
3D Shape Segmentation with Projective Convolutional Networks

Evangelos Kalogerakis1 Melinos Averkiou2 Subhransu Maji1 Siddhartha Chaudhuri3

1University of Massachusetts Amherst 2University of Cyprus 3IIT Bombay

Abstract
This paper introduces a deep architecture for segmenting
3D objects into their labeled semantic parts. Our architec-
ture combines image-based Fully Convolutional Networks
(FCNs) and surface-based Conditional Random Fields
(CRFs) to yield coherent segmentations of 3D shapes. The
image-based FCNs are used for efficient view-based rea-
soning about 3D object parts. Through a special projec-
tion layer, FCN outputs are effectively aggregated across
multiple views and scales, then are projected onto the
3D object surfaces. Finally, a surface-based CRF com-
bines the projected outputs with geometric consistency
cues to yield coherent segmentations. The whole archi-
tecture (multi-view FCNs and CRF) is trained end-to-end.
Our approach significantly outperforms the existing state-
of-the-art methods in the currently largest segmentation
benchmark (ShapeNet). Finally, we demonstrate promis-
ing segmentation results on noisy 3D shapes acquired from
consumer-grade depth cameras.

1. Introduction
In recent years there has been an explosion of 3D shape
data on the web. In addition to the increasing number of
community-curated CAD models, depth sensors deployed
on a wide range of platforms are able to acquire 3D ge-
ometric representations of objects in the form of polygon
meshes or point clouds. Although there have been sig-
nificant advances in analyzing color images, in particular
through deep networks, existing semantic reasoning tech-
niques for 3D geometric shape data mostly rely on heuristic
processing stages and hand-tuned geometric descriptors.

Our work focuses on the task of segmenting 3D shapes into
labeled semantic parts. Compositional part-based reason-
ing for 3D shapes has been shown to be effective for a large
number of vision, robotics and virtual reality applications,
such as cross-modal analysis of 3D shapes and color im-
ages [60, 24], skeletal tracking [42], objection detection in
images [11, 30, 36], 3D object reconstruction from images
and line drawings [54, 24, 21], interactive assembly-based
3D modeling [5, 4], generating 3D shapes from a small
number of examples [25], style transfer between 3D objects
[33], robot navigation and grasping [40, 8], to name a few.

The shape segmentation task, while fundamental, is chal-
lenging because of the variety and ambiguity of shape parts
that must be assigned the same semantic label; because ac-

curately detecting boundaries between parts can involve ex-
tremely subtle cues; because local and global features must
be jointly examined; and because the analysis must be ro-
bust to noise and undersampling.

We propose a deep architecture for segmenting and labeling
3D shapes that simply and effectively addresses these chal-
lenges, and significantly outperforms prior methods. The
key insights of our technique are to repurpose image-based
deep networks for view-based reasoning, and aggregate
their outputs onto the surface representation of the shape in
a geometrically consistent manner. We make no geometric,
topological or orientation assumptions about the shape, nor
exploit any hand-tuned geometric descriptors.

Our view-based approach is motivated by the success of
deep networks on image segmentation tasks. Using ren-
dered shapes lets us initialize our network with layers that
have been trained on large image datasets, allowing better
generalization. Since images depict shapes of photographed
objects (along with texture), we expect such pre-trained lay-
ers to already encode some information about parts and their
relationships. Recent work on view-based 3D shape clas-
sification [47, 38] and RGB-D recognition [15, 46] have
shown the benefits of transferring learned representations
from color images to geometric and depth data.

A view-based approach to 3D shape segmentation must
overcome several technical obstacles. First, views must
be selected such that they together cover the shape sur-
face as much as possible and minimize occlusions. Sec-
ond, shape parts can be visible in more than one view, thus
our method must effectively consolidate information across
multiple views. Third, we must guarantee that the segmen-
tation is complete and coherent. This means all the surface
area, including any heavily occluded portions, should be la-
beled, and neighboring surface areas should likely have the
same label unless separated by a strong boundary feature.

Our approach, shown in Figure 1, systematically addresses
these difficulties using a single feed-forward network.
Given a raw 3D polygon mesh as input, our method gen-
erates a set of images from multiple views that are automat-
ically selected for optimal surface coverage. These images
are fed into the network, which outputs confidence maps per
part via image processing layers. The confidence maps are
fused and projected onto the shape surface representation
through a projection layer. Finally, our architecture incor-
porates a surface-based Conditional Random Field (CRF)

1

Surface
reference

image
(triangle ids)

...

... ...

...

Input 3D Shape &
Selected Viewpoints

Shaded
images

Depth
images

FCN

FCN

FCN

Per-label
con�dence

maps

Image2Surface
projection

layer

Surface-based
CRF layer

509 865 865 133711741174

1342 865 13371337 558 558

13421342 887 887 849 558

932 932 887 849 849 1212

932 677 677 156712121212

1805 677 950 156715671566

pr
oj

ec
tio

n

Per-label
con�dence

maps
(on surface)

Labeled 3D Shape

forward pass / inference

backpropagation / learning

4x rotations

...

