeline of data-driven methods
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Pipeline of data-driven methods
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Pipeline of data-driven methods
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Pipeline of data-driven methods

Data collection
& preprocessing
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Pipeline of data-driven methods

Data collection
& preprocessing

.

~\

Feature
S extraction

Feature
_ learning

i \ Inference |
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Model
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Classification
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Example: part labeling [training stage]

B hcad
M neck
M torso

leg

M (a1l
B car

Training shapes
with labeled parts

Geometric descriptor space



Example: part labeling [test stage]

Test shape
Geometric descriptor space Test shape with labeled parts
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STAR report

Data-Driven Shape Analysis and Processing, CGF STAR report
Kai Xu, Vladimir Kim, Qixing Huang, Evangelos Kalogerakis
Overview of 200+ works published in the field, 30 pages. Enjoy!

Pipeline of data-driven shape processing techniques
Learning

nape classification and retrieval

nape segmentation

nape reconstruction

S
S
Shape correspondences
S
S

nape modeling and synthesis
Scene analysis and synthesis
Exploration and organization of 3D model collections



L 0 N O kA WNR

In this talk....

Pipeline of data-driven shape processing techniques
Learning

Shape classification and retrieval

Shape segmentation

Shape correspondences

Shape reconstruction

Shape modeling and synthesis

Scene analysis and synthesis

Exploration and organization of 3D model collections



Leg thickness y

Learning basics: regression

sturdiness x

@ Training data point ( shape + design values )



Leg thickness y

Learning basics: regression

sturdiness x

@ Training data point ( shape + design values )



Leg thickness y

Learning basics: regression

sturdiness x

@ Training data point ( shape + design values )



Learning basics: regression

Q

O

9
new datapoint

O

Leg thickness y

sturdiness x

@ Training data point ( shape + design values )



Leg thickness y

Learning basics: regression

o y=W-X'

Q

x'=[x" x 1]

O

9
new datapoint

O

sturdiness x

@ Training data point ( shape + design values )



Leg thickness y

Learning basics: regression

o y=W-X'
o X'=[x"x I’
e -
LWy = Sy, - wex,”
0 train. i

new datapoint

O

sturdiness x

@ Training data point ( shape + design values )



Learning basics: regression

o '
~ o Y=W:-X
% ' 2 ]
S 2 X'=[x" x 1]
= © i
Q 7 _ E : . ] 172
-E © L(W) — [yl W Xi -
A -0 train. i
0 @1 , :
Q _ new datapoint .../inear least-squares solution...
Q /

sturdiness x

@ Training data point ( shape + design values )



Overfitting

Important to select a function that would avoid
overfitting & generalize (produce reasonable outputs for
inputs not encountered during training)

v v v
> > >
X X X
Underfitting Just right! overfitting

image from Andrew Ng’s ML class



Learning basics: Logistic Regression

Suppose you want to predict mug or no mug for a shape.
Output: Y =1 [ coffeemug], y =0 [nocoffee mug]
Input: x = {x,,x,,...} [curvature histograms, HKS efc]



Learning basics: Logistic Regression

Suppose you want to predict mug or no mug for a shape.
Output: y =1 [coffeemug], y =0 [nocoffee mug]
Input:  x = {x,x,,...} [curvature histograms, HKS ezc]

Classification function: P(y=1]x)

P(y=1|x)=f(x)=0c(w-x) == f
where w 1s a weight vector

1 022_
o(W-x) = J

1+ exp(—w - x)



Logistic regression: training

Need to estimate parameters w from training data e.g.,
shapes of objects x. and given labels y. (mugs/no mugs)
(i=1...N training shapes)

Find parameters that maximize probability of training data

N
m‘?XHP(y o 1 | Xi)[yi::”[l — P(y — 1 | Xi )][yi:=0]
i=1



Logistic regression: training

Need to estimate parameters w from training data e.g.,
shapes of objects x. and given labels y. (mugs/no mugs)
(i=1...N training shapes)

