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General idea
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▪ Convert irregular (3D) to regular (images)

▪ Circumvent any geometric representation artifacts
(non-manifold geometry, polygon soups, no interior)

▪ Leverage pre-trained image-based CNNs
 

Empty inside!

▪ Similarly to humans, analyze what can be seen: 
combine surface information from multiple views 



Agenda
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• Deep Learning Review

• Overview of 3D Deep Learning

• Deep Learning on Multi-view Representation
• Classification
• Segmentation
• Reconstruction



Task: 3D classification
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This is a chair!



Given an input shape  

[credit: Hang Su]6

Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller, 
"Multi-view Convolutional Neural Networks for 3D Shape Recognition", 
Proceedings of ICCV 2015



Render with multiple virtual cameras

view 1

view 2

view 3

view N

[credit: Hang Su]7

Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller, 
"Multi-view Convolutional Neural Networks for 3D Shape Recognition", 
Proceedings of ICCV 2015



Traditional approach: feature+linear classifier
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The rendered images are passed through CNN1 
for image features

… CNN1

… CNN1

… CNN1

… CNN1

. . 
.

CNN1: a ConvNet extracting 
image features

[credit: Hang Su]9

Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller, 
"Multi-view Convolutional Neural Networks for 3D Shape Recognition", 
Proceedings of ICCV 2015



All image features are combined by view pooling 
…

…

…

…

…

CNN1

. . 
.

View pooling: element-wise 
max-pooling across all views 

View 
pooling

[credit: Hang Su]10

Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller, 
"Multi-view Convolutional Neural Networks for 3D Shape Recognition", 
Proceedings of ICCV 2015



… and then passed through CNN2 and to 
generate final predictions

…

…

…

…

CNN1

. . 
.

View 
pooling

CNN2:       a second ConvNet 
producing shape descriptors 

…

CNN2

softmax

[credit: Hang Su]11

Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller, 
"Multi-view Convolutional Neural Networks for 3D Shape Recognition", 
Proceedings of ICCV 2015



Learning by fine-tuning
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• Neural network optimization is non-convex

• In general, training from more data converges at a better local minima

• However, what if your training dataset      is not big?D



Learning by fine-tuning (cont.)
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Pre-training
• Find a source of massive data      with similar statistics
• Learn the network parameters from 

Fine-tuning
• Starting from the learned parameters on      , minimize the network 

loss on 

A technique for transfer learning, quite effective in practice

D '
D '

D '
D



Training: network parameters are pre-trained on 
image classification …

…

…

CNN1

. . 
.

View 
pooling

…

CNN2

[CHATFIELD14] K. Chatfield et. al., “Return of the Devil in the Details: Delving Deep into Convolutional Nets”, BMVC 2014

Parameters initialized from 
VGG-M model [CHATFIELD14]

softmax

…

…

[credit: Hang Su]14

Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller, 
"Multi-view Convolutional Neural Networks for 3D Shape Recognition", 
Proceedings of ICCV 2015



… and then fine-tuned on 3D datasets

…

…

CNN1

. . 
.

View 
pooling

…

CNN2

Fine-tuning  
w/ back-prop

softmax

…

…

[credit: Hang Su]15

Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller, 
"Multi-view Convolutional Neural Networks for 3D Shape Recognition", 
Proceedings of ICCV 2015



Extract compact shape descriptor for other 
applications

…

…

…

CNN1

. . 
.

View 
pooling

…

…

CNN2

Shape descriptor can be extracted from CNN2, and  
a low-rank metric is learned w/ good&bad pairs

metric 
learning

softmax

[credit: Hang Su]16

Hang Su, Subhransu Maji, Evangelos Kalogerakis, Erik Learned-Miller, 
"Multi-view Convolutional Neural Networks for 3D Shape Recognition", 
Proceedings of ICCV 2015



Experiments – classification & retrieval
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Method Classification Retrieval
(Accuracy) (mAP)

SPH [16] 68.2% 33.3%

LFD [5] 75.5% 40.9%

3D ShapeNets [37] 77.3% 49.2%

FV, 12 views 84.8% 43.9%

CNN, 12 views 88.6% 62.8%

MVCNN, 12 views 89.9% 70.1%

MVCNN+metric, 12 views 89.5% 80.2%

MVCNN, 80 views 90.1% 70.4%

MVCNN+metric, 80 views 90.1% 79.5%

On ModelNet40, compared against: 
▪ 3 existing methods:

SPH, LFD, 3D ShapeNets
▪ 2 strong baselines:

Fisher vectors, CNN

[credit: Hang Su]



Visualization of saliency across views
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[credit: Hang Su]



How do you use multi-view approach for point cloud?
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Multi-View 
Image CNN

Sphere Rendering Images

[credit: CVPR 2016 spotlight]



Practical multi-view CNN
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State-of-the-art performance for 3D mesh classification

Issues:
• What viewpoints to select? In particular, where shall we place the

camera in a scene?
• What if the input is noisy and incomplete? e.g., point cloud



Agenda
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• Deep Learning Review

• Overview of 3D Deep Learning

• Deep Learning on Multi-view Representation
• Classification
• Segmentation
• Reconstruction



3D segmentation
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Basic architecture
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Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, Siddhartha Chaudhuri,
“3D Shape Segmentation with Projective Convolutional Networks”,
CVPR2017



Basic architecture
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Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, Siddhartha Chaudhuri,
“3D Shape Segmentation with Projective Convolutional Networks”,
CVPR2017



Basic architecture
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Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, Siddhartha Chaudhuri,
“3D Shape Segmentation with Projective Convolutional Networks”,
CVPR2017

max



Basic architecture
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Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, Siddhartha Chaudhuri,
“3D Shape Segmentation with Projective Convolutional Networks”,
CVPR2017

Normal Geodesic



Basic architecture

27

Evangelos Kalogerakis, Melinos Averkiou, Subhransu Maji, Siddhartha Chaudhuri,
“3D Shape Segmentation with Projective Convolutional Networks”,
CVPR2017



Fully Convolutional Network (FCN)
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Segmentation:

Learning Deconvolution Network for 
Semantic Segmentation



Fully convolutional network (FCN) variations
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Input image 
HxWx3

dilated 
conv

Output scores 
HxWxN

conv

upconv

Input image 
HxWx3

Output scores 
HxWxN

Skip links

Input image 
HxWx3

Output scores 
HxWxN

conv

upsample



Performance
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Performance (cont.)
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• Viewpoint selection to maximize surface coverage
• Combination of view-based network with surface-based graphical model
• ~88% labeling accuracy on ShapeNet 

(trained per category, 50%-50% split, max 250 shapes for training)

Challenges:
• View-based network does not process invisible points
• View-based representations have redundancy
• Slow to train (~week for a few hundreds of shapes)
• Aggregating view representations via max-pooling may lose information

 



Surface correspondences with multi-view convnets
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Aggregates point-based descriptors across local views. Trained such that similar 
points have similar descriptors based on synthetically generated correspondences.

Contrastive 
Loss

Haibin Huang, Evangelos Kalogerakis, Siddhartha Chaudhuri, Duygu Ceylan, Vladimir Kim, Ersin Yumer 
Learning Local Shape Descriptors with View-Based Convolutional Neural Network, ACM TOG (to appear)k 
View-Based Convolutional Neural Networks, TOG 2017 



Scan-to-shape matching
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(similar colors correspond to points with similar descriptors) 

shows some robustness to noise, better performance than volumetric net (3DMatch)



3D reconstruction by multi-view decoder branches (ShapeMVD)
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Zhaoliang Lun, Matheus Gadelha, Evangelos Kalogerakis, Subhransu Maji, 
Rui Wang, “3D Shape Reconstruction from Sketches via  Multi-view 
Convolutional Networks”, arxiv 2017

Real / 
Fake? 
(GAN)

Real / 
Fake? 
(GAN)



…

Training data
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Synthetic line drawings

Training depth and normal maps



Consolidate multi-view depth and normal maps
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Consolidate multi-view depth and normal maps
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Optimization for fusion

• Depth derivatives should
be consistent with normals

• Corresponding depths and
normals across different
views should agree



Poisson surface reconstruction (Kazhdan et al. 2013)
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Single vs two input line drawings
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Key challenges for multi-view representation
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• Fusing information across viewpoints is not incorporated in the network (not trivial)

• “Cannot see through the surface”

• Less redundancy than producing a surface for every possible continuous viewing   
  angle, yet surfaces across different viewpoints may not be consistent. 



Agenda
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• Deep learning on regular structures
• Multi-view representation
• Volumetric representation

• Deep learning on meshes

• Deep learning on point cloud and parametric models



Popular 3D volumetric data
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fMRI Manufacturing 
(finite-element analysis)

Geology

Voxelized 
CAD models

CT



3D CNN on volumetric data
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[Credit: Su et al. CVPR 2016]

3D convolution uses 4D kernels



Early 3D CNNs for shape classification
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3DShapeNets from Princeton 
CVPR 2015

VoxNet from CMU Robotics 
IEEE/RSJ 2015

MVCNN from UMass 
ICCV 2015

77.3% 83.0%

90.1%

3D CNN 3D CNN

Rendering + 
2D CNN

Occupancy Grid
30x30x30CAD model

Information loss in voxelization



3D CNN for volumetric data 
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3D deconvolution uses 4D kernels

[Credit: Wu&Zhang, et al. NIPS 2016]



Volumetric Generative Adversarial Networks

48

Jiajun Wu,  Chengkai  Zhang,  et  al.  Learning a  Probabilistic  Latent  Space  of  Object  Shapes  via  3D Generative-Adversarial 
Modeling. NIPS 2016



Learning 3D reconstruction from single-view
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• Depth based methods [Eigen et al., Saxena et al., etc]

• Model based methods [Su et al., Kar et al., Aubry et al., Choy et al., etc]



Recurrent 2D-3D CNN for volumetric reconstruction
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Christopher B. Choy, Danfei Xu*, JunYoung Gwak*, Kevin Chen, Silvio Savarese, 
3D-R^2N^2: A unified approach for single and multi-view 3D object reconstruction 
ECCV2016



Recurrent 3D CNN
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Recurrent 3D CNN
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3D Convolutional LSTM



Recurrent 3D CNN
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Supervised learning with ground truth 3D volumes
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• Voxel-wise cross entropy loss

•ShapeNet
•50k CAD models
•Render from arbitrary views
•Random number of images w/ random order
•Random background, translation





Learning volumetric reconstruction by multi-view supervision

56

Perspective Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D 
Supervision 
Xinchen Yan, Jimei Yang, Ersin Yumer, Yijie Guo, Honglak Lee, NIPS 2016 



Perspective Transformer layer (Projecting 3D volume to 2D masks)
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1. Sample points p = [x, y, 1, d] given the range of disparity d in [d_min, d_max] 
1. p = [x/d, y/d, 1/d, 1] 

2. Given a perspective transform matrix T, generate sampling points on the input volume V by q = T^-1 p (ray 
sampling) 

3. Generate the output volume U by bilinear sampling on the input volume V 
4. Generate the mask S by max pooling over the depth dimension on U

For each pixel on a mask, find the intersection of its corresponding ray and the input 
volume



Perspective Transformer Nets
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Results
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Input						GT	(310)			GT	(130)		PR	(310)		PR	(130)		CO	(310)	CO	(130)		VO	(310)		VO	(130)
Ground Truth PTN-ProjInput PTN-Comb CNN-Vol



Learning from partial views
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Input 2D 
Image I(1)

Volume V

Target 2D 
mask S(1)

S(2)

S(3)

Transformations 
{T(1),T(2),...T(n)}

Input 2D 
Image I(1)

Volume V

Target 2D 
mask S(1)

S(3)

S(5)

Transformations 
{T(1),T(2),...T(n)}

A Narrow range of views A set of Sparsely sampled views

24 views (360 degree) 8 views (90 degree) 8 views (evenly sampled)



Differentiable ray consistency
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1. Given a pair of observation and camera, trace the voxels for each pixel along the ray 
(Nearest neighbor sampling) 

2. Define ray termination probability to determine the relationship between a pixel and 
voxel occupancy likelihood (Differentiable) 

3. Different types of multi-view observations e.g. foreground masks, depth, color images, 
semantics etc. as supervision.

Multi-view Supervision for Single-view Reconstruction via Differentiable Ray Consistency. S. Tulsiani, T. Zhou, A. A. 
Efros, J. Malik. In CVPR, 2017



The sparsity characteristic of volumetric data
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Resolution: 32 64 128
Occupancy:



Store only the occupied grids
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Octree: recursively partition the space  
Each internal node has exactly eight children



Skip the computation of empty cells
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Gernot Riegler, Ali Osman Ulusoy, Andreas Geiger
“OctNet: Learning Deep 3D Representations at High Resolutions”
CVPR2017

Pengshuai Wang, Yang Liu, Yuxiao Guo, Chunyu Sun, Xin Tong
“O-CNN: Octree-based Convolutional Neural Network for Understanding 3D Shapes” 
SIGGRAPH2017



Octree-based Convolutional Neural Network
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Define convolution and pooling along the octree

The challenge is how to implement efficiently — build a hash table to index the 
neighborhood
Restrict the convolution stride to be 2



Performance
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Towards higher spatial resolution
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Maxim Tatarchenko, Alexey Dosovitskiy, Thomas Brox
“Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs”
arxiv (March, 2017)



Progressive voxel refinement
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3-way classification



Results
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