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Concurrent approaches:
Volumetric / octree-based methods: Riegler et al. 2017 (OctNet),

Wang et al. 2017 (O-CNN), Klokov et al. 2017 (kd-net) /
Our method:
Point-based networks: Qi et al. 2017 (PointNet / PointNet++) view-based
network

Graph-based / spectral networks: Yi et al. 2017 (SyncSpecCNN)

Surface embedding networks: Maron et al. 2017
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Key Observations

3D scans capture the surface.

. + noise, missing regions etc




Key Observations

3D models are often designed for viewing.

(not easily noticeable to the viewer,
yet geometric implications on topology, connectedness...)



Key Observations

Shape renderings can be treated as photos of objects (without texture)

Chair!
Image-based

hetwork =) Airplane!

Shape renderings can be processed by powerful image-based architectures
through transfer learning from massive image datasets.

(Su, Maji, Kalogerakis, Learned-Miller, ICCV 2015)
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Key Idea

Deep architecture that combines view-based convnets for part reasoning
on rendered shape images & prob. graphical models for surface processing.

Key challenges:

- Select views to avoid surface information loss & deal with occlusions
- Promote invariance under 3D shape rotations

- Joint reasoning about parts across multiple views + surface



Pipeline

#| ShapePFCN’# *

M fuselage

Il wing

BMvert. stabilizer
M horiz. stabilizer

View
selection




Pipeline

#| ShapePFCN’# *

M fuselage

Il wing

BMvert. stabilizer
M horiz. stabilizer

View
selection




Input: shape as a collection of rendered views

For each input shape, infer a set of viewpoints that maximally cover its
surface across multiple distances.
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Input: shape as a collection of rendered views

Render shaded images (normal dot view vector) encoding surface normals.
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Input: shape as a collection of rendered views

Render also depth images encoding surface position relative to the camera.
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Input: shape as a collection of rendered views

Perform in-plane camera rotations for rotational invariance.
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Projective convnet architecture

Long, Shelh )
Each pair of depth & shaded images is processed by a FCN. Lnodngarr:ll zaor::;

Views are not ordered (no view correspondence across shapes).
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Projective convnet architecture
Long, Shelhamer,
Each pair of depth & shaded images is processed by a FCN. Lnodngarr:ll zaor:g

Views are not ordered (no view correspondence across shapes).
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Projective convnet architecture

The output of each FCN branch is a view-based confidence map per part label.
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Projective convnet architecture

The output of each FCN branch is a view-based confidence map per part label.
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Projective convnet architecture

Aggregate & project the image confidence maps from all views on the surface.
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Image2Surface projection layer

For each surface element (triangle), find all pixels that include it in all views.
Surface confidence: use max of these pixel confidences per label.
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Image2Surface projection layer

For each surface element (triangle), find all pixels that include it in all views.
Surface confidence: use max of these pixel confidences per label.
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Image2Surface projection layer

For each surface element (triangle), find all pixels that include it in all views.
Surface confidence: use max of these pixel confidences per label.
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CRF layer for spatially coherent labeling

Last layer performs inference in a probabilistic model defined on the surface.
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CRF layer for spatially coherent labeling

Conditional Random Field: unary factors based on surface-based confidences
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Projective convnet architecture: CRF layer

Pairwise terms favor same label for triangles with:
(a) similar surface normals

(b) small geodesic distance

1
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Pairwise factors
(geodesic+normal distance)



Projective convnet architecture: CRF layer

Infer most likely joint assignment to all surface random variables (mean-field)
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Forward pass

inference (convnet+CRF)




Training

The architecture is trained end-to-end with analytic gradients.
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Training

The architecture is trained end-to-end with analytic gradients.
Training starts from a pretrained image-based net (VGG16), then fine-tune.

AT TAS v

: 1
[l_[ _5 L= S Y log P(Rs = Ty) + |6
"FCN/ ses
Pre-trained

Backpropagation / joint training (convnet+CRF)



Dataset used in experiments

Evaluation on ShapeNet + LPSB + COSEG (46 classes of shapes)
50% used for training / 50% used for test split per Shapenet category
Max 250 shapes for training. No assumption on shape orientation.

seat  light | handle

[Yi et al. 2016]



Dataset used in experiments

Evaluation on ShapeNet + LPSB + COSEG (46 classes of shapes)
50% used for training / 50% used for test split per Shapenet category
Max 250 shapes for training. No assumption on shape orientation.
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[Yi et al. 2016]
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Results

Labeling accuracy on ShapeNet test dataset:

