Data-driven 3D shape analysis and synthesis
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3D shapes for computer-aided design

Architecture Interior design



3D shapes for information visualization

Geo-visualization Scientific visualization



3D shapes for digital entertainment

Video games



Digital representations of 3D shapes

Polygon mesh



Digital representations of 3D shapes




Digitizing our imagination

Pallaf@ N -+&s o507

Professional 3D modeling tools
[Autodesk Maya]



Dlgltlzmg our imagination
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Computer Alded DeS|gn tools
[Catia]




Digitizing our imagination

udees eyn T Bt |- T Varst Uy prope

L WORK]
am Tock fAnalyze  Window el
gya-n BR *>Hhe W40 B3QQAZADBER &8 & 5 o

N ] ] e - i ek L G |

T T — )

e LxOFHILE DL v

PaBafll -+ 5 0ok

Tead Gparsiien

..........

General-Purpose Modeling tools
[Google Sketch-up]



3D shape repositories

Google 3D warehouse | cat

Models ~| Search | Advanced Search

3D Warehouse Results  [Sorted by relevance -|

CAT 797B Franco Pefia
by einstein
El camién mas grande del...

Download to Google SketchUp

MM Tank-Bot V2 [For
Phat...

S| by Will

| actually have a reason for...
Download to Google SketchUp 6

MM Plasma Sniper [For
Phat...

by Will

The Marble Men...

Download to Google SketchUp 6

Cat

by Stefy
Gatto, Felino,

Download to Google SketchUp 6

Mad cat - Timber Wolf
battle...

by grenier.dav
This is a mad cat that | drew...
Download to Google SketchUp 6

MM Assault Rifle [Entering

by Wil
Fully automatic Marble Man...
Download to Google SketchUp 6

[Google 3D Warehouse]

Results 1 - 12 of many for cat (0.3 seconds) - [

cats

by rubicundo2

(2D) tres gatitos para...
Download to Google SketchUp 6

Cat Souvenir

by Piper

From 3D Collections

Download to Google SketchUp 7

Big solar powered Space...

by Shogun(The rarely...
This is a big solar powered...
Download to Google SketchUp

S8



Shape understanding
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Why shape understanding?
Shape categorization

Sailing Ship, Sailing ship, Military ship,
Galleon Yawl Frigate



Why shape understanding?
3D Modeling

A Modeling by Assembly
File Edit View
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2X speed

Chaudhuri, Kalogerakis, Guibas, Koltun, SIGGRAPH 2011



Why shape understanding?
Shape synthesis



Why shape understanding?
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Why shape understanding?
Artistic rendering

Kalogerakis, Nowrouzehahrai, Breslav, Hertzmann, TOG 2012



Why shape understanding?
Texturing

Bl Ear
Il Head

Il Torso
L] Back
B Upperarm
B Lowerarm
B Hand
L] Upper leg
B Lower leg
Foot

Tail

Kalogerakis, Hertzmann, Singh, SIGGRAPH 2010



Why shape understanding?
Character Animation

I Ear
] Head

[ Torso
"] Back

B Upper arm
B Lower arm

Il Hand
Il Upper leg
B Lower leg
I Foot

I Tail

Simari, Nowrouzezahrai, Kalogerakis, Singh, SGP 2009



How can we perform shape understanding?

It is extremely hard to perform shape understanding
with a set of deterministic, manually specified rules!
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Key idea: probabilistic models for shapes

Define a probability distribution over high-level shape
attributes given geometry (discriminative approach),
or both (generative approach).

Learn this distribution by combining training data and
expert knowledge.

Efficiently infer unknown attributes given observed
evidence.



E. Kalogerakis, A. Hertzmann, K. Singh / Learning 3D Mesh

First part of my talk:
Learning 3D shape segmentation and labeling

meniation and Labeling, TOG 29{3), Siggraph 2010

and Labeli

Learning 3D Mesh Seg

Evangelos Kalogerakis  Aaron Hertzmann  Karan Singh

University of Toronte

Figure 1: Label sults
Benchmark [Chen et al.
afier training on the other meshes in the human ¢lass.