Find parameters that maximize probability of training data

N
max H o(w-x )" l-o(w-x)]""
Yo



Logistic regression: training

Need to estimate parameters w from training data e.g.,
shapes of objects x. and given labels y. (mugs/no mugs)
(i=1...N training shapes)

Find parameters that maximize the log prob. of training data

N
max log{] [ o(w-x )" [1-o(w-x)[" "}

i=1



Logistic regression: training

Need to estimate parameters w from training data e.g.,
shapes of objects x. and given labels y. (mugs/no mugs)
(i=1...N training shapes)

Find parameters that maximize the log prob. of training data

max Z logo(w-x.)+[y, ==0]log(l - o(w-Xx,))



Logistic regression: training

Need to estimate parameters w from training data e.g.,
shapes of objects x. and given labels y. (mugs/no mugs)
(i=1...N training shapes)

This is called log-likelihood




Logistic regression: training

Need to estimate parameters w from training data e.g.,
shapes of objects x. and given labels y. (mugs/no mugs)

(i=1...N training shapes)
We have an optimization problem.

GL(W) _ in’d[yi _ O'(W . Xl')]

ow,

(partial derivative for dth parameter)



How can we minimize/maximize
a function?

Gradient descent: Given a random initialization of
parameters and a step rate n, update them according to:

W w Wold _UVL(W)

ne

See also quasi-Newton and IRLS methods



Regularization

Overfitting:
few training data vs large number of parameters!

Penalize large weights:

min — L(w)+ /IZ w )’
d

W

Called ridge regression (or L2 regularization)



Regularization

Overfitting:
few training data vs large number of parameters!

Penalize non-zero weights - push as many as possible to O:

min —L(W)-I—/IZ‘WGZ |
" d

Called Lasso (or L1 regularization)



The importance of choosing good features...

feature 2//
N -
+ -_—
+ +

+ -+

> feature 1

4+ Coffee Mug
= Not Coffee Mug

modified slides originally
by Adam Coates



The importance of choosing good features...

feature 2//
N -
+ -

- S

= 4+ 7 Learning Algorithm

Is this a Coffee Mug?

feature 2

> feature 1 feature 1

4+ Coffee Mug

classification boundary
= Not Coffee Mug

modified slides originally
by Adam Coates



The importance of choosing good features...

cylinder?

- handle?
U »

Is this a Coffee Mug?

cylinder? cylinder?
N N

+ +
Ty

- + Learning Algorithm -

> handle? andle?

4+ Coffee Mug
= Not Coffee Mug

modified slides originally
by Adam Coates



From “shallow” to “deep” mappings

Logistic regression: output is a direct function of inputs.
Think of it as a net:
(V) [y=/f(x)=0(wx)




Neural network

Introduce latent nodes that play the role of learned
feature representations.

y) ¥ =o(w"-h)

h =o(w,')-x) h, h, h,=oc(w,"” - x)




Neural network

Same as logistic regression but now our output function

has multiple stages ("layers",

X—{ (W -x)

~h

modules").

o(W® .h)

Intermediate representation

where

W =

A 4

_>y

Prediction

modified slides originally
by Adam Coates



Neural network
Stack up several layers:




Forward propagation

Process to compute output:

& ® ©®.0 O



Forward propagation

Process to compute output:




Forward propagation

Process to compute output:
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Forward propagation

Process to compute output:
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How can we learn the parameters?

Use a loss function e.g., for classification:

L(w) = _Z Z [yi,t ==1]log 1,(x,) + [Yi,t == 0]log(1 - f,(x,))

I outputt

In case of regression i.e., for predicting continuous outputs:

Lw)= > [y, — fi(x)T

[ outputt



Backpropagation

For each training example i:

For each output: 51(3) = f,(X)—y,

OL(W) _ 5%y

(3) !
n



Backpropagation

OL(W) _
ow, @~

5, Ph




Backpropagation




s this magic?

All these are derivatives derived analytically using the
chain rule!

