

Motivation: Parsing RGBD data

Motivation: 3D Modeling & Animation

Ear
Head
Torso
Back
Upper arm
Lower arm
Hand
Upper leg
Lower leg
Foot
Tail

Animation

Texturing

Kalogerakis, Hertzmann, Singh, SIGGRAPH 2010 Simari, Nowrouzezahrai, Kalogerakis, Singh, SGP 2009

Related Work

Train classifiers on hand-engineered descriptors e.g., Kalogerakis et al. 2010, Guo et al. 2015

Related Work

Train classifiers on hand-engineered descriptors e.g., Kalogerakis et al. 2010, Guo et al. 2015

Concurrent approaches:

Volumetric / octree-based methods: Riegler et al. 2017 (OctNet), Wang et al. 2017 (O-CNN), Klokov et al. 2017 (kd-net)

Point-based networks: Qi et al. 2017 (PointNet / PointNet++)

Graph-based / spectral networks: Yi et al. 2017 (SyncSpecCNN)

Surface embedding networks: Maron et al. 2017

Related Work

Train classifiers on hand-engineered descriptors e.g., Kalogerakis et al. 2010, Guo et al. 2015

Concurrent approaches:

Volumetric / octree-based methods: Riegler et al. 2017 (OctNet), Wang et al. 2017 (O-CNN), Klokov et al. 2017 (kd-net)

Point-based networks: Qi et al. 2017 (PointNet / PointNet++)

Graph-based / spectral networks: Yi et al. 2017 (SyncSpecCNN)

Surface embedding networks: Maron et al. 2017

3D models are often **designed for viewing**.

3D models are often **designed for viewing**.

3D models are often **designed for viewing**.

Empty inside!

3D scans capture the surface.

3D models are often **designed for viewing**.

Shape renderings can be treated as photos of objects (without texture)

Shape renderings can be processed by powerful image-based architectures through transfer learning from massive image datasets.

(Su, Maji, Kalogerakis, Learned-Miller, ICCV 2015)

Deep architecture that combines view-based convnets for part reasoning on rendered shape images & prob. graphical models for surface processing.

Deep architecture that combines view-based convnets for part reasoning on rendered shape images & prob. graphical models for surface processing.

Key challenges:

- Select views to avoid surface information loss & deal with occlusions

Deep architecture that combines view-based convnets for part reasoning on rendered shape images & prob. graphical models for surface processing.

Key challenges:

- Select views to avoid surface information loss & deal with occlusions
- **Promote invariance under 3D shape rotations**

Deep architecture that combines view-based convnets for part reasoning on rendered shape images & prob. graphical models for surface processing.

Key challenges:

- Select views to avoid surface information loss & deal with occlusions
- Promote invariance under 3D shape rotations
- Joint reasoning about parts across multiple views + surface

Pipeline

Pipeline

Render shaded images (normal dot view vector) encoding surface normals.

Render also **depth images** encoding surface position relative to the camera.

Perform in-plane camera rotations for rotational invariance.

Each **pair of depth & shaded images** is processed by a FCN. [Long, Shelhamer, and Darrell 2015] Views are **not ordered** (no view correspondence across shapes).

Each **pair of depth & shaded images** is processed by a FCN. [Long, Shelhamer, and Darrell 2015] Views are **not ordered** (no view correspondence across shapes).

The output of each FCN branch is a view-based confidence map per part label.

hor. stabilizer

The output of each FCN branch is a view-based confidence map per part label.

Aggregate & project the image confidence maps from all views on the surface.

Image2Surface projection layer

For each surface element (triangle), find all pixels that include it in all views. Surface confidence: use max of these pixel confidences per label.

Image2Surface projection layer

For each surface element (triangle), find all pixels that include it in all views. Surface confidence: use max of these pixel confidences per label.

Image2Surface projection layer

For each surface element (triangle), find all pixels that include it in all views. Surface confidence: use max of these pixel confidences per label.

CRF layer for spatially coherent labeling

Last layer performs inference in a probabilistic model defined on the surface.

CRF layer for spatially coherent labeling

Conditional Random Field: unary factors based on surface-based confidences

Projective convnet architecture: CRF layer

Pairwise terms **favor same label** for triangles with:

$$P(R_1, R_2, R_3, R_4... | \text{shape}) = \frac{1}{Z} \prod_{f=1..n} P(R_f | \text{views}) \prod_{f, f'} P(R_f, R_{f'} | \text{surface})$$
Pairwise factors
(geodesic+normal distance)

Projective convnet architecture: CRF layer

Infer most likely joint assignment to all surface random variables (mean-field)

Forward pass

inference (convnet+CRF)

Training

The architecture is trained **end-to-end** with analytic gradients.

Backpropagation / joint training (convnet+CRF)

Training

The architecture is trained **end-to-end** with analytic gradients.

Training starts from a **pretrained image-based net** (VGG16), then **fine-tune**.