ShapeBoost Guo et al. ShapePFCN
Ignore easy classes
(2 or 3 part labels) 76.8 76.8 84.7

8% improvement in labeling accuracy for complex categories (vehicles, furniture)

Labeling accuracy on LPSB+COSEG test dataset:

ShapeBoost Guo et al. ShapePFCN
84.2 821 | 922
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Summary

Deep architecture combining view-based FCN & surface-based CRF
Multi-scale view selection to avoid loss of surface information
Transfer learning from massive image datasets

Robust to geometric representation artifacts

Acknowledgements: NSF (CHS-1422441, CHS-1617333, 11S- 1617917)
Experiments were performed in the UMass GPU cluster (400 GPUs!)
obtained under a grant by the MassTech Collaborative



Project page: http://people.cs.umass.edu/~kalo/papers/shapepfcn/
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Auxiliary slides



What are the filters doing?

Activated in the presence of certain patterns of surface patches
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What are the filters doing?

Activated in the presence of certain patterns of surface patches
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Input: shape as a collection of rendered views

For each input shape, infer a set of viewpoints that maximally cover its
surface across multiple distances.
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Input: shape as a collection of rendered views

For each input shape, infer a set of viewpoints that maximally cover its
surface across multiple distances.

s

£ .§~‘




ES

-1

-

1

— -
U
I__’_._

N

Shaded
images

Depth
images

> \u/”ll— —>

509|865 (865 (133711741174

1342 865 (133711337, 558 | 558

13421342 887|887 | 849|558

932|932|887|849 8491212

932|677 |677156712121212)

1805677 |950(1567/1567/1566)

Surface-based
map

shared filters

View-based map



Training

The architecture is trained end-to-end with analytic gradients.

a1 1— P(Ry=1) if | =TpandI(m,i,j) = f
——=¢ P(R;=1) if 1 #Tfand I(m,i,5) = f
oC (m, 1, 4, 1) 0 otherwise

Backpropagation / joint training (convnet+CRF)



Challenges

* 3D models have missing or non-photorealistic texture




Challenges

* 3D models have missing or non-photorealistic texture (focus on shape instead)




ShapeNetCore: 8% improvement in labeling accuracy

for complex categories (vehicles, furniture etc)

frain/test) #part ShapeBoost|Guo et al.|ShapePFCN
shapes |labels
_Airplane [|250/250]
Bag || 38/38 | 2 93.1 91.0 94.6
Cap 27128 2 85.9 85.7 94.5
' Car 2507250 4 79.5 80.1 86.7 |
LChair 250/220 4 70.1 §6.8 82.9 |
Earphone || 34/ 35 3 81.4 79.8 .
Guitar |[[250/250| 3 89.0 89.9 91.8
Knife 196/196| 2 81.2 77.1 82.8
Lamp_ [|250/250| 4 71.7 71.6 78.0
Laptop ([222/223| 2 86.1 82.7 95.3
Mug [ 92/92 | 2 94.9 95.1 96.0
Pistol 137/138| 3 88.2 84.1 91.5
Rocket 33/33 3 79.2 76.9 81.6
Skateboard|| 76/ 76 3 91.0 89.6 91.9
Table [[250/250| 3 74.5 77.8 84.8




fixed |disjoint|unary| without | full

views|training| term |pretrain. | method
Category Avg. 8721 87.0 |83.5| 86.3 88.4
Category Avg. (>3 labels)| 83.2 | 82.8 | 78.8 | 82.5 85.0
Dataset Avg. 86.2 | 859 |82.1| 85.7 87.5
Dataset Avg. (>3 labels) | 82.9 | 824 | 78.7 | 82.3 84.7

Table 3. Labeling accuracy on ShapeNetCore for degraded vari-

ants of our method.



Key Observations

3D models have arbitrary orientation “in the wild”.

Consistent shape orientation only in specific, well-engineered datasets
(often with manual intervention, no perfect alignment algorithm)



Comparisons pitfalls

Method A assumes consistent shape alignment (or upright orientation), method B doesn’t.
* Well, you may get much better numbers for B by changing its input!

Convnet A has orders of magnitude more parameters than Convnet B.
* It might also be easy to get better numbers for B, if you increase its number of filters!

Convnet A has an architectural “trick” that Convnet B could also have (e.g., U-net, ensemble).
* Why not apply the same trick to B?

Methods are largely tested on training data because of duplicate or near-duplicate shapes.
* The more you overfit, the better! Ouch!

* 3DShapeNet has many identical models, or models with tiny differences (e.g., same
airplane with different rockets)...