Gradient descent is expressed through backpropagation
of messages 6 following the structure of the model



Training algorithm
For each training example [in a batch]

1. Forward propagation to compute outputs per layer
2. Back propagate messages 6 from top to bottom layer

3. Multiply messages 6 with inputs to compute derivatives
per layer

4. Accumulate the derivatives from that training example

Apply the gradient descent rule



Yet, this does not work so easily...




Yet, this does not work so easily...

* Non-convex: Local minima; convergence criteria.

e Optimization becomes difficult with many layers.

* Hard to diagnose and debug malfunctions.

* Many things turn out to matter:
e Choice of nonlinearities.
* |nitialization of parameters.
* Optimizer parameters: step size, schedule.



Non-linearities

* Choice of functions inside network matters.
* Sigmoid function yields highly non-convex loss functions
 Some other choices often used:

tanh(-) abs(+) RelLu(:) = max{0, -}
A A A
1 \/ 17—
/ g
-1
tanh'(-)= 1 - tanh(-)? abs'(-)= sign() Relu'(:)= [->0]

“Rectified Linear Unit”

- Most popular.
[Nair & Hinton, 2010]



Initialization

e Usually small random values.

* Try to choose so that typical input to a neuron avoids saturating
4

A/]-I/

 Initialization schemes for weights used as input to a node:
e tanh units: Uniforml[-r, r]; sigmoid: UniformI[-4r, 4r].
* See [Glorot et al., AISTATS 2010]

r = +/6/(fan-in + fan-out)




Step size

* Fixed step-size
* try many, choose the best...
 pick size with least test error on a validation set after T iterations

* Dynamic step size It o
e decrease after T iterations

| t

* if simply the objective is not decreasing much, cut step by half



Momentum

Modify stochastic/batch gradient descent:

Before: Aw=nV _L(w), w=w-Aw

With momentum : Aw = yAw +nV L(W), w=w—Aw

previous

“Smooth” estimate of gradient from several steps of
gradient descent:

* High-curvature directions cancel out, low-curvature directions
“add up” and accelerate.

* Other techniques: Adagrad, Adadelta, batch normalization...



Momentum+L2 regularization

Modify stochastic/batch gradient descent:

Before: Aw=nV _L(w), w=w-Aw

With momentum : Aw = yAw +nV L(W), w=w—Aw

previous

“Smooth” estimate of gradient from several steps of
gradient descent:

* High-curvature directions cancel out, low-curvature directions
“add up” and accelerate.

* Other techniques: Adagrad, Adadelta, batch normalization...

Add L2 regularization to the loss function:
AW =1V (L(W)+ 4[| w)})



Yet, things will not still work well!




Main problem

* Extremely large number of connections.
* More parameters to train.
* Higher computational expense.




Local connectivity




Neurons as convolution filters

Now think of neurons as convolutional
filters acted on small adjacent
(possibly overlapping) windows

Window size is called
“receptive field” size
and spacing is called
“step” or “stride”



Can have many filters!

‘ ‘ ‘ Response per pixel p, per filter f

foratransferfunctlong h,r =g(wW;,-x))

modified slides originally
by Adam Coates



Pooling

Apart from hidden layers dedicated to convolution, we
can have layers dedicated to extract locally invariant

descriptors Max pooling:
A s mSX(Xp)
Mean pooling:

O O h,, =avg(x,)
O

O Fixed filter (e.g., Gaussian):
hp',f = wgaussian . p

Progressively reduce the resolution of the image, so that the

next convolutional filters are applied on larger scales
[Scherer et al., ICANN 2010]
[Boureau et al., ICML 2010]



A mini convolutional neural network

Interchange convolutional and pooling (subsampling)
layers.

In the end, unwrap all feature maps into a single feature
vector and pass it through the classical (fully connected)
neural network.

