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Overview
Motivation: recognizing parts in 3D shapes is fundamental to several 
applications in 3D computer vision, computer graphics, and robotics

Challenges: subtlety in 3D geometric cues, arbitrary orientation, noise, 
varying resolution, arbitrary or no interior, missing texture, non-manifold 
geometry, shape part variability, need to parse local and global context

Earlier work: “hand-engineered” geometric 
descriptors, heuristic processing stages, 
low resolution, lack of generality & robustness

Our approach: combine fully convolutional net (FCN) operating on 
rendered shape views with surface-based graphical model (CRF)
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3D Modeling and Animation
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Parsing RGBD data

ShapeBoost Οur method

Key ideas:
• Adaptive view selection per shape 

to maximally cover its surface 
• Multi-scale representation of the 

surface information
• Initialize network from pre-trained

image-based architectures
• End-to-end training of the whole 

network (FCN & CRF)
• Projective layer for mapping view 

representations to surfaces

Key advantages:
• High-resolution shape analysis
• Robustness to geometric 

representation artifacts (noise, 
irregular tessellation, arbitrary 
interior, non-manifold geometry)

• Transfer learning from massive 
image datasets

• Rotational invariance
• CNN representation power is 

focused on the shape surface

Rendering stage: infer set of viewpoints that 
maximally covers the surface of the input 
shape across multiple scales. 
To favor rotational invariance, perform 
in-plane camera rotations.
Views are not ordered, number of viewpoints 
differ per shape, and no view correspondences 
across shapes are assumed. 
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Encode surface position & normals: render 
shaded images (normal dot view vector) and 
depth images relative to the cameras.
Render surface reference images: each pixel 
stores a pointer to a surface element.

The pairs of shaded and 
depth images are passed 
into FCN branches with 
shared filters. Their 
outputs are image-based 
confidences per label.

The image-based 
label confidences
are aggregated on 
the surface via the 
surface references 
& a projection layer.

View-based part 
label confidences

Surface-based 
part label 

confidences

Our surface CRF uses 
the surface confidences 
as unary terms. Pairwise 
terms use geodesic 
distances & normals for 
coherent labeling.
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ShapePFCN architecture: end-to-end 
trainable and analytically differentiable. 
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Top filter activations: after 
training, filters are sensitive to 
different local surface patterns 
(triangular, circular patches 
etc). In upper layers, different 
filters are sensitive to various 
shape sub-parts and parts.

Experiments: 3D ShapeNet (16 classes), L-PSB & COSEG (30 classes)

note: per category training,
50% training / 50% testing,
max 500 shapes per class, 
no assumption on shape 
orientation

Average labeling accuracy on segmented ShapeNetCore

Project page with datasets, results and source code: 
http://people.cs.umass.edu/~kalo/papers/shapepfcn/index.html

(wing)

(wing)

http://people.cs.umass.edu/%7Ekalo/papers/shapepfcn/index.html

	3D Shape Segmentation with Projective Convolutional Networks�Evangelos Kalogerakis        Melinos Averkiou          Subhransu Maji        Siddhartha Chaudhuri�   

