

3D Shape Segmentation with Projective Convolutional Networks

Evangelos Kalogerakis UMass Amherst

Melinos Averkiou University of Cyprus Subhransu Maji UMass Amherst

Siddhartha Chaudhuri IIT Bombay

Overview

Motivation: recognizing parts in 3D shapes is fundamental to several applications in 3D computer vision, computer graphics, and robotics

3D Modeling and Animation Parsing RGBD data Challenges: subtlety in 3D geometric cues, arbitrary orientation, noise,

varying resolution, arbitrary or no interior, missing texture, non-manifold geometry, shape part variability, need to parse local and global context

Earlier work: "hand-engineered" geometric descriptors, heuristic processing stages, low resolution, lack of generality & robustness

Our approach: combine fully convolutional net (FCN) operating on rendered shape views with surface-based graphical model (CRF)

Key ideas:

- Adaptive view selection per shape to maximally cover its surface
- Multi-scale representation of the surface information
- Initialize network from pre-trained image-based architectures
- End-to-end training of the whole network (FCN & CRF)
- Projective layer for mapping view representations to surfaces

Key advantages:

- **High-resolution** shape analysis
- Robustness to geometric representation artifacts (noise, irregular tessellation, arbitrary interior, non-manifold geometry)
- Transfer learning from massive image datasets
- Rotational invariance
- CNN representation power is focused on the shape surface

Method

Rendering stage: infer set of viewpoints that maximally covers the surface of the input shape across multiple scales.

To favor rotational invariance, perform in-plane camera rotations.

Views are not ordered, number of viewpoints differ per shape, and no view correspondences across shapes are assumed.

Encode surface position & normals: render shaded images (normal dot view vector) and depth images relative to the cameras.

Render surface reference images: each pixel stores a pointer to a surface element.

The pairs of shaded and depth images are passed into FCN branches with shared filters. Their outputs are image-based confidences per label.

The image-based label confidences are aggregated on the surface via the surface references

Our **surface CRF** uses the surface confidences as unary terms. Pairwise terms use geodesic distances & normals for & a projection layer. **coherent labeling**.

Results

Top filter activations: after training, filters are sensitive to different local surface patterns (triangular, circular patches etc). In upper layers, different filters are sensitive to various shape sub-parts and parts.

Experiments: 3D ShapeNet (16 classes), L-PSB & COSEG (30 classes)

	ShapeBoost	Guo et al.	ShapePFCN	noto: nor optogony training
Category Avg.	83.0	82.2	88.4	note: per category training, 50% training / 50% testing, max 500 shapes per class,
Category Avg. (>3 labels)	76.9	77.2	85.0	
Dataset Avg.	81.2	80.6	87.5	no assumption on shape
Dataset Avg. (>3 labels)	76.8	76.8	84.7	orientation
Average labeling accur	acy on segm	ented Sha _l	peNetCore	Officiation
back seat base	fr	andle rame eat vheel		fin head neck nose body
tail engine fuselage wing	to le		shade tube base	bladehandlebase
	roof hood	handle case		crown

headband

Project page with datasets, results and source code: http://people.cs.umass.edu/~kalo/papers/shapepfcn/index.html

lower leg

foot