Inpuc layer (S1) 4 feature maps

1 (CI) 4 feature maps (52) 6 feature maps  (C2) 6 feature maps
L %,°

convolution layer sub-sampling layer convolution layer sub-sampling layer | fully connected layer
| l | | I J

Source: http://deeplearning.net/ tutorial/lenet.html



Proposed architecture from Krizhevsky et al., NIPS 2012:

AlexNet

Convolutional layers with Rectified linear units

Max-pooling layers

Stochastic gradient descent on GPU with momentum, L2
regularization, dropout

Applied to image classification (ImageNet competition — top
runner & game changer)

N

5

48

g

5

Max
pooling

27

128

EN .
¥ 3| 1% 5N
B . 192 128 2048 2048 \dense
13 \ 13
-\K "
i | . A
13 ' 13 dense’| [dense
1000
192 192 128 Max . L
Max pooling 2048 2048
pooling

Krizhevsky et al., NIPS 2012



Learned representations

Think of convolution filters as optimized feature templates
capturing various hierarchical patterns (edges, local
structures, sub-parts, parts...)

Low-Level| |Mid-Level| |High-Level Trainable
Feature Feature Feature Classifier

see Matthew D. Zeiler and Rob Fergus, Visualizing and Understanding Convolutional Networks, 2014



Multi-view CNNs for shape analysis

¢ D6 %
IEdR m):

%
P®%
%,

= -OT

CNN,

CNN,: a ConvNet extracting
image features per view

Image from Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller
Multi-view Convolutional Neural Networks for 3D Shape Recognition, ICCV 2015



Multi-view CNNs for shape analysis

0%

T

[

CNN,

R,

View pooling:
element-wise max-pooling
across all views

Image from Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller
Multi-view Convolutional Neural Networks for 3D Shape Recognition, ICCV 2015



Multi-view CNNs for shape analysis

[

T

%,
%,
%,

%,

CNN,

View
pooling

bathtubpp
bed O
chair—
—>desk[ 3
dresser[3
CNN,
toilet—

CNN,: a second ConvNet
producing shape descriptors

Image from Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller
Multi-view Convolutional Neural Networks for 3D Shape Recognition, ICCV 2015



Multi-view CNNs for shape analysis

® %
® %
B, pooine ) st -

CNN,

&%

CNN,

bathtub
bed
chair
—>desk
dresser

toilet

CNNs pre-trained on ImageNet
(leverage large image datasets for
training shape analysis techniques!)

Image from Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller
Multi-view Convolutional Neural Networks for 3D Shape Recognition, ICCV 2015

DDHDD




Multi-view CNNs for shape analysis

%

%I bathtubp
P bed O
A View % chair——
‘ . —>desk[
Q %I pooling dresser[
d
CNN,
toilet|—

CNN;
Fine-tuning on shape
databases

Image from Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller
Multi-view Convolutional Neural Networks for 3D Shape Recognition, ICCV 2015




Volumetric CNNs

4000
[

Key idea: represent a shape as a -
volumetric image with binary voxels. @0y 120

512 filters of i .

stride 1 4:’ 5
Learn filters operating on these 0 siersor i
volumetric data. SR =

48 filters of .-;j?h:;‘-._

stride 2 e

E =

3D voxel input

Image from Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao
3D ShapeNets: A Deep Representation for Volumetric Shapes, 2015



Volumetric CNNs

N EXYI P NI XIS 1I 1M
WO | 1PE8eNHBB w8,
SIIBSRSEPNETYINE .

fn3nrgneenssscesct
P LALAAARL Sl L]

‘w‘."'¢‘.‘&".ﬁ
CEANVAJISASI )T THdry

.Ut.‘h;l'l“"oﬁ
) I BLEY AW I=d Fd (4 W
48 Bi R b4t B ML L E

Learned filters

object label 10

512 filters of
stride 1

160 filters of
stride 2

48 filters of
siride 2

el

5;“"": 13

=5 30

3D voxel input

Image from Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang and J. Xiao
3D ShapeNets: A Deep Representation for Volumetric Shapes, 2015



Sketch-based 3D Shape Retrieval using CNNs
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2D view

Seh

Image from Fang Wang, Le Kang, Yi Li,
Sketch-based 3D Shape Retrieval using Convolutional Neural Networks, 2015



Sketch-based 3D Shape Retrieval using CNNs

d‘dﬁ'aw‘(ﬁ h#‘_-d"gﬂ‘h*-*ab-—::

Image from Fang Wang, Le Kang, Yi Li,
Sketch-based 3D Shape Retrieval using Convolutional Neural Networks, 2015



So far...