Backpropagation / joint training (convnet+CRF)

Dataset used in experiments

Evaluation on **ShapeNet + LPSB + COSEG** (46 classes of shapes) **50%** used for training / **50%** used for test split **per Shapenet category** Max 250 shapes for training. No assumption on shape orientation.

[[]Yi et al. 2016]

Dataset used in experiments

Evaluation on **ShapeNet + LPSB + COSEG** (46 classes of shapes) **50%** used for training / **50%** used for test split **per Shapenet category** Max 250 shapes for training. No assumption on shape orientation.

[[]Yi et al. 2016]

Results

Labeling accuracy on ShapeNet test dataset:

ShapeBoost	Guo et al.	ShapePFCN
81.2	80.6	87.5

Results

Labeling accuracy on ShapeNet test dataset:

	ShapeBoost	Guo et al.	ShapePFCN
Ignore easy classes (2 or 3 part labels)	81.2	80.6	87.5
	→ 76.8	76.8	84.7

8% improvement in labeling accuracy for complex categories (vehicles, furniture)

Results

Labeling accuracy on ShapeNet test dataset:

	ShapeBoost	Guo et al.	ShapePFCN
Ignore easy classes (2 or 3 part labels)	81.2	80.6	87.5
	→ 76.8	76.8	84.7

8% improvement in labeling accuracy for complex categories (vehicles, furniture)

Labeling accuracy on LPSB+COSEG test dataset:

ShapeBoost	Guo et al.	ShapePFCN
84.2	82.1	92.2

Object scans from "A Large Dataset of Object Scans" Choi et al. 2016

Summary

- Deep architecture combining view-based FCN & surface-based CRF
- Multi-scale view selection to avoid loss of surface information
- Transfer learning from massive image datasets
- **Robust** to geometric representation artifacts

Acknowledgements: NSF (CHS-1422441, CHS-1617333, IIS- 1617917) Experiments were performed in the **UMass GPU cluster (400 GPUs!)** obtained under a grant by the MassTech Collaborative

Auxiliary slides

What are the filters doing?

Activated in the presence of certain patterns of surface patches

What are the filters doing?

Activated in the presence of certain patterns of surface patches

What are the filters doing?

Activated in the presence of certain patterns of surface patches

Training

The architecture is trained **end-to-end** with analytic gradients.

Backpropagation / joint training (convnet+CRF)

Challenges

• 3D models have missing or non-photorealistic texture

Challenges

• 3D models have missing or non-photorealistic texture (focus on shape instead)

for complex categories (vehicles, furniture etc)					
	#train/test shapes	#part labels	ShapeBoost	Guo et al.	ShapePFCN
Airplane	250/250	4	85.8	87.4	90.3
Bag	38/38	2	93.1	91.0	94.6
Cap	27/28	2	85.9	85.7	94.5
Car	250/250	4	79.5	80.1	86.7
Chair	250/250	4	70.1	66.8	82.9
Earphone	34/35	3	81.4	79.8	84.9
Guitar	250/250	3	89.0	89.9	91.8
Knife	196/196	2	81.2	77.1	82.8
Lamp	250/250	4	71.7	71.6	78.0
Laptop	222/223	2	86.1	82.7	95.3
Motorbike	101/101	6	77.2	80.1	87.0
Mug	92/92	2	94.9	95.1	96.0
Pistol	137 / 138	3	88.2	84.1	91.5
Rocket	33/33	3	79.2	76.9	81.6
Skateboard	76/76	3	91.0	89.6	91.9
Table	250/250	3	74.5	77.8	84.8

ShapeNetCore: **8% improvement in labeling accuracy** for complex categories (vehicles, furniture etc)

	fixed views	disjoint training	unary term	without pretrain	full method	
		07.0				
Category Avg.	87.2	87.0	83.5	86.3	88.4	
Category Avg. (>3 labels)	83.2	82.8	78.8	82.5	85.0	
Dataset Avg.	86.2	85.9	82.1	85.7	87.5	
Dataset Avg. (>3 labels)	82.9	82.4	78.7	82.3	84.7	
Table 3. Labeling accuracy on ShapeNetCore for degraded vari-						
ants of our mothed						

ants of our method.

3D models have arbitrary orientation "in the wild".

Consistent shape orientation only in specific, well-engineered datasets (often with manual intervention, no perfect alignment algorithm)

Comparisons pitfalls

- Method A assumes consistent shape alignment (or upright orientation), method B doesn't.
 - Well, you may get much better numbers for B by changing its input!
- Convnet A has orders of magnitude more parameters than Convnet B.
 - It might also be easy to get better numbers for B, if you increase its number of filters!
- Convnet A has an architectural "trick" that Convnet B could also have (e.g., U-net, ensemble).
 - Why not apply the same trick to B?
- Methods are largely tested on training data because of **duplicate or near-duplicate shapes**.
 - The more you overfit, the better! Ouch!
 - 3DShapeNet has many identical models, or models with tiny differences (e.g., same airplane with different rockets)...