Abstract

This paper presents a data-driven approach 1o simultancous seg-
mentation and labeling of parts in 3D meshes. An objective func-
tion is formulated as a Conditional Random Ficld model, with terms
asscssing the consistency of faces with labels, and terms between
labels of ncighboring faccs. The objcctive function is leamed from
a collection of labeled trining meshes. The algorithm uses hun-
dreds of geometric and contextual label features and leamns dif
ferent types of scgmentations for differcnt tasks, without requi
ing manual paramcter tuning. Our algorithm achicves a significant
improvement in results over the state-of-the-art when evaluaicd on
the Princeion Segmentation Benchmark, ofien producing segmen-
tions and labclings comparablc ta those produced by humans.

1 Introduction

Segmentation and labeling of 31D shapes into meaningful parts is
fundamecntal 1o shape understanding and processing.  Numcrous

bexp . g cevmto.edui-kalofpaperLabe Meshe!

© ACM, (2010). This is the author’s version of the
work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The
definitive version was published in ACM
Transactions on Graphics 29{3}, July 2010.

Igarithin ta ane mesh each from
009). For each result, the algoridhm was trained on the other meshes in the sa

g e
[

e Princeton Segmentation
. the huaman was labeled
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s, e

tasks in geometric modeling, manufacturing, animation and tex-
turing of 3D meshes rely on their segmentation into parts. Many
of these problems further require labeled segmentations, where the
parts arc also recognized as instances of known part types. For
most of these applications, the segmentation and labeling of the
input shape is manually specificd. For cxample, to synthesize tcx-
ture for & humanoid mcsh, onc must identify which parts should
have “arm™ texture, which should have *leg™ texture, and so on.
Even tasks such as 3D shape matching o retrieval, which do not
dircetly require labelod-segmentations, could bencfit from knowl-
edge of constitucnt parts and labels. However, there has been very
little rescarch in part labeling for 3D meshes, and 3D object scg-
mentation likewise remains an open research problem [Chen et al.
2009)

This paper introduces a data-driven approach to simultancous seg.
mcntation and labeling of parts in 3D meshes. Labeling of mesh

s is expressed as a problem of optimizing & Conditional Ran-
dom Ficld (CRF) [Laffcrty ct al. 2001). This scgmens a mesh into
parts, with cach part having a corresponding label. The CRF ob-
jective function inchudes unary terms that asscss the consistency
of faces with Isbels, and pairwise terms between labels of sdja-
cent faces. The objective function is leamned from a collection of
labcled training meshes. The basic terms of the CRF arc leamed
wsing JointBoost classificrs [Torralba et al. 2007), which automat-
ically sclect from among bundrods of possible geometric features
10 choose those that are relevant for a particular scgmentation task.
Holdout validation is used 10 lcam additional CRF paramcters. We
evaluate our methods on the Princcton Scgmentation Benchmark,
with manually-added labels. Our method yiclds 94% labeling ac-
curacy, and is the first labeling method applicable to such a broad
range of meshes. In scgmentation, our method yiclds 9.5% Rand In-

Contributions:

Segmentation and labeling of parts
with a prob. discriminative model

Major improvements over
prior work

Data-driven, learnt from examples

Kalogerakis, Hertzmann, Singh, SIGGRAPH 2010



Second part of my talk:
A generative model of shapes

A Probabilistic Model for Component-Based Shape Synthesis
Siddhartha Chaudhun

Stanford University

Evangelos Kalogerakis

Figure 1: Grven 100 traiming airplanes (grem). our probabirstic model sy

Abstract

We W presot approach to synthesizing chape: fom complex do-

by sdennfying = ;pan_ﬂ:.e combinations of components
ey ting shapes. Our contribution i 2 new zenera-
mewd.&‘efwmpenmba.edh.\pe The model repre-
sents probabilistic relationchips between properties of shape com-
ponents, and relates them to leamed underlying causes of souc-
tural variability within the domain These causes are meated as
Iatent variables, leading to a conmpact representation that can be
effectively learned without supenision from a set of compatibly
segmented shapes. We evaaie the modl on 2 mmmber of dhupe
datasets with conplex stuctwal vanability and demonstrate its
application to amplification of shape databases and to inferactive
shape synthesiz

R Catgore: 135 [Compting Mbodcogie], Coupus
Graphuer—Conputanonal Geomeny axd

Keywords: shape synthesis, hape struchure, probabibiste graphi-
cal models, mackune leamning. data~drven 3D modeling

Links: $DL ®PDF

© ACM, (2010). This is the author’s version of the
work. It is posted here by permission of ACM for
your personal use. Not for redistribution. The
definitive version was published in ACM
Transactions on Graphics 29{3}, July 2010.

Daphne Koller Vladlen Koltun

1251267 now atrplanes (bl

1 Introduction

The creation of compalling content iz 3 central problem in comprrter
graphics. Many common applications such a5 games and vartual
worlds require large bodies of three-dimensional content to pop-

resources. Such wers can beneft from tools that auromancally svo-
thesize Lurge mumbers of pew, distinct shapes from a given domain.

Tools for automatic synthesis of shapes from complex real-world
domains nmect understand what characterizes the structure of < h:pe
mm such domains. Developng formal models of this structur

since thapes in mony real-world domains !_'fhbn
mmplu relationship: between therr components. Consider sail-
ing shups. Snlmz shups vary in the size and type of bull, keel and

ample, yawks are small crafts with a shallow bull that supports two
masts with lpe, miangular sails Caravels are soall, mghly e

peuverable zhups caTying two or three masts with tangular sails

Galleons ave nmlti-decked ships with much larger bulls and primar-
tly sequare sa1ls on three or more mmsts. Vanous geometric, stylishe
and functional relationzhip: influsnce the selection and placement
of individual conmponent: to ensure that the final zhape fom a co-
berent whole. Similarly complex networks of relationships charac-
tenize other domair such a5 awplanes, sutomobules, furmture, and
various biological forms

The focus of our work is on designing 3 compact reprezentation of
these relaticnships that can be leamed without supersizion from 2
Limited mumber of examples. Our primary connibution is 3 genera-

tive probabilistic mods] of <hape structure that can be traimed on 3
set of compatibly segmented shapes from 3 particular domain The
mode] compactly represents the souctural vanability within the do-
mam_ without manmal mumng or any addinonal specificanion of the

ontributions:

Learns structural variability in
3D shapes

Automatic shape synthesis in
complex domains (airplanes,
ships, furniture, game characters

Kalogerakis, Chaudhuri, Koller, Koltun, SIGGRAPH 2012



Outline

. Learning 3D shape segmentation and labeling
[Kalogerakis et al., SIGGRAPH 2010]

. A generative model of shapes

. Other ML applications to graphics and vision

Future work
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shape segmentation and label
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Related work: mesh segmentation

Shape Diameter Randomized Cuts
[Shapira et al. 2010] [Golovinskiy and Funkhouser 2008]

Random Walks Fitting Primitives
[Lai et al. 2008] [Attene et al. 2006]



Is human-level shape analysis possible
without using prior knowledge?

[X. Chen et al. SIGGRAPH 2009]



Must we hand-tune algorithms
for each type of shape?
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Related work: image segmentation and labeling

building
&£

airplane

grass

building  grass COW sheep sky girplane = water face car

bicycle  flower SIE bird book chair road cat Gl body boat

Textonboost
[Shotton et al. ECCV 2006]



Labeling problem statement
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Labeling problem statement

. Head
. Neck
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C = { head, neck, torso, leg, tail, ear }



Labeling problem statement
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Feature vector X

1 » .
A It ~
xR A

surface curvature  PCA-based descriptors shape diameter

_ N
Do

A
)’ ¢ ) r‘?’\)

Average geodesic 3D contextual Localized descriptors
distances features of global shape




Labeling problem statement
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Labeling problem statement
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Conditional random field for labeling
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Conditional random field for labeling
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Conditional random field for labeling
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Conditional random field for labeling
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Unary term

P(C; | %)
‘ 1.0
lo.s
06

P(head | X) P(neck | X) P(ear | X) .
- 04

0.2

P(torso | X) P(leg | xX) P(tail | X)




Unary term

Most-likely labels
Unary term

by
L2 ‘o =\

Classifier entropy

1.4
1.2

" 08
06
04
202
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Pairwise Term

P(c#c'|x;)L(c,c’)

1.0
I0.8
- 0.6
- 04

- 0.2
0.0




Maximum A Posteriori assighment

arg max P(c,,C,,...,C_ | X)

C» CyyeeesCp

Unary term classifier MAP estimate



Dataset used in experiments

We label 380 meshes (19 categories) from the
Princeton Segmentation Benchmark

. Antenna

I Head
. Thorax
Leg

B Abdomen

[Chen et al. 2009]



Quantitative Evaluation

Segmentation

e QOur result: 9.5% Rand Index error
 Outperforms all prior work:
e 15% Randomized Cuts [Golovinskiy and Funkhouser 08]
e 17% Normalized Cuts [Golovinskiy and Funkhouser 08]
e 17.5% Shape Diameter [Shapira et al. 08]
* 21% Core Extraction [Katz et al. 05]
* 21% Fitting Primitives [Attene et al. 06]
e 21.5% Random Walks [Lai et al. 08]
* 21% Intrinsic Symmetry [Solomon et al. 11]



Labeling results

M head Warm
[ torso ] lens
[l vpper arm W bridge
izer

lower arm
M thumb

B hand

B upper leg
M index
M middle

W lower leg
[ring

M foot
Ml pinky
M palm

Bhead
M neck
Wtorso
Mleg
M tail

Mfin

Mstabil
Wbody
[Jwing

Bantenna
M head
M thorax

[leg W top
M abdomen I leg

Wcar

[ head Wcup
i [ handle

arm

M leg

Mhead
Ewing
W body
Oleg
M tail

Wear . Wbig cube
Ehead Esmall cube
Mtorso

[Mback

Wupper arm
Mlower arm
Mhand
Mupper leg
Wlower leg
M foot
Htail

W back
B middle
M seat
[ leg

B handle
[ cup
M top

[ base

Bhead
Eentacle

Mface
[ hair
M neck

Wlbig roller M handle
B medium roller [ joint
Waxle W jaws




Summary

Use prior knowledge for shape segmentation and labeling
Based on a probabilistic model learned from examples
Significant improvements over the state-of-the-art
Generalization across categories:

Wil s ptpt-

Hl Head
[l Wing
H Body
M Tail




1.

1.

2.

3.

Outline

Learning 3D shape segmentation and labeling

A generative model of shapes
[Kalogerakis et al., SIGGRAPH 2012]

Other ML applications to graphics and vision

Future work



Goal: generative model of shape
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Related work: generative models of bodies & faces

Works on relatively simple shapes with fixed structure
Based on dense correspondences between input shapes

Scanned bodies

[Allen et al. SIGGRAPH 2003]



Learning shape structure

We want to model attributes related to shape structure

m"" ’ j Shape styles
“J .‘ Component styles
”"'y’ Number of components

Component geometry
iﬁﬁ? Component placement

model P( R1 {SI}1 {NI}1 {GI}1 {TI})



P(R)



P(R)



P(R) IH [PCN; [ R)]
eL



P(R)IH [P(N; [R)P (S| R)]
eL



P(R) IT[P(N; [R)P (S| R)]
| eLL



PR) LI [P(N,|R)P(S |R)P(T,|N)]

| e



P(R)IHL[P<N.|R>P<S.|R)P(T.lN.)P(G.lS.)]



Width

P(R)IHL[P<N.|R>P<S.|R)P(T.lN.)P(G.lS.)]



Latent object style

Latent component style

P(R)IH[P<N.|R>P<S||R>P<T.|N.)P(G.|8.>]
el






Learning

Given observed data O, find structure G that maximizes:

P(G | O) = [P0 ] GIPEG)]

P(O)

Assuming uniform prior over structures, maximize
marginal likelihood:

P(O|G) = Z'/' P(O,R,S|©,G)P(O | G)de

R.S §



Learning

Given observed data O, find structure G that maximizes:

P(O | G)P(Q)

P(G|0) = =55

Assuming uniform prior over structures, maximize
marginal likelihood:

P(O|G):Z/ (O,R,S|0,G)|P(O®]|G)de

R.S §

Complete
likelihood



Learning

Given observed data O, find structure G that maximizes:

P(O | G)P(G)
P(O)

P(G | O) =

Assuming uniform prior over structures, maximize
marginal likelihood:

P(O|G) = Z./' P(O,R,S | @,G)d@

R,S p
Parameter

priors



Learning

Given observed data O, find structure G that maximizes:

P(O | G)P(G)

P(G|0) = =55

Assuming uniform prior over structures, maximize
marginal likelihood:

P(O|G)=> / P(0,R,S|©.G)P(O | G)de

R,S



Marginal likelihood

P(O | G) :/ P(O,R,S|©,G)P(O©|G) de

)

Summation over all
possible assighments to
the latent variables



Marginal likelihood

P(O|G) = Z/P(O,| O,G)P(O | G) de

R.S %

need inference for
each data instance



Cheeseman-Stutz score

O” is a fictitious dataset composed of training data O and
approximate statistics for latent variables

O are MAP estimates found by Expectation-Maximization

Og = arg max P(O|G,0)P(© | G)



Shape synthesis

New shape Source shapes
(colored parts are selected

for the new shape)



Shape synthesis

New shape Source shapes
(colored parts are selected

for the new shape)



Results of alternative models

No latent
variables

yas

No lateral
edges

%ﬁﬁ
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User Survey

Sanes IEEON 21 ara VTR
shapes shapes




Constrained shape synthesis

Component Categories

=3



Summary

Generative model of shape structure

Learns structural variability from examples
Applicable to a broad range of complex domains
Enables new capabilities for shape processing

P S S S S R T e S




Outline

Learning 3D shape segmentation and labeling

. A generative model of shapes

Other ML applications to graphics and vision

Future work



ML for vision: image sequence geolocation

DSC02103 DSC02171  DSC02172

DSC02146

Kalogerakis, Vesselova, Hays, Efros, Hertzmann, ICCV 2009



Image sequence geolocation

How likely are you to travel from one place to another
in a given amount of time?

P(Liyy = i|Ls = j, ATy)




Image sequence geolocation

Ground
truth path

Estimated
path




Learning hatching styles

Detected parts of
coherent strokes

= Artist' hatchlng
illustration

Learned model of
stroke properties
and parts

Kalogerakis, Nowrouzehahrai, Breslav, Hertzmann
ACM Transactions on Graphics 2012
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Generalization to novel views and objects

i



Outline

Learning 3D shape segmentation and labeling
. A generative model of shapes

. Other ML applications to graphics and vision

Future work



Shape understanding in the wild

KinectFusion
[Izadi et al., UIST 2011]



Research goals

Advance shape understanding:
Joint shape recognition and segmentation
Hierarchical shape categorization
Map NL to shapes and deformation handles
Understand function from shapes, print 3D functional shapes

Generative models for:
Variability in symmetries
Architecture

Entire scenes

Images and shapes

Learning algorithms for:

Inferring physical/simulation
parameters of shapes

Inferring shape deformations

Texturing, placing lights,
other artistic rendering styles



Thank you!

My web page (code, data, demos, videos, papers, etc):

http://people.cs.umass.edu/~kalo/