“mediating” representations
@

“High-level”
Space

“Low-level”
Shape Space




Can we go
the other
way around?

“High-level”
Space

“mediating” representations
@

“Low-level”
Shape Space




YES!
Automatic
Shape
modeling!

“mediating” representations
@

“High-level”
Space

“Low-level”
Shape Space




Why automatic geometric modeling?
Because it is not easy!

Autodesk Maya 2015



|II

“Traditional” Geometric Modeling

vos %
image from image from
autodesk.com wikipedia (CSG) Q
Manipulating polygons Manipulating curves Manipulating 3D primitives

. . . image from image from
Manipulating control points, cages B,e,,gde]; Digital Sculpting Mohamed

Aly Rable



“Traditional” Geometric Modeling

Impressive results at the hands of experienced users
Operations requires exact and accurate input
Creating compelling 3D models takes lots of time

Tools usually have steep learning curves



An alternative approach...

* Users provide high-level, possibly approximate input

 Computers learn to generate low-level, accurate
geometry

» Machine learning!



What would
be a good

design space
for users?

“mediating” representations
@

“High-level”
Space

“Low-level”
Shape Space




> Attributes “High-level”

Space

modern chair

“mediating” representations
@

“Low-level”
Shape Space




> Attributes
» Sketches

lines, pixels

“mediating” representations
@

“High-level”
Space

“Low-level”
Shape Space




> Attributes

» Sketch

» Natural language
» Gestures

» Brain signals

> Learn it
from data!

?

“mediating” representations
@

“High-level”
Space

“Low-level”
Shape Space




Machine learning for Geometric Modeling

* Learn mappings from design (“high-level”) to
“low-level” space: y = f( x )

e Learn which shapes are probable (“plausible”) given

input: P(y | f(x))



“Plausible” chairs




“Plausible” chairs

(not a binary or even an objective choice!)



The representation challenge

How do we represent the shape space?

—— N “Low-level”
Shape Space
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“Low-level” shape space representation

Can we use the polygon meshes as-is for our shape space?
No. Take the first vertex on each mesh. Where is it?
Meshes have different number of vertices, faces etc

“Low-level”
Shape Space




The “computer vision” approach

Learn mappings to pixels & multiple views!




The “volumetric” approach

Learn mappings to voxels!




The “correspondences” approach

Find point correspondences between 3D surface points. Can
do aligment. Can we always have dense correspondences?

Image from Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha Chaudhuri, Stephen DiVerdi, and
Thomas Funkhouser, “Learning Part-based Templates from Large Collections of 3D Shapes”, 2013



The “abstractions” approach

Parameterize shapes with primitives (cuboids, cylinders etc)
How can we capture surface detail?

Image from E. Yumer., L. Kara, Co-Constrained Handles for Deformation in Shape Collections, 2014



Case study: the space of human bodies

Training shapes: 125 male + 125 female scanned bodies

(XX EX Y
MM

Slides from Brett Allen, Brian Curless, Zoran Popovic, Exploring the space of human body shapes, 2003



Matching algorithm

Slides from Brett Allen, Brian Curless, Zoran Popovic, Exploring the space of human body shapes, 2003



Matching algorithm

Slides from Brett Allen, Brian Curless, Zoran Popovic, Exploring the space of human body shapes, 2003
to access the video: http://grail.cs.washington.edu/projects/digital-human/pub/allen04exploring.html



Princip‘ Component Analysis

Xo
Yo
Lo Lo Lo
X1 X1 X1
Y1 Y1 Y1
Zq Zq Zq
X3 X3 X3
. . .
.

Slides from Brett Allen, Brian Curless, Zoran Popovic, Exploring the space of human body shapes, 2003



Dimensionality Reduction

Summarization of data with many (d) variables by a
smaller set of (k) derived latent variables.

d k




Principal Component Analysis

Each principal axis is a linear combination of the original
variables
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Princip Component Analysis

average male mean + PCA
component #1

Slides from Brett Allen, Brian Curless, Zoran Popovic, Exploring the space of human body shapes, 2003
to access the video: http://grail.cs.washington.edu/projects/digital-human/pub/allen04exploring.html



Princip Component Analysis

average male mean + PCA
component #3

Slides from Brett Allen, Brian Curless, Zoran Popovic, Exploring the space of human body shapes, 2003
to access the video: http://grail.cs.washington.edu/projects/digital-human/pub/allen04exploring.html



Fitting to attributes

Correlate PCA space with known attributes:

60

40 -

Principal component #1

1.5 1.7 1.9 2.1
Height (m)

Slides from Brett Allen, Brian Curless, Zoran Popovic, Exploring the space of human body shapes, 2003



Fitting to attributes

Slides from Brett Allen, Brian Curless, Zoran Popovic, Exploring the space of human body shapes, 2003
to access the video: http://grail.cs.washington.edu/projects/digital-human/pub/allen04exploring.html



Case study: a probabilictic model for
component-based synthesis

Given some training segmented shapes:

™A T =g
AR XXX

... and more ....

Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun
A Probabilistic Model for Component-Based Synthesis, 2012



Case study: a probabilictic model for
component-based synthesis

Describe shape space of parts with a probability distribution

base avg. mean curvature

base diameter

Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun
A Probabilistic Model for Component-Based Synthesis, 2012



Case study: a probabilictic model for
component-based synthesis

Learn relationships between different part parameters
within each cluster e.g. diameter of table top is related to

scale of base plus some uncertainty

M

table top diameter

base diameter

Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun
A Probabilistic Model for Component-Based Synthesis, 2012



Case study: a probabilictic model for
component-based synthesis

Learn relationships between part clusters e.g. circular
table tops are associated with bases with split legs

Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun
A Probabilistic Model for Component-Based Synthesis, 2012



Case study: a probabilictic model for
component-based synthesis

Represent all these relationships within a structured
probability distribution (probabilistic graphical model)

Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun
A Probabilistic Model for Component-Based Synthesis, 2012



Shape Synthesis - Airplanes

Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun
A Probabilistic Model for Component-Based Synthesis, 2012



Shape Synthesis - Airplanes
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Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun
A Probabilistic Model for Component-Based Synthesis, 2012



Shape Synthesis - Airplanes

Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun
A Probabilistic Model for Component-Based Synthesis, 2012



Shape Synthesis - Airplanes
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Slides from Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, Vladlen Koltun
A Probabilistic Model for Component-Based Synthesis, 2012



Generative models of surface geometry
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Slides from Haibin Huang, Evangelos Kalogerakis, Benjamin Marlinn
Analysis and Synthesis of 3D Shape Families via Deep-Learned Generative Models of Surfaces, 2015



Learning to Generate Chairs
Inverting the CNN...

Euclidean error x 10

input conv-4 T target
7] FC-1 ST IR, (trans-
formed)
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Image from Alexey Dosovitskiy, J. Springenberg, Thomas Brox
Learning to Generate Chairs with Convolutional Neural Networks 2015



Learning to Generate Chairs
Inverting the CNN...

I |

I i 2x2 unpooling + |1mm 5- l
2x2 unpooling: u =

: POoTng = 5x5 convolution: L = :

Image from Alexey Dosovitskiy, J. Springenberg, Thomas Brox
Learning to Generate Chairs with Convolutional Neural Networks 2015
to access video: http://Imb.informatik.uni-freiburg.de/Publications/2015/DB15/



Summary

Welcome to the era where machines learn to generate 3D
visual content!

Data-driven techniques with (deep) learning are highly
promising directions



Summary

Welcome to the era where machines learn to generate 3D
visual content!

Data-driven techniques with (deep) learning are highly
promising directions

Some challenges:

* Generate plausible, detailed, novel 3D geometry from
high-level specifications, approximate directions

 What shape representation should deep networks
operate on?

* Integrate with approaches that optimize for function,
style and human-object interaction