...

wing
fuselage

vert. stabilizer
horiz. stabilizer

shared
weights

shared
weights

Figure 1. Pipeline and architecture of our method for 3D shape segmentation and labeling. Given an input shape, a set of viewpoints
are computed at different scales such that the viewed shape surface is maximally covered (left). Shaded and depth images from these
viewpoints are processed through our architecture (here we show images for three viewpoints, corresponding to 3 different scales). Our
architecture employs image-based Fully Convolutional Network (FCN) modules with shared parameters to process the input images. The
modules output image-based part label confidences per view. Here we show confidence maps for the wing label (the redder the color, the
higher the confidence). The confidences are aggregated and projected on the shape surface through a special projection layer. Then they
are further processed through a surface-based CRF that promotes consistent labeling of the entire surface (right).

layer that promotes consistent labeling of the entire surface.
The whole network, including the CRF, is trained in an end-
to-end manner to achieve optimal performance.

Our main contribution is the introduction of a deep ar-
chitecture for compositional part-based reasoning on 3D
shape representations without the use of hand-engineered
geometry processing stages or hand-tuned descriptors. We
demonstrate significant improvements over the state-of-the-
art. For complex objects, such as aircraft, motor vehicles,
and furniture, our method increases part labeling accuracy
by a remarkable ∼8% over the state of the art on the cur-
rently largest 3D shape segmentation dataset.

2. Related work
Our work is related to learning methods for segmentation of
images (including RGB-D data) and 3D shapes.
Image-based segmentation. There is a vast literature on
segmenting images into objects and their parts. Most recent
techniques are based on variants of random forest classi-
fiers or convolutional networks. An example of the former
is the remarkably fast and accurate human-pose estimator
that uses depth data from Kinect sensors for labeling hu-
man parts [42]. Our work builds on the success of convo-
lutional networks for material segmentation, scene labeling,
and object part-labeling tasks. These approaches use image
classification networks repurposed for dense image label-
ing, commonly a fully-convolutional network (FCN) [32],
to obtain an initial labeling. Several strategies for improving
these initial estimates have been proposed including tech-
niques based on top-down region-based reasoning [10, 16],
CRFs [6, 31], atrous convolutional layers [6, 57], decon-
volutional layers [35], recurrent networks [59], or a multi-
scale analysis [34, 17]. Several works [29, 1, 2] have also
focused on learning feature representations from RGB-D
data (e.g. those captured using a Kinect sensor) for object-
level recognition and detection in scenes. Recently, Gupta

et al. [15] showed that image-based networks can be repur-
posed for extracting depth representations for object detec-
tion and segmentation. Recent works [14, 45, 18] have ap-
plied a similar strategy for indoor scene recognition tasks.

In contrast to the above methods, our work aims to seg-
ment geometric representations of 3D objects, in the form
of polygon meshes, created through 3D modeling tools or
reconstruction techniques. The 3D models of these objects
often do not contain texture or color information. Segment-
ing these 3D objects into parts requires architectures that
are capable of operating on their geometric representations.
Learning 3D shape representations from images. A
few recent methods attempt to learn volumetric represen-
tations of shapes from images via convolutional networks
that employ special layers to model shape projections onto
images [55, 39]. Alternatively, mesh-based representations
can also be learned from images by assuming a fixed num-
ber of mesh vertices [39]. In contrast to these works, our
architecture discriminatively learns view-based shape rep-
resentations along with a surface-based CRF such that the
view projections match an input surface signal (part la-
bels). Our 3D-2D projection mechanism is differentiable,
parameter-free, and sparse, since it operates only on the
shape surface rather than its volume. In contrast to the mesh
representations of [39], we do not assume that meshes have
a fixed number of vertices, which does not hold true for
general 3D models. Our method is more related to meth-
ods that learn view-based shape representations [47, 38].
However, these methods only learn global representations
for shape classification and rely on fixed sets of views. Our
method instead learns view-based shape representations for
part-based reasoning through adaptively selected views. It
also uses a CRF to resolve inconsistencies or missing sur-
face information in the view representations.
3D geometric shape segmentation. The most common
learning-based approach to shape segmentation is to assign

part labels to geometric elements of the shape representa-
tion, such as polygons, points, or patches [53]. This is
often done through various processing stages: first, hand-
engineered geometric descriptors of these elements are ex-
tracted (e.g. surface curvature, shape diameter, local his-
tograms of point or normal distributions, surface eigenfunc-
tions, etc.); then, a clustering method or classifier infers
part labels for elements based on their descriptors; and fi-
nally (optionally) a separate graph cuts step is employed to
smooth out the surface labeling [26, 41, 43, 19, 58]. Re-
cently, a convolutional network has been proposed as an
alternative element classifier [13], yet it operates on hand-
engineered geometric descriptors organized in a 2D matrix
lacking spatially coherent structure for conventional convo-
lution. Another variant is to use two-layer networks which
transform the input by randomized kernels, in the form of
so-called “Extreme Learning Machines” [52], but these of-
fer no better performance than standard shallow classifiers.

Other approaches segment shapes by employing non-rigid
alignment steps through deformable part templates [27, 20],
or transfer labels through surface correspondences and
functional maps between 3D shapes [48, 22, 50, 27, 23].
These correspondence and alignment methods rely on hand-
engineered geometric descriptors and deformation steps.
Wang et al. [51] segment 3D shapes by warping and match-
ing binary images of their projected views with segmented
2D images through Hausdorff distances. However, the
matching procedure is hand-tuned, while potentially useful
surface information, such as depth and normals, is ignored.

In contrast to all the above approaches, we propose a view-
based deep architecture for shape segmentation with four
main advantages. First, our architecture adopts image pro-
cessing layers learned on large-scale image datasets, which
are orders of magnitude larger than existing 3D datasets.
As we show in this work, the deep stack of several lay-
ers extracts feature representations that can be successfully
adapted to the task of shape segmentation. We note that
such transfer has also been observed recently for shape
recognition [47, 38]. Second, our architecture produces
shape segmentations without the use of hand-engineered ge-
ometric descriptors or processing stages that are prone to
degeneracies in the shape representation (i.e. surface noise,
sampling artifacts, irregular mesh tesselation, mesh degen-
eracies, and so on). Third, we employ adaptive viewpoint
selection to effectively capture all surface parts for analysis.
Finally, our architecture is trained end-to-end, including all
image and surface processing stages. As a result of these
contributions, our method achieves better performance than
prior work on big and complex datasets by a large margin.

3. Method
Given an input 3D shape, the goal of our method is to seg-
ment it into labeled parts. We designed a projective con-
volutional network to this end. Our network architecture is
visualized in Figure 1. It takes as input a set of images from
multiple views optimized for maximal surface coverage; ex-
tracts part-based confidence maps through image process-
ing layers (pre-trained on large image datasets); combines

and projects these maps onto the surface through a projec-
tion layer, and finally incorporates a surface-based Condi-
tional Random Field (CRF) that favors coherent labeling of
the input surface. The whole network, including the CRF, is
trained end-to-end. In the following sections, we discuss the
input to our network, its layers, and the training procedure.

Input. The input to our algorithm is a 3D shape repre-
sented as a polygon mesh. As a preprocessing step, the
shape surface is sampled with uniformly distributed points
(1024 in our implementation). Our algorithm first deter-
mines an overcomplete collection of viewpoints such that
nearly every point of the surface is visible from at least
K viewpoints (in our implementation, K = 3). For each
sampled surface point, we place viewpoints at different dis-
tances from it along its surface normal (distances are set
to 0.5, 1.0 and 1.5 of the shape’s bounding sphere radius).
In this manner, the surface is depicted at different scales
(Figure 1, left). We then determine a compact set of infor-
mative viewpoints that maximally cover the shape surface.
For each viewpoint, the shape is rasterized under a perspec-
tive projection to a binary image, where we associate ev-
ery “on” pixel with the sampled surface point closest to it.
The coverage of the viewpoint is measured as the fraction
of surface points visible from it, estimated by aggregating
surface point references from the image. For each of the
scales (camera distances), the viewpoint with largest cover-
age is inserted into a list. We then re-estimate coverages at
this scale, omitting points already covered by the selected
viewpoint, and the viewpoint with the next largest coverage
is added to the list. The process is repeated until all surface
points are covered at this scale. In our experiments, with
man-made shapes and at our selected scales, approximately
20 viewpoints were enough to cover the vast majority of the
surface area per scale.

After determining our viewpoint collection, we render the
shape to shaded images and depth images. For each view-
point, we place a camera pointing towards the surface point
used to generate that viewpoint, and rotate its up-vector 4
times at 90 degree intervals (i.e, we use 4 in-plane rota-
tions). For each of these 4 camera rotations, we render a
shaded, greyscale 512× 512 image using a typical com-
puter graphics shader (Phong reflection model [37]) and
a depth image, which are concatenated into a single two-
channel image. These images are fed as input to the image
processing module (FCN) of our network, described below.
We found that both shaded and depth images are useful in-
puts. In early experiments, labeling accuracy dropped 2.5%
using depth alone. This might be attributed to the more
“photo-realistic” appearance of shaded images, which bet-
ter match the statistics of real images used to pretrain our
architecture. We note that shaded images directly encode
surface normals relative to view direction (shading is com-
puted from the angle between normals and view direction).

In addition to the shaded and depth images, for each se-
lected camera setting, we rasterize the shape into another
image where each pixel stores the ID of the polygon whose
projection is closest to the pixel center. These images,

which we call “surface reference” images, are fed into the
“projection layer” of our network (Figure 1).

FCN module. The two-channel images produced in the
previous step are processed through identical image-based
Fully-Connected Network (FCN) modules (Figure 1). Each
FCN module outputs L confidence maps of size 512× 512
per each input image, where L is the number of part labels.
Specifically, in our implementation we employ the FCN ar-
chitecture suggested in [57], which adopted the VGG-16
network [44] for dense prediction by removing its two last
pooling and striding layers, and using dilated convolutions.
We perform two additional modifications to this FCN ar-
chitecture. First, since our input is a 2-channel image, we
use 2-channel 3× 3 filters instead of 3-channel (BGR) ones.
We also adapted these filters to handle greyscale rather
than color images during our training procedure. Second,
we modified the output of the original FCN module. The
original FCN outputs L confidence maps of size 64× 64.
These are then converted into L probability maps through
a softmax operation. Instead, we upsample the confidence
maps to size 512× 512 through a transpose convolutional
(“deconvolution”) layer with learned parameters and stride
8. The confidences are later converted into probabilities
through our CRF layer.

Image2Surface projection layer. The goal of this layer
is to aggregate the confidence maps across multiple views,
and project the result back onto the 3D surface. We note that
both the locations and the number of optimal viewpoints can
vary from shape to shape, and they are not ordered in any
manner. Even if the optimal viewpoints were the same for
different shapes, the views would still not necessarily be
ordered, since we do not assume that shapes are oriented
consistently. As a result, the projection layer should be in-
variant to the input image ordering. Given Ms input images
of an input shape s, the L confidence maps extracted from
the FCN module are stacked into a Ms × 512× 512× L
image. The projection layer takes as input this 4D image.
In addition, it takes as input the surface reference (polygon
ID) images, also stacked into a 3D Ms × 512× 512 image.
The layer outputs a Fs × L array, where Fs is the number
of polygons of the shape s. The projection is done through
a view-pooling operation. For each surface polygon f and
part category label l, we assign a confidence P (f, l) equal
to the maximum label confidence across all pixels and input
images that map to that polygon according to the surface
reference images. Mathematically, this projection operation
is formulated as:

C̃(f, l) = max
∀m,i,j:

I(m,i,j)=f

C(m, i, j, l) (1)

where C(m, i, j, l) is the confidence of label l at pixel (i, j)
of image m; I(m, i, j) stores the polygon ID at pixel (i, j)
of the corresponding reference image m; and C̃(f, l) is the
output confidence of label l at polygon f . We note that
the surface reference images omit polygon references at and
near the shape silhouette, since an excessively large, nearly
occluded, portion of the surface tends to be mapped onto the

silhouette, thus the projection becomes unreliable there. In-
stead of using the max operator, an alternative aggregation
strategy would be to use the average instead of the maxi-
mum, but we observed that this results in a slightly lower
performance (about 1% in our experiments).

Surface CRF. Some small surface areas may be highly oc-
cluded and hence unobserved by any of the selected view-
points, or not included in any of the reference images. For
any such polygons, the label confidences are set to zero.
The rest of the surface should propagate label confidences to
these polygons. In addition, due to upsampling in the FCN
module, there might be bleeding across surface convexities
or concavities that are likely to be segmentation boundaries.

We define a CRF operating on the surface representation to
deal with the above issues. Specifically, each polygon f is
assigned a random variable Rf representing its label. The
CRF includes a unary factor for each such variable, which is
set according to the confidences produced in the projection
layer: φunary(Rf = l) = exp(C̃(f, l)). The CRF also en-
codes pairwise interactions between these variables based
on surface proximity and curvature. For each pair of neigh-
boring polygons (f, f ′), we define a factor that favors the
same label for polygons which share normals (e.g. on a flat
surface), and different labels otherwise. Given the angle
ωf,f ′ between their normals (ωf,f ′ is divided by π to map it
between [0, 1]), the factor is defined as follows:

φadj(Rf = l,Rf ′ = l′)=

{
exp
(
−wadj ·wl,l′ ·ω2

f,f ′

)
, l= l′

exp
(
−wadj ·wl,l′ ·(1−ω2

f,f ′)
)
, l 6= l′

where wadj and wl,l′ are learned factor- and label-dependent
weights. We also define factors that favor similar labels for
polygons f , f ′ which are spatially close to each other ac-
cording to the geodesic distance df,f ′ between them. These
factors are defined for pairs of polygons whose geodesic
distance is less than 10% of the bounding sphere radius in
our implementation. This makes our CRF relatively dense
and more sensitive to long-range interactions between sur-
face variables. We note that for small meshes or point
clouds, all pairs could be considered instead. The geodesic
distance-based factors are defined as follows:

φdist(Rf = l,Rf ′ = l′)=

{
exp
(
−wdist ·wl,l′ ·d2f,f ′

)
, l= l′

exp
(
−wdist ·wl,l′ ·(1− d2f,f ′)

)
, l 6= l′

where the factor-dependent weight wdist and label-
dependent weights wl,l′ are learned parameters, and df,f ′

represents the geodesic distance between f and f ′ . Dis-
tances are normalized to [0, 1].

Based on the above factors, our CRF is defined over all
surface random variables Rs = {R1, R2, . . . , RFs} of the
shape s as follows:

P (Rs)=
1

Zs

∏
f

φunary(Rf)
∏

adj f,f ′

φadj(Rf , Rf ′)
∏
f,f ′

φdist(Rf , Rf ′)

(2)

frame

wheel

handle

seat
tank

unary factor only CRF no dis. factor CRF no adj. factor full CRF ground-truth

headlight

Figure 2. Labeled segmentation results for alternative versions of our CRF (best viewed in color).

where Zs is a normalization constant. Exact inference is
intractable, thus we resort to mean-field inference to ap-
proximate the most likely joint assignment to all random
variables as well as their marginal probabilities. Our mean-
field approximation uses distributions over single variables
as messages (i.e. the posterior is approximated in a fully
factorized form – see Algorithm 11.7 of [28]). Figure 2
shows how segmentation results degrade for alternative ver-
sions of our CRF, and when the unary term is used alone.
Training procedure. The FCN module is initialized with
filters pre-trained on image processing tasks [57]. Since
the input to our network are rendered grayscale (col-
orless) images, we average the BGR channel weights
of the pre-trained filters of the first convolutional layer,
i.e. the 3× 3× 3 filters are converted to color-insensitive
3× 3× 1 filters. Then, we replicate the weights twice to
yield 3× 3× 2 filters that can accept our 2-channel input
images. The CRF weights are initialized to 1.

Given an input training dataset S of 3D shapes, we first
generate their depth, shaded, and reference images using
our rendering procedure. Then, our algorithm fine-tunes the
FCN module filter parameters θ and learns the CRF weights
wadj, wdist, {wl,l′} to maximize their log-likelihood plus a
small regularization term:

L =
1

|S|
∑
s∈S

logP (Rs = Ts) + λ||θ||2 (3)

where Ts are ground-truth labels per surface variable for
the training shape s, and λ is a regularization parameter
(weight decay) set to 10−3 in our experiments. To maximize
the above objective, we must compute its gradient w.r.t. the
FCN module outputs, as required for backpropagation:

∂L

∂C(m, i, j, l)
=

{
1− P (Rf = l) if l = Tf and I(m, i, j) = f
P (Rf = l) if l 6= Tf and I(m, i, j) = f
0 otherwise

(4)
Computing the gradient requires estimation of the marginal
probabilities P (Rf). We use mean-field inference to esti-
mate the marginals (same inference procedure is used for
training and testing). We observed that after 20 iterations,
mean-field often converges (i.e. marginals change very lit-
tle). We also need to compute the gradient of the objective
function w.r.t. the CRF weights. Since our CRF has the
form of a log-linear model, gradients can be easily derived.

Given the estimated gradients, we can train our network
through backpropagation. Backpropagation can send er-
ror messages towards any FCN branch i.e., any input image
(Figure 1). One strategy to train our network would be to set
up as many FCN branches as the largest number of rendered
images across all training models. However, the number of
selected viewpoints varies per model, thus the number of
rendered images per model also varies, ranging from a few

#train/test #part ShapeBoost Guo et al. ShapePFCNshapes labels
Airplane 250 / 250 4 85.8 87.4 90.3

Bag 38 / 38 2 93.1 91.0 94.6
Cap 27 / 28 2 85.9 85.7 94.5
Car 250 / 250 4 79.5 80.1 86.7

Chair 250 / 250 4 70.1 66.8 82.9
Earphone 34 / 35 3 81.4 79.8 84.9

Guitar 250 / 250 3 89.0 89.9 91.8
Knife 196 / 196 2 81.2 77.1 82.8
Lamp 250 / 250 4 71.7 71.6 78.0
Laptop 222 / 223 2 86.1 82.7 95.3

Motorbike 101 / 101 6 77.2 80.1 87.0
Mug 92 / 92 2 94.9 95.1 96.0
Pistol 137 / 138 3 88.2 84.1 91.5

Rocket 33 / 33 3 79.2 76.9 81.6
Skateboard 76 / 76 3 91.0 89.6 91.9

Table 250 / 250 3 74.5 77.8 84.8
Table 1. Dataset statistics and labeling accuracy per category for
test shapes in ShapeNetCore (see also Table 4 for accuracy in the
case of consistent upright orientation for shapes).

tens to a few hundreds in our datasets. Maintaining hun-
dreds of FCN branches would exceed the memory capacity
of current GPUs. Instead, during training, our strategy is to
pick a random subset of 24 images per model, i.e. we keep
24 FCN branches with shared parameters in the GPU mem-
ory. For each batch, a different random subset per model is
selected (i.e. no fixed set of views used for training). We
note that the order of rendered images does not matter – our
view pooling is invariant to the input image ordering. Our
training strategy is reminiscent of the DropConnect tech-
nique [49], which tends to reduce overfitting.

At test time all rendered images per model are used to make
predictions. The forward pass does not require all the input
images to be processed at once (i.e., not all FCN branches
need to be set up). At test time, the image label confidences
are sequentially projected onto the surface, which produces
the same results as projecting all of them at once.
Implementation. Our network is implemented using C++
and Caffe 1. Optimization is done through stochastic gradi-
ent descent with learning rate 10−3 and momentum 0.9. We
implemented a new Image2Surface layer in Caffe for pro-
jecting image-based confidences onto the shape surface. We
also created a CRF layer that handles mean-field inference
during the forward pass, and estimates the required gradi-
ents during backpropagation.

4. Evaluation
We now present experimental validations and analysis of
our approach.

1Our source code, results and datasets are available on the project page:
http://people.cs.umass.edu/kalo/papers/shapepfcn/

http://people.cs.umass.edu/kalo/papers/shapepfcn/

Ground-truth ShapeBoost ShapePFCN

deck
truck
wheel

blade
handle

frame
trigger
grip

roof
hood
frame
wheel

brim
crown

cup
handle

top
leg

lid
base

Ground-truth ShapeBoost ShapePFCN

seat
back

leg

handle
case

headband
ear pads
cable

�n
frame
nose

frame

wheel

handle

seat

shade
tube
base

tail

wing
fuselage
engine

head
neck
body

Figure 3. Ground-truth (human) labeled segmentations of ShapeNet shapes, along with segmentations produced by ShapeBoost [26] and
our method (ShapePFCN) for test shapes originating from the ShapeNetCore dataset (best viewed in color).

ShapeBoost Guo et al. ShapePFCN
Category Avg. 83.0 82.2 88.4

Category Avg. (>3 labels) 76.9 77.2 85.0
Dataset Avg. 81.2 80.6 87.5

Dataset Avg. (>3 labels) 76.8 76.8 84.7
Table 2. Aggregate labeling accuracy on ShapeNetCore.

Datasets. We evaluated our method on manually-labeled
segmentations available from the ShapeNetCore [56],
Labeled-PSB (L-PSB) [7, 26], and COSEG datasets [50].
The dataset from ShapeNetCore currently contains 17,773
“expert-verified” segmentations of 3D models across 16
categories. The 3D models of this dataset are gathered
“in the wild”. They originate from the Trimble 3D Ware-
house and Yobi3D repositories, and in general are typical
representatives of objects created using 3D modeling tools
for diverse applications. In contrast, the PSB and COSEG
datasets are much smaller. PSB contains 380 segmented
3D models in 19 categories (20 models per category), while

COSEG contains 190 segmented models in 8 categories,
plus 900 synthetic variations of those in 3 categories. All
models in the PSB have been carefully re-meshed and re-
constructed such that their mesh representation is water-
tight with clean topology [50], facilitating use in geome-
try processing applications. Most shapes in COSEG are
similarly preprocessed. As the authors of the PSB bench-
mark note [50], many 3D models cannot be re-meshed or
re-constructed due to mesh degeneracies, hence they were
not included in their datasets. From this aspect, our analy-
sis is primarily focused on the dataset from ShapeNetCore,
since it is by far the largest of the three datasets; contains
diverse, general-purpose 3D models; and was gathered “in
the wild”. Nevertheless, for completeness, we include com-
parisons with prior methods on all datasets (ShapeNetCore,
L-PSB, COSEG).

Prior methods. We include comparisons with: (i)
“ShapeBoost’, the method described in [26], which em-

ploys graph cuts with a cascade of JointBoost classifiers for
the unary term and GentleBoost for the pairwise term along
with other geometric cues, and has state-of-the-art perfor-
mance on the L-PSB; (ii) the recent method by Guo et al.
[13] which reports comparable performance on the L-PSB
dataset with ShapeBoost. This method employs graph cuts
with a CNN on per-face geometric descriptors (also used in
ShapeBoost), plus geometric cues for the pairwise term.

Computing geometric descriptors on ShapeNetCore shapes
is challenging since they are often non-manifold “polygon
soups” (meshes with arbitrarily disconnected sets of poly-
gons) with inconsistently oriented surface normals. Work-
ing with the original publicly available ShapeBoost imple-
mentation, we tried to make the computation of geometric
descriptors and graph cuts as robust as possible. We pre-
processed the meshes to correctly orient polygons (front-
facing w.r.t. external viewpoints), repair connectivity (con-
nect geometrically adjacent but topologically disconnected
polygons, weld coincident vertices), and refine any exces-
sively coarse mesh by planar subdivision of faces until it
has >3,000 polygons. We also computed the geometric de-
scriptors on point-sampled representations of the shape so
that they are relatively invariant to tessellation artifacts. We
note that neither the prior methods nor our method make any
assumptions about shape orientation. No method explicitly
used any pre-existing mesh subpart information manually
entered by 3D modelers. Finally, we note that in the ab-
sence of a publicly available implementation, we used our
own implementation of Guo et al’s architecture.

Dataset splits. Since a standard training/test split is not
publicly available for the segmented ShapeNetCore dataset,
we introduced one (full list in the supplementary material).
We randomly split each category into two halves, 50% for
training and the rest for testing. The number of 3D shapes
varies significantly per category in ShapeNetCore, ranging
from 66 for Rockets to 5266 for Tables. The computation
of geometric descriptors used in prior methods is expensive,
taking up to an hour for a large mesh (e.g, 50K polygons).
To keep things tractable, we used 250 randomly selected
shapes for training, and 250 randomly selected shapes for
testing for categories with more than 500 shapes. Our
dataset statistics are listed in Table 1. For the much smaller
PSB and COSEG datasets, we used 12 shapes per category
for training, and the rest for testing. Each of the methods be-
low, including ours, is trained and tested separately on each
shape category, following the standard practice in prior 3D
mesh segmentation literature. All methods used the same
splits per category. Our evaluation protocol differs from the
one used by Guo et al. [13], where different methods are
evaluated on randomly selected but different splits of the
same category, which may cause inaccurate comparisons.

Results. The performance of all methods at test time is re-
ported in Table 1 for the ShapeNetCore dataset. The label-
ing accuracy for a given shape is measured as the percentage
of surface points labeled correctly according to the ground-
truth point labeling provided by Yi et al. [56]. When con-
sidering a simple average of the per-category accuracies,

fixed disjoint unary without full
views training term pretrain. method

Category Avg. 87.2 87.0 83.5 86.3 88.4
Category Avg. (>3 labels) 83.2 82.8 78.8 82.5 85.0

Dataset Avg. 86.2 85.9 82.1 85.7 87.5
Dataset Avg. (>3 labels) 82.9 82.4 78.7 82.3 84.7

Table 3. Labeling accuracy on ShapeNetCore for degraded vari-
ants of our method.

our method performs 5.4% better than the best-performing
prior work [26] (Table 2, category average). Note, however,
that several categories have disproportionately few mod-
els. A possibly more objective aggregate measure would
be to weight each category by the number of test shapes.
In this case, our method improves upon the state-of-the-art
by 6.3% (Table 2, dataset average). Most importantly, our
method has significantly higher performance in categories
with complex objects, such as motor vehicles, aircraft, and
furniture, where the labeling task is also more challenging.
For categories with more than 3 part labels, where part la-
beling is not just binary or ternary, our method improves
upon prior work by 7.8% in the unweighted estimate (Table
2, category average,>3 labels), or by 7.9% when weighting
by category size (Table 2, dataset average, >3 labels). This
clearly indicates that our method can handle difficult shape
labeling tasks in classes with complex objects significantly
better than prior approaches. We include labeling results
for all test shapes in the supplementary material. Figure 3
demonstrates human-labeled (ground-truth) segmentations,
along with results from the best performing prior method
(ShapeBoost) and our method (ShapePFCN) for various test
shapes. We found that ShapeBoost, which relies on geomet-
ric descriptors, often fails for shapes with complex structure
and topology (e.g. bikes, chairs), shapes with fine local fea-
tures that can distort local descriptors (e.g. gun trigger, bag-
gage handles), and shapes with coarse geometry (e.g., hats).

We also evaluated labeling accuracy in the PSB and COSEG
datasets. We did not exclude any shape categories from
our evaluation. Often, geometric methods are only appli-
cable to certain types of “well-formed” input (e.g. mani-
folds, upright-oriented shapes, isometric articulations of a
template, etc), and hence are not tested on unsuitable cat-
egories [53]. Our method, by contrast, is broadly applica-
ble. We obtain an improvement over state-of-the-art meth-
ods for these datasets (92.6% for our method, 90.6% for
ShapeBoost [26], 86.3% for Guo et al. [13] averaged over
both datasets, see supplementary material for accuracy per
category). We note that both PSB and COSEG contain a
small number of shapes with limited variability, which even
a shallow classifier may handle with high accuracy.

Analysis. We also evaluated our method against alternative
degraded variations of it, to identify major sources of per-
formance gains. Table 3 reports test labeling accuracy on
ShapeNetCore for the following cases: (i) instead of select-
ing viewpoints that maximize surface coverage at different
scales, we select fixed viewpoints placed on the vertices of
a dodecahedron as suggested in [47] for shape classification
(see “fixed views” column), (ii) we train the FCN module
and CRF separately (“disjoint training” column), (iii) we do

back

seat
leg

armrest

frame

wheel

handle

seat
tank

top
leg

Figure 4. Labeled segmentations produced by our method on
noisy objects reconstructed from RGBD sensor data.

not use the CRF, i.e. we rely only on the unary term (“unary
term” column), (iv) we train the FCN module from scratch
instead of starting its training from the pre-trained VGG.
We note that the CRF in particular, whether trained jointly
or separately, is responsible for a major performance im-
provement (compare “unary term” to other columns). Pre-
training also offers a noticeable gain. Viewpoint adaptation
and joint training contribute smaller but still useful gains.

Generalization to RGB-D sensor data. Even if our ar-
chitecture is trained on complete, noise-free, manually-
modeled 3D shapes, it can still generalize to noisy, po-
tentially incomplete objects acquired from RGB-D sensors.
Figure 4 presents segmentation results for various objects
originating from Choi et al.’s dataset [9]. The dataset con-
tains polygon meshes reconstructed from raw RGB-D sen-
sor data. We trained our architecture on the ShapeNetCore
chair, tables and motorbike categories (separately), then ap-
plied it to the reconstructed objects. We note that the scans
included the ground that we removed heuristically through
plane fitting. There was also background clutter that we re-
moved through connected component analysis (i.e. we kept
the dominant object in the scene). In contrast to our method,
prior works heavily rely on hand-coded geometric descrip-
tors that are highly distorted by noisy, incomplete geometry
and fail to produce meaningful results (see supplementary
material for results on these objects).

5. Conclusion
We presented a deep architecture designed to segment and
label 3D shape parts. The key idea of our approach is
to combine image-based fully convolutional networks for
view-based reasoning, with a surface-based projection layer
that aggregates FCN outputs across multiple views and a
surface-based CRF to favor coherent shape segmentations.
Our method significantly outperforms prior work on 3D
shape segmentation and labeling.

There are several exciting avenues for future extensions.

#train/test #part ShapePFCN ShapePFCN
shapes labels no upright upright

Airplane 250 / 250 4 90.3 91.2
Bag 38 / 38 2 94.6 94.9
Cap 27 / 28 2 94.5 93.6
Car 250 / 250 4 86.7 87.5

Chair 250 / 250 4 82.9 85.5
Earphone 34 / 35 3 84.9 85.6

Guitar 250 / 250 3 91.8 92.5
Knife 196 / 196 2 82.8 83.8
Lamp 250 / 250 4 78.0 81.3
Laptop 222 / 223 2 95.3 95.1

Motorbike 101 / 101 6 87.0 87.4
Mug 92 / 92 2 96.0 95.9
Pistol 137 / 138 3 91.5 91.4

Rocket 33 / 33 3 81.6 83.9
Skateboard 76 / 76 3 91.9 92.1

Table 250 / 250 3 84.8 87.8
Category Avg. 88.4 89.4

Category Avg. (>3 labels) 85.0 86.6
Dataset Avg. 87.5 88.8

Dataset Avg. (>3 labels) 84.7 86.5
Table 4. Dataset statistics, labeling accuracy per category, and ag-
gregate labeling accuracy for our test split in the case of consis-
tent upright shape orientation and additional input channel in our
rendered images for encoding the upright axis coordinate values
(height from the ground plane). The labeling accuracy of our net-
work is improved for most classes and on average.

Currently our method uses a simple pairwise term based on
surface distances and angles between surface normals. As a
result, the segmentations can become noisy and not aligned
with strong underlying mesh boundaries (Figure 4, see mo-
torbike). Extracting robust boundaries through a learned
module would be beneficial to our method. Our method
currently deals with single-level, non-hierarchical segmen-
tations. Further segmenting objects into fine-grained parts
(e.g. segmenting motorbikes into sub-frame components) in
a hierarchical manner would be useful in several vision and
graphics applications. Another possibility for future work is
to investigate different types of input to our network. 2 The
input images we used represent surface depth and normals
relative to view direction. Another possibility is to consider
the HHA encoding [14] or even raw position data. How-
ever, these encodings assume a consistent gravity direction
or alignment for input 3D shapes. Although in a few repos-
itories (e.g. Trimble Warehouse) the majority of 3D mod-
els have consistent upright orientation, this does not hold
for all 3D models, and especially for other online reposito-
ries whose shapes are oriented along different, random axes.
There have been efforts to develop methods for consistent
orientation or alignment of 3D shapes [12, 14, 3], yet ex-
isting methods require human supervision, or do not work
well for various shape classes, such as outdoor objects or
organic shapes.

2After the initial publication of our work, we also incorporated a third
channel in our rendered images representing height from ground plane.
This setting should be used only in the case of given consistent upright ori-
entation for all input training and test shapes. Although consistent upright
orientation is not true for 3D models in general, ShapeNetCore provides
it and several researchers have already tested their methods under the as-
sumption of consistent upright or even fully consistent orientation. We in-
clude labeling accuracy based on our training and test splits in Table 4 in
the case of consistent upright orientation and with this new input channel.

Finally, our method is currently trained in a fully supervised
manner. Extending our architecture to the semi-supervised
or unsupervised setting to benefit from larger amounts of
data is another exciting future direction.

Acknowledgements. Kalogerakis acknowledges support
from NSF (CHS-1422441, CHS-1617333), NVidia and
Adobe. Maji acknowledges support from NSF (IIS-
1617917) and Facebook. Chaudhuri acknowledges support
from Adobe and Qualcomm. Our experiments were per-
formed in the UMass GPU cluster obtained under a grant
from the Collaborative R&D Fund managed by the Mas-
sachusetts Technology Collaborative.

A. Supplementary Material

A.1. Evaluation in PSB/COSEG

The labeling accuracy of our method (ShapePFCN), Shape-
Boost [26] and Guo et al. [13] per category is presented in
Table 5. Aggragate performