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Shape Synthesis from Sketches via
Procedural Models and Convolutional Networks
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Abstract—
Procedural modeling techniques can produce high quality visual content through complex rule sets. However, controlling the outputs of
these techniques for design purposes is often notoriously difficult for users due to the large number of parameters involved in these
rule sets and also their non-linear relationship to the resulting content. To circumvent this problem, we present a sketch-based
approach to procedural modeling. Given an approximate and abstract hand-drawn 2D sketch provided by a user, our algorithm
automatically computes a set of procedural model parameters, which in turn yield multiple, detailed output shapes that resemble the
user’s input sketch. The user can then select an output shape, or further modify the sketch to explore alternative ones. At the heart of
our approach is a deep Convolutional Neural Network (CNN) that is trained to map sketches to procedural model parameters. The
network is trained by large amounts of automatically generated synthetic line drawings. By using an intuitive medium i.e., freehand
sketching as input, users are set free from manually adjusting procedural model parameters, yet they are still able to create high quality
content. We demonstrate the accuracy and efficacy of our method in a variety of procedural modeling scenarios including design of
man-made and organic shapes.

Index Terms—shape synthesis, convolutional neural networks, procedural modeling, sketch-based modeling
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1 INTRODUCTION

P ROCEDURAL Modeling (PM) allows synthesis of com-
plex and non-linear phenomena using conditional or

stochastic rules [1], [2], [3]. A wide variety of 2D or 3D
models can be created with PM e.g., vases, jewelry, build-
ings, trees, to name a few [4]. PM frees users from direct
geometry editing and helps them to create a rich set of
unique instances by manipulating various parameters in
the rule set. However, due to the complexity and stochastic
nature of rule sets, the underlying parametric space of PM is
often very high-dimensional and nonlinear, making outputs
difficult to control through direct parameter editing. PM is
therefore not easily approachable by non-expert users, who
face various problems such as where to start in the parame-
ter space and how to adjust the parameters to reach outputs
that match their intent. We address this problem by allowing
users to perform PM through freehand sketching rather than
directly manipulating high-dimensional parameter spaces.
Sketching is often a more natural, intuitive and simpler way
for users to communicate their intent.

We introduce a technique that takes 2D freehand
sketches as input and translates them to corresponding PM
parameters, which in turn yield detailed shapes. Examples
of input sketches and output shapes are shown in Figure 1.
The users of our technique are not required to have artistic
and professional skills in drawing. We aim to synthesize
PM parameters from approximate, abstract sketches drawn
by casual modelers who are interested in quickly convey-
ing design ideas. A main challenge in recognizing such
sketches and converting them to high quality visual content
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is the fact that humans often perform dramatic abstractions,
simplifications and exaggerations to convey the shape of
objects [5]. Developing an algorithm that factors out these
exaggerations, is robust to simplifications and approximate
line drawing, and captures the variability of all possible
abstractions of an object is far from a trivial task. Hand-
designing an algorithm and manually tuning all its internal
parameters or thresholds to translate sketch patterns to PM
outputs seems extremely hard and unlikely to handle the
enormous variability of sketch inputs.

We resort to a machine learning approach that automati-
cally learns the mapping from sketches to PM parameters
from a large corpus of training data. Collecting training
human sketches relevant to given PM rule sets is hard
and time-consuming. We instead automatically generate
synthetic training data to train our algorithm. We exploit
key properties of PM rule sets to generate the synthetic
datasets. We simplify PM output shapes based on struc-
ture, density, repeated patterns and symmetries to simulate
abstractions and simplifications found in human sketches.
Given the training data, the mapping from sketches to PM
parameters is also far from trivial to learn. We found that
common classifiers and regression functions used in sketch
classification and sketch-based retrieval [6], [7], such as
Support Vector Machines, Nearest Neighbors or Radial Basis
Function interpolation, are largely inadequate to reliably
predict PM parameters. We instead utilize a deep Convolu-
tional Neural Network (CNN) architecture to map sketches
to PM parameters. CNNs trained on large datasets have
demonstrated large success in object detection, recognition,
and classification tasks [8], [9], [10], [11], [12]. Our key in-
sight is that CNNs are able to capture the complex and non-
linear relationships between sketches and PM parameters
through their hierarchical network structure and learned,
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Fig. 1: Given freehand sketches drawn by casual modelers, our method learns to synthesize procedural model parameters
that yield detailed output shapes.

multi-resolution image filters that can be optimized for PM
parameter synthesis.

Since the input sketches represent abstractions and sim-
plifications of shapes, they often cannot be unambiguously
mapped to a single design output. Through the CNN, our
algorithm provides ranked, probabilistic outputs, or in other
words suggestions of shapes, that users can browse and select
the ones they prefer most.

Contributions. Our main contribution is two-fold. First,
we introduce a procedural modeling technique for 2D/3D
shape design using human sketches as input, without the
need for direct, manual parameter editing. Second, we
provide a method to generate input sketches from pro-
cedural models simulating aspects of simplifications and
exaggerations found in human sketches, making our system
scalable and improving the generalization ability of machine
learning algorithms to process human sketches. Our qual-
itative and quantitative evaluation demonstrates that our
approach outperforms state-of-the-art methods on sketch-
based retrieval in the context of procedural modeling.

2 RELATED WORK

Our work is related to prior work in procedural mod-
eling, in particular targeted design of procedural models
and exploratory procedural modeling techniques, as well
as sketch-based shape retrieval and convolutional neural
networks we discuss in the following paragraphs.

Procedural Modeling. Procedural models were used
as early as in sixties for biological modeling based on L-
systems [13]. L-systems were later extended to add geomet-
ric representations [14], parameters, context, or environmen-
tal sensitivity to capture a wide variety of plants and biolog-
ical structures [15], [16]. Procedural modeling systems were
also used to generate shapes with shape grammars [17],
[18], for modeling cities [1], buildings [3], furniture arrange-
ments [19], building layouts [20], and lighting design [21].

Procedural models often expose a set of parameters that
can control the resulting visual content. Due to the recursive
nature of the procedural model, some of those parameters
often have complex, aggregate effects on the resulting ge-
ometry. On one hand, this is an advantage of procedural
models i.e., an unexpected result emerges form a given set
of parameters. On another hand, if a user has a particular
design in mind, recreating it using these parameters results
in a tedious modeling experience. To address this problem,
there has been some research focused on targeted design
and exploratory systems to circumvent the direct interaction
with PM parameters.

Targeted design of procedural models. Targeted design
platforms free users from interacting with PM parameters.
Lintermann and Deussen [22] presented an interactive PM
system where conventional PM modeling is combined with
free-form geometric modeling for plants. McCrae and Singh
[23] introduced an approach for converting arbitrary sketch
strokes to 3D roads that are automatically fit to a terrain.
Vanegas et al. [24] perform inverse procedural modeling by
using Monte Carlo Markov Chains (MCMC) to guide PM
parameters to satisfy urban design criteria. Stava et al. [25]
also use a MCMC approach to tree design. Their method op-
timizes trees, generated by L-systems, to match a target tree
polygonal model. Talton et al. [26] presented a more general
method for achieving high-level design goals (e.g., city sky-
line profile for city procedural modeling) using inverse
optimization of PM parameters based on a Reversible Jump
MCMC formulation so that the resulting model conforms
to design constraints. MCMC-based approaches receive
control feedback from the completely generated models,
hence suffer from significantly higher computational cost
at run-time. Alternative approaches incrementally receive
control feedback from intermediate states of the PM based
on Sequential Monte Carlo, allowing them to reallocate
computational resources and converge more quickly [27].

In the above kinds of systems, users prescribe target
models, indicator functions, silhouettes or strokes, but their
control over the rest of the shape or its details is very limited.
In the case of inverse PM parameter optimization (e.g., [26])
producing a result often requires significant amount of com-
putation (i.e., several minutes or hours). In contrast, users
of our method have direct control over the output shape
and its details based on their input sketch. Our approach
trivially requires a single forward pass in a CNN network at
run-time, hence resulting in significantly faster computation
for complex procedural models, and producing results at
near interactive rates.

Concurrently to our work, Nishida et al. [28] introduced
a CNN-based urban procedural model generation from
sketches. However, instead of solving directly for the final
shape, their method suggests potentially incomplete parts
that require further user input to produce the final shape.
In contrast, our approach is end-to-end, requiring users to
provide only an approximate sketch of the whole shape.

Exploratory systems for procedural models. Ex-
ploratory systems provide the user with previously com-
puted and sorted exemplars that help users study the vari-
ety of models and select seed models they wish to further
explore. Talton et al. [29] organized a set of precomputed
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Fig. 2: Convolutional Neural Network (CNN) architecture used in our method. The CNN takes as input a sketch image
and produces a set of PM parameters, which in turn yield ranked design outputs.

samples in a 2D map. The model distribution in the map is
established by a set of landmark examples placed by expert
users of the system. Lienhard et al. [30] sorted precomputed
sample models based on a set of automatically computed
views and geometric similarity. They presented the results
with rotational and linear thumbnail galleries. Yumer et al.
[31] used autoencoder networks to encode the high dimen-
sional parameter spaces into a lower dimensional parameter
space that captures a range of geometric features of models.

A problem with these exploratory techniques is that
users need to have an exact understanding of the procedural
model space to find a good starting point. As a result, it
is often hard for users to create new models with these
techniques.

Sketch-based shape retrieval. Our work is related to
previous methods for retrieving 3D models from a database
using sketches as input using various matching strategies to
compare the similarity of sketches to database 3D models
[6], [32], [33], [34], [35]. However, these systems only allow
retrieval of existing 3D models and provide no means to
create new 3D models. Our method is able to synthesize
new outputs through PM.

Convolutional Neural Networks. Our work is based on
recent advances in object recognition with deep CNNs [36].
CNNs are able to learn hierarchical image representations
optimized for image processing performance. CNNs have
demonstrated large success in many computer vision tasks,
such as object detection, scene recognition, texture recogni-
tion and fine-grained classification [8], [9], [10], [11], [36].
Sketch-based 3D model retrieval has also been recently
demonstrated through CNNs. Su et al. [12] performed
sketch-based shape retrieval by adopting a CNN architec-
ture pre-trained on images, then fine-tuning it on a dataset
of sketches collected by human volunteers [5]. Wang et al.
[37] used a Siamese CNN architecture to learn a similarity
metric to compare human and computer generated line
drawings. In contrast to these techniques, we introduce a
CNN architecture capable of generating PM parameters,
which in turn yield new 2D or 3D shapes.

3 OVERVIEW

Our algorithm aims to learn a mapping from input approx-
imate, abstract 2D sketches to the PM parameters of a given
rule set, which in turn yield 2D or 3D shape suggestions. For
example, given a rule set that generates trees, our algorithm
produces a set of discrete (categorical) parameters, such
as tree family, and continuous parameters, such as trunk
width, height, size of leaves and so on. Our algorithm
has two main stages: a training stage, which is performed
offline and involves training a CNN architecture that maps
from sketches to PM parameters, and a runtime synthesis
stage, during which a user provides a sketch, and the CNN
predicts PM parameters to synthesize shape suggestions
presented back to the user. We outline the key components
of these stages below.

CNN architecture. During the training stage, a CNN
is trained to capture the highly non-linear relationship be-
tween the input sketch and the PM parameter space. A
CNN consists of several inter-connected “layers” (Figure
2) that process the input sketch hierarchically. Each layer
produces a set of feature representations maps, given the
maps produced in the previous layer, or in the case of the
first layer, the sketch image. The CNN layers are “convo-
lutional”, “pooling’, or “fully connected layers”. A convo-
lutional layer consists of learned filters that are convolved
with the input feature maps of the previous layer (or in
the case of the first convolutional layer, the input sketch
image itself). A pooling layer performs subsampling on each
feature map produced in the previous layer. Subsampling
is performed by computing the max value of each feature
map over spatial regions, making the feature representations
invariant to small sketch perturbations. A fully connected
layer consists of non-linear functions that take as input all
the local feature representations produced in the previous
layer, and non-linearly transforms them to a global sketch
feature representation.

In our implementation, we adopt a CNN architecture
widely used in computer vision for object recognition, called
AlexNet [36]. AlexNet contains five convolutional layers,
two pooling layers applied after the first and second con-
volutional layer, and two fully connected layers. Our CNN
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architecture is composed of two processing paths (or sub-
networks), each following a distinct AlexNet CNN archi-
tecture (Figure 2). The first sub-network uses the AlexNet
set of layers, followed by a regression layer, to produce the
continuous parameters of the PM. The second sub-network
uses the AlexNet set of layers, followed by a classifica-
tion layer, to produce probabilities over discrete parameter
values of the PM. The motivation behind using these two
sub-networks is that the the continuous and discrete PM
parameters are predicted more effectively when the CNN
feature representations are optimized for classification and
regression separately, as opposed to using the same feature
representations for both the discrete and continuous PM
parameters. Using a CNN versus other alternatives that
process the input in one stage (i.e., “shallow” classifiers or
regressors, such as SVMs, nearest neighbors, RBF interpo-
lation and so on) also proved to be much more effective in
our experiments. We describe the CNN processing layers
in Section 4.1 in more detail, and quantitative comparisons
with alternatives in Section 5.

CNN training. As in the case of deep architectures for
object recognition in computer vision, training the CNN
requires optimizing millions of weights (110 million weights
in our case). Training a CNN with fewer number of layers
decreases the PM parameter synthesis performance. We
leverage available massive image datasets widely used in
computer vision, as well as synthetic sketch data that we
generated automatically. Specifically, the convolutional and
fully connected layers of both sub-networks are first pre-
trained on ImageNet [38] (a publically available image
dataset containing 1.2 million photos) to perform generic
object recognition. Then each sub-network is further fine-
tuned for PM discrete and continuous parameter synthesis
based on our synthetic sketch dataset. We note that adapting
a network trained for one task (object recognition from
images) to another task (PM-based shape synthesis from
sketches) can be seen as an instance of transfer learning [39].
We describe the CNN training procedure in Section 4.2.

Synthetic training sketch generation. To train our CNN,
we could generate representative shapes by sampling the
parameters of the PM rule set, then ask human volunteers
to draw sketches of these shapes. This approach would
provide us training data with sketches and corresponding
PM parameters. However, such approach would require in-
tensive human labor and would not be scalable. Instead, we
followed an automatic approach. We conducted an informal
user study to gain insight how people tend to draw shapes
generated by PMs. We randomly sampled a few shapes
generated by PM rules for containers, jewelry and trees, then
asked a number of people to provide freehand drawings
of them. Representative sketches and corresponding shapes
are shown in Figure 3. The sketches are abstract, approx-
imate with noisy contours, as also observed in previous
studies on how humans draw sketches [5]. We also found
that users tend to draw repetitive patterns only partially.
For example, they do not draw all the frame struts in
containers, but a subset of them and with varying thick-
ness (i.e., spacing between the outlines of struts). We took
into account this observation while generating synthetic
sketches. We sampled thousands of shapes for each PM

Fig. 3: Freehand drawings (bottom row) created by users in
our user study. The users were shown the corresponding
shapes of the top row.

rule set, then for each of them, we generated automatically
several different line drawings, each with progressively sub-
sampled repeated patterns and varying thickness for their
components. The synthetic dataset generation is described
in Section 4.2.

4 METHOD

We now describe the CNN architecture we used for the
PM parameter synthesis, then we explain the procedure for
training the CNN, and finally our runtime stage.

4.1 CNN architecture
Given an input sketch image, our method processes it
through a neural network composed of convolutional and
pooling layers, fully connected layers, and finally a regres-
sion layer to produce PM continuous parameter values.
The same image is also processed by a second neural net-
work with the same sequence of layers, yet with different
learned filters and weights, and a classification (instead of
regression) layer to produce PM discrete parameter values.
We now describe the functionality of each type of layer.
Implementation details are provided in the Appendix.

Convolutional layers. Each convolutional layer yields a
stack of feature maps by applying a set of learned filters that
are convolved with the feature representations produced
in the previous layer. As discussed in previous work in
computer vision [8], [9], [10], [11], [36], after training, each
filter often becomes sensitive to certain patterns observed in
the input image, or in other words yield high responses in
their presence.

Pooling layers. Each pooling layer subsamples each
feature map produced in the previous layer. Subsampling is
performed by extracting the maximum value within regions
of each input feature map, making the resulting output fea-
ture representation invariant to small sketch perturbations.
Subsampling also allows subsequent convolutional layers
to efficiently capture information originating from larger
regions of the input sketch.

Fully Connected Layers. Each fully connected layer is
composed of a set of learned functions (known as “neurons”
or “nodes” in the context of neural networks) that take
as input all the features produced in the previous layer
and non-linearly transforms them in order to produce a
global sketch representation. The first fully connected layer
following a convolutional layer concatenates (“unwraps”)
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the entries of all its feature maps into a single feature vector.
Subsequent fully connected layers operate on the feature
vector produced in their previous fully connected layer.
Each processing function k of a fully connected layer l
performs a non-linear transformation of the input feature
vector as follows:

hk,l = max(wk,l · hl−1 + bk,l, 0) (1)

where wk,l is a learned weight vector, hl−1 is the feature
vector originating from the previous layer, bk,l is a learned
bias weight, and · denotes dot product here. Concatenating
the outputs from all processing functions of a fully con-
nected layer produces a new feature vector that is used as
input to the next layer.

Regression and Classification Layer. The feature vector
produced in the last fully connected layer summarizes the
captured local or global patterns in the input image. As
shown in prior work in computer vision, the final feature
vector can be used for image classification, object detection,
or texture recognition [8], [9], [10], [11], [36]. In our case, we
use this feature vector to predict continuous or discrete PM
parameters.

To predict continuous PM parameters, the top sub-
network of Figure 2 uses a regression layer following the
last fully connected layer. The regression layer consists of
processing functions, each taking as input the feature vector
of the last fully connected layer and non-linearly transform-
ing it to predict each continuous PM parameter. We use a
sigmoid function to perform this non-linear transformation,
which worked well in our case:

Oc =
1

1 + exp(−wc · hL − bc)
(2)

where Oc is the predicted value for the PM continuous
parameter c, wc is a vector of learned weights, hL is the
feature vector of the last fully connected layer, and bc is the
learned bias for the regression. We note that all our contin-
uous parameters are normalized within the [0, 1] interval.

To predict discrete parameters, the bottom sub-network
of Figure 2 uses a classification layer after the last fully
connected layer. The classification layer similarly consists
of processing functions, each taking as input the feature
vector of the last fully connected layer and non-linearly
transforming it towards a probability for each possible
value d of each discrete parameter Dr (r = 1...R, where
R is the total number of discrete parameters). We use a
softmax function to predict these probabilities, as commonly
used in multi-class classification methods:

Prob(Dr = d) =
exp(wd,r · hL + bd,r)

exp(
∑
d′

wd′,r · hL + bd′,r)
(3)

where d′ represent the rest of the discrete values of that
parameter, wd,r is a vector of learned weights, and bd,r is
the learned bias for classification.

4.2 Training
Given a training dataset of sketches, the goal of our training
stage is to estimate the internal parameters (weights) of the
convolutional, fully connected, regression and classification

layers of our network such that they reliably synthesize
PM parameters of a given rule set. There are two sets of
trainable weights in our architecture. First, we have the
set of weights for the sub-network used for regression θ1,
which includes the regression weights {wc, bc} (Equation 2)
per each PM continuous parameter and the weights used in
each convolutional and fully connected layer. Similarly, we
have a second set of weights for the sub-network used in
classification θ2, which includes the classification weights
{wd,r, bd,r} (Equation 3) per each PM discrete parameter
value, and the weights of its own convolutional and fully
connected layers. We first describe the learning of the
weights θ1, θ2 given a training sketch dataset, then we
discuss how such dataset was generated automatically in
our case.

CNN learning. Given a training dataset of S synthetic
sketches with reference (“ground-truth”) PM parameters
for each sketch, we estimate the weights θ1 such that the
deviation between the reference and predicted continuous
parameters from the CNN is minimized. Similarly, we esti-
mate the weights θ2 such that the disagreement between the
reference and predicted discrete parameter values from the
CNN is minimized. In addition, we want our CNN architec-
ture to generalize to sketches not included in the training
dataset. To prevent over-fitting our CNN to our training
dataset, we “pre-train” the CNN in a massive image dataset
for generic object recognition, then we also regularize all
the CNN weights such that their resulting values are not
arbitrarily large. Arbitrarily large weights in classification
and regression problems usually yield poor predictions for
data not used in training [40].

The cost function we used to penalize deviation of the
reference and predicted continuous parameters as well as
arbitrarily large weights is the following:

Er(θ1) =
S∑
s=1

C∑
c=1

[δc,s == 1]‖Oc,s(θ1)− Ôc,s‖2 + λ1||θ1||2 (4)

where C is the number of the PM continuous parameters,
Oc,s is the predicted continuous parameter c for the training
sketch s based on the CNN, Ôc,s is the corresponding
reference parameter value, and [δc,s == 1] is a binary
indicator function which is equal to 1 when the parameter
c is available for the training sketch s, and 0 otherwise.
The reason for having this indicator function is that not
all continuous parameters are shared across different types
(classes) of shapes generated by the PM. The regularization
weight λ1 (also known as weight decay in the context of
CNN training) controls the importance of the second term
in our cost function, which serves as a regularization term.
We set λ1 = 0.0005 through grid search within a validation
subset of our training dataset.

We use the logistic loss function [40] to penalize predic-
tions of probabilities for discrete parameter values that dis-
agree with the reference values, along with a regularization
term as above:

Ec(θ2) = −
S∑
s=1

R∑
r=1

ln(Prob(Ds,r = d̂s,r;θ2)) + λ2||θ2||2 (5)

where R is the number of the PM discrete parameters,
Prob(Ds,r = d̂s,r;θ2) is the output probability of the CNN
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Fig. 4: Examples of highly redundant shapes removed from
our training dataset.

for a discrete parameter r for a training sketch s, and
d̂s,r is the reference value for that parameter. We also set
λ2 = 0.0005 through grid search.

We minimize the above objective functions to estimate
the weights θ1 and θ2 through stochastic gradient de-
scent with step rate 0.0001 for θ1 updates, step rate 0.01
for θ2, and batch size of 64 training examples. The step
rates are set empirically such that we achieve smoother
convergence (for regression, we found that the step size
should be much smaller to ensure convergence). We also use
the dropout technique [41] during training that randomly
excludes nodes along with its connections in the CNN
with a probability 50% per each gradient descent iteration.
Dropout has been found to prevent co-adaptation of the
functions used in the CNN (i.e., prevents filters taking same
values) and improves generalization [41].

Pre-training and fine-tuning. To initialize the weight
optimization, one option is to start with random values
for all weights. However, this strategy seems extremely
prone to local undesired minima as well as over-fitting. We
instead initialize all the weights of the convolutional and
fully connected layers from the AlexNet weights [36] trained
in the ImageNet1K dataset [38] (1000 object categories and
1.2M images). Even if the weights in AlexNet were trained
for a different task (object classification in images), they
already capture patterns (e.g., edges, circles etc) that are
useful for recognizing sketches. Starting from the AlexNet
weights is an initialization strategy that has also been shown
to work effectively in other tasks as well (e.g., 3D shape
recognition, sketch classification [12], [39]). We initialize the
rest of the weights in our classification and regression layers
randomly according to a zero-mean Gaussian distribution
with standard deviation 0.01. Subsequently, all weights
across all layers of our architecture are trained (i.e., fine-
tuned) on our synthetic dataset. Specifically, we first fine-
tune the sub-network for classification, then we fine-tune
the sub-network for regression using the fine-tuned param-
eters of the convolutional and fully connected layers of the
classification sub-network as a starting point. The difference
in PM parameter prediction performance between using a
random initialization for all weights versus starting with the
AlexNet weights is significant (see experiments in Section 5).

Synthetic training sketch generation. To train the
weights of our architecture, we need a training dataset of
sketches, along with reference PM parameters per sketch.
We generate such dataset automatically as follows. We start
by generating a collection of shapes based on the PM rule
set. To generate a collection that is representative enough
of the shape variation that can be created through the PM
set, we sample the PM continuous parameter space through
Poisson disk sampling for each combination of PM discrete

original shape no contractions
50% subsampling

1 contraction 
50% subsampling

    3 contractions
 50% subsampling

Fig. 5: Synthetic sketch variations (bottom row) generated
for a container training shape. The sketches are created
based on symmetric pattern sub-sampling and mesh con-
tractions on the container shape shown on the top.

parameter values. We note that the number of discrete
parameters representing types or styles of shapes in PMs
is usually limited (no more than 2 in our rule sets), allowing
us to try each such combination. This sampling procedure
can still yield shapes that are visually too similar to each
other. This is because large parameter changes can still yield
almost visually indistinguishable PM outputs. We remove
redundant shapes in the collection that do not contribute
significantly to the CNN weight learning and unnecessarily
increase its training time. To do this, we extract image-
based features from rendered views of the shapes using
the last fully connected layer of the AlexNet [36], then
we remove shapes whose nearest neighbors based on their
image features in any view is smaller than a conservative
threshold we chose empirically (we calculate the average
feature distance between all pairs of nearest neighboring
samples, and set the threshold to 3 times of this distance.).
Figure 4 shows examples of highly redundant shapes re-
moved from our collection.

For each remaining shape in our collection, we generate
a set of line drawings. We first generate a 2D line drawing
using contours and suggestive contours [42] from a set
of views per 3D shape. For shapes that are rotationally
symmetric along the upright orientation axis, we only use a
single view (we assume that all shapes generated by the PM
rule set have a consistent upright orientation). In the case
of 2D shapes, we generate line drawings through a Canny
edge detector. Then we generate additional line drawings
by creating variations of each 2D/3D shape as follows. We
detect groups of symmetric components in the shape, then
we uniformly remove half of the components per group.
Removing more than half of the components degraded the
performance of our system, since an increasingly larger
number of training shapes tended to have too similar, sparse
drawings. For the original and decimated shape, we also
perform mesh contractions through the skeleton extraction
method described in [43] using 1, 2 and 3 constrained
Laplacian smoothing iterations. As demonstrated in Figure
5, the contractions yield patterns with varying thickness
(spacing between contours of the same component).

The above procedure generate shapes with sub-sampled
symmetric patterns and varying thickness for its com-
ponents. The resulting line drawings simulate aspects of
human line drawings of PM shapes. As demonstrated in
Figure 3, humans tend to draw repetitive components only
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partially and with varying thickness, sometimes using only
a skeleton. Figure 5 shows the shape variations generated
with the above procedure for the leftmost container of Fig-
ure 3, along with the corresponding line drawings. Statistics
for our training dataset per rule set is shown in Table 1.

4.3 Runtime stage
The trained CNN acts as a mapping between a given sketch
and PM parameters. Given a new user input sketch, we es-
timate the PM continuous parameters and probabilities for
the PM discrete parameters through the CNN. We present
the user with a set of shapes generated from the predicted
PM continuous parameters, and discrete parameter values
ranked by their probability. Our implementation is executed
on the GPU. Predicting the PM parameters from a given
sketch takes 1 to 2 seconds in all our datasets using a NVidia
Tesla K40 GPU. Responses are not real-time in our current
implementation based on the above GPU. Yet, users can edit
or change their sketch, explore different sketches, and still
get visual feedback reasonably fast at near-interactive rates.

5 RESULTS

We now discuss the qualitative and quantitative evaluation
of our method. We first describe our datasets used in the
evaluation, then discuss a user study we conducted in
order to evaluate how well our method maps human-drawn
freehand sketches to PM outputs.

5.1 Datasets
We used three PM rule sets in our experiments: (a) 3D
containers, (b) 3D jewelry, (c) 2D trees. All rule sets are built
using the Deco framework [44]. The PM rule set for con-
tainers generates 3D shapes using vertical rods, generalized
cylinders and trapezoids on the side walls, and a fractal
geometry at the base. The PM rule set for jewelry generates
shapes in two passes: one pass generates the main jewelry
shape and the next one decorates the outline of the shape.
The PM rule set for trees is currently available in Adobe Pho-
toshop CC 2015. Photoshop includes a procedural engine
that generates tree shapes whose parameters are controlled
as any other Photoshop’s filter.

For each PM rule set, we sample training shapes, then
generate multiple training sketches per shape according
to the procedure described in Section 4.2. The number of
training shapes and line drawings in our synthetic sketch
dataset per PM rule set is summarized in Table 1. We also
report the number of continuous parameters, the number of
discrete parameters, and total number of different discrete
parameter values (i.e., number of classes or PM grammar
variations) for each dataset. As shown in the table, all
three rule sets contain several parameters. Tuning these
parameters by hand (e.g., with a slider per each parameter)
would not be ideal especially for novice users. In the same
table, we also report the total time to train our architecture
and time to process a sketch during the runtime stage.

5.2 User study
We conducted a user study to evaluate the performance
of our method on human line drawings. We presented 15

Statistics Containers Trees Jewelry
# training shapes 30k 60k 15k

# training sketches 120k 240k 60k
# continuous parameters 24 20 15

# discrete parameters 1 1 2
# discrete parameter values/classes 27 34 13

training time (hours) 12 20 9
runtime stage time (sec) 1.5 1.6 1.2

TABLE 1: Dataset statistics

volunteers a gallery of example shapes generated by each
of our PM rule sets (not included in the training datasets),
then asked them to provide us with a freehand drawing
of a given container, jewelry piece, and tree. None of the
volunteers had professional training in arts or 3D modeling.
We collected total 45 drawings (15 sketches per dataset).
Each drawing had associated PM continuous and discrete
parameters based on the used reference shape from the
gallery. In this manner, we can evaluate quantitatively how
reliably our method or alternative methods are able to
synthesize shapes that users intend to convey through their
line drawing. We compare the following methods:

Nearest neighbors. The simplest technique to predict
PM parameters is nearest neighbors. For each input hu-
man drawing, we extract a popular feature representation,
retrieve the nearest synthetic sketch in that feature space
using Euclidean distances, then generate a shape based on
this nearest retrieved sketch PM parameters. We used the
Fisher vector representation to represent sketches, which has
recently been shown to outperform several other baseline
feature representations in sketch-based shape retrieval [7].

SVM classification and RBF interpolation. Instead of
nearest neighbors, SVMs can be used for sketch classifi-
cation based on the same Fisher vector representations, as
suggested in [7]. To predict continuous parameters, we used
RBF interpolation again on Fisher vector representations.
Here we use LIBSVM [45] for SVM classification and Mat-
lab’s RBF interpolation.

Standard CNNs. Instead of using Fisher vector repre-
sentations, an alternative approach is to use a standard
CNN trained on an image database as-is, extract a feature
representation from the last fully connected layer, then
use it in nearest neighbor or SVM classification, and RBF
interpolation for regression. We used the features from the
last fully connected layer of the AlexNet CNN trained on
ImageNet1K.

Single CNN. Instead of using two sub-networks with
distinct weights, one can alternatively train a single CNN
network with shared filters and weights followed by a
regression and a classification layer (i.e., classification and
regression rely on the same feature representation extracted
by the last fully connected layer).

No pre-training. We tested our proposed architecture
of Figure 2 without the pre-training procedure. Instead of
pre-training, we initialized all the CNN weights based on
the random initialization procedure of [36], then trained the
whole network from scratch.

Our method. We tested our proposed architecture in-
cluding the pre-training procedure described in Section 4.2.

In Table 2, we report the classification accuracy i.e., per-
centage of times that the reference discrete parameter value
(class) agrees with the top ranked discrete value predicted
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Fig. 6: Input user line drawings along with the top three ranked output shapes generated by our method.
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Method Containers Trees Jewelry Average
Nearest neighbors (Fisher) 20.0% 13.3% 26.7% 20.0%
Nearest neighbors (CNN) 20.0% 20.0% 26.7% 22.2%

SVM (Fisher) 26.7% 26.7% 46.7% 33.3%
SVM (CNN) 26.7% 20.0% 40.0% 28.9%
Single CNN 46.7% 40.0% 60.0% 48.9%

No pretraining 6.7% 6.7% 13.3% 8.9%
Our method 53.3% 53.3% 73.3% 60.0%

TABLE 2: Classification accuracy (top-1) for PM discrete
parameters predicted by the examined methods on our user
study line drawings.

Method Containers Trees Jewelry Average
Nearest neighbors (Fisher) 33.3% 26.7% 46.7% 35.6%
Nearest neighbors (CNN) 26.7% 33.3% 40.0% 33.3%

SVM (Fisher) 33.3% 46.7% 60.0% 46.7%
SVM (CNN) 40.0% 33.3% 53.3% 42.2%
Single CNN 66.7% 60.0% 80.0% 68.9%

No pretraining 20.0% 13.3% 20.0% 17.8%
Our method 80.0% 73.3% 86.7% 80.0%

TABLE 3: Top-3 classification accuracy for PM discrete pa-
rameters predicted by the examined methods on our user
study line drawings.

Method Containers Trees Jewelry Average
Nearest neighbors (Fisher) 32.1% 36.3% 29.1% 32.5%
Nearest neighbors (CNN) 29.3% 34.7% 27.5% 30.3%

RBF (Fisher) 30.5% 35.6% 28.9% 37.1%
RBF (CNN) 31.4% 34.2% 27.6% 31.1%
Single CNN 15.2% 17.3% 11.6% 14.7%

No pretraining 35.2% 40.3% 30.5% 35.3%
Our method 12.7% 15.6% 8.7% 12.3%

TABLE 4: PM continuous parameter error (regression error)
of the examined methods on our user study line drawings.

by each examined method for our user study drawings.
Our method largely outperforms all alternatives. Yet, since
the input sketches often represent significant abstractions
and simplifications of shapes, it is often the case that an
input drawing cannot be unambiguously mapped to a single
output shape. If the shape that the user intended to convey
with his approximate line drawing is similar to at least one
of the highest ranked shapes returned by a method, we can
still consider that the method succeeded. Thus, in Table 3 we
also report the top-3 classification accuracy i.e., percentage
of times that the reference discrete parameter value (class)
is contained within the top three ranked discrete values
(classes) predicted by each method. Our method again
outperforms all alternatives. On average, it can return the
desired class of the shape correctly within the top-3 results
around 80% of the time versus 69% using a single CNN
(a variant of our method), and 47% using SVM and the
Fisher vector representation proposed in a recent state-of-
the-art work in sketch-based shape retrieval [7]. In Table
4, we report regression error i.e., the relative difference be-
tween the predicted and reference values averaged over all
continuous parameters for each method. Again, our method
outperforms all the alternatives.

5.3 Evaluation on synthetic sketches
We also evaluate our method on how well it predicts PM
parameters when the input is a very precise sketch, such
as a computer-synthesized line drawing. Evaluating the
performance of our method on synthetic sketches is not

useful in practice, since we expect human line drawings as
input. Yet, it is still interesting to compare the performance
of our algorithm on synthetic sketches versus human line
drawings to get an idea of how much important is to
have a precise input line drawings as input. To evaluate
the performance on synthetic sketches, we performed hold-
out validation: we trained our CNN on a randomly picked
subset of our original training dataset containing 80% of
our shapes, and tested the performance on the remaining
subset. The classification accuracy (top-1) was 92.5% for
containers, 90.8% for trees, 96.7% for pendants, while the
regression error was 1.7%, 2.3%, 1.2% respectively. As ex-
pected, performance is improved when input drawings are
very precise.

5.4 Qualitative evaluation

We demonstrate human line drawings along with the top
three ranked outputs generated by the predicted parame-
ters using our method in Figure 6. In Figure 1, we show
human line drawings together with the top ranked shape
generated by our method. We include additional results in
the supplementary material.

6 LIMITATIONS AND DISCUSSION

We introduced a method that helps users to create and
explore visual content with the help of procedural mod-
eling and sketches. We demonstrated an approach based
on a deep Convolutional Network that maps sketches to
procedural model outputs. We showed that our approach is
robust and effective in generating detailed, output shapes
through a parametric rule set and human line drawings as
input.

Our method has a number of limitations. First, if the
input drawings depict shapes that are different from the
shapes that can be generated by the rule set, our method
will produce unsatisfactory results (Figure 7). The user must
have some prior knowledge of what outputs the rule set can
produce. When the input drawings become too noisy, con-
tain lots simplifications, exaggerations, or hatching strokes,
then again our method will generate outputs that are not
likely to be relevant to the users’ intentions. We believe that
generating synthetic line drawings that reliably simulate
such features found in human line drawings would improve
the performance of our system. Alternatively, users could
be guided to provide more accurate sketches, potentially
in 3D, through advanced sketching UIs [46], [47]. Another
limitation is that during training we can only support lim-
ited number of PM discrete parameters, since we consider
each possible combination of discrete values (shape types)
to generate our training data (i.e., the number of training
shapes grows exponentially with the the number of discrete
parameters). In the current implementation of our method,
we used a single viewpoint for training the CNN and ask
users to draw from the same viewpoint, which can limit
their drawing perspective. Predicting PM parameters from
multiple different viewpoints e.g., using view-pooling lay-
ers [12] would be a useful extension of our system. Finally,
our method does not provide real-time feedback to the user
while drawing. An interesting future direction would be to
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Fig. 7: When the input sketch is extremely abstract, noisy or
does not match well any shape that can be generated by the
PM, then our method fails to generate a result that resembles
the input drawing.

provide such feedback and interactively guide users to draw
sketches according to underlying shape variation learned
from the procedural models.

APPENDIX

We provide here details about our CNN implementation
and the transformations used in its convolutional and pool-
ing layers.

Architecture implementation. Each of our two sub-
networks follow the structure of AlexNet [36]. In general,
any deep convolutional neural network, reasonably pre-
trained on image datasets, could be used instead. We sum-
marize the details of AlexNet structure for completeness.
The first convolutional layer processes the 227x227 input
image with 96 filters of size 11x11. Each filter is applied to
each image window with a separation (stride) of 4 pixels.
In our case, the input image has a single intensity chan-
nel (instead of the three RGB channels used in computer
vision pipelines). The second convolutional layer takes as
input the max-pooled output of the first convolutional layer
and processes it with 256 filters of size 5x5x48. The third
convolutional layer processes the max-pooled output of the
second convolutional layer with 384 filters of size 3x3x256.
The fourth and fifth convolutional layers process the output
of the third and fourth convolutional layer respectively with
384 filters of size 3x3x192. There are two fully connected lay-
ers contain 4096 processing functions (nodes) each. Finally,
the regression layer contains as many regression functions
as the number of the PM continuous parameters, and the
classification layer contains as many softmax functions as
the number of PM discrete parameters. The number of the
PM discrete and continuous parameters depend on the rule
set (statistics are described in Section 5). The architecture is
implemented using the Caffe [48] library.

Convolutional layer formulation. Mathematically, each
convolution filter k in a layer l produces a feature map
(i.e., a 2D array of values) hk,l based on the following
transformation:

hk,l[i, j] =

f
( N∑
u=1

N∑
v=1

∑
m∈M

wk,l[u, v,m] · hm,l−1[i+ u, j + v] + bk,l

)
(6)

where i, j are array (pixel) indices of the output feature map
h,M is a set of feature maps produced in the previous layer
(with index l− 1), m is an index for each such input feature
map hm,l−1 produced in the previous layer, NxN is the
filter size, u and v are array indices for the filter. Each filter
is three-dimensional, defined by NxNx|M| learned weights
stored in the 3D array wk,l as well as a bias weight bk,l.
In the case of the first convolutional layer, the input is the
image itself (a single intensity channel), thus its filters are
two-dimensional (i.e., |M| = 1 for the first convolutional
layer). Following [36], the response of each filter is non-
linearly transformed and normalized through a function f .
Let x = hk,l[i, j] be a filter response at a particular pixel
position i, j. The response is first non-linearly transformed
through a rectifier activation function that prunes negative
responses f1(x) = max(0, x), and a contrast normalization
function that normalizes the rectified response according to
the outputs xk′ of other filters in the same layer and in the
same pixel position: f2(x) = [x/(α + β

∑
k′∈K x

2
k′)]

γ [36].
The parameters α, β, γ, and the filters K used in contrast
normalization are set according to the cross-validation pro-
cedure of [36] (α = 2.0, β = 10−4, γ = 0.75, |K| = 5).

Pooling layer formulation. The transformations used in
max-pooling are expressed as follows:

hk,l[i, j] = max
{
hk,l−1[u, v]

}
i<u<i+N,j<v<j+N

where k is an index for both the input and output feature
map, l is a layer index, i, j represent output pixel positions,
and u, v represent pixel positions in the input feature map.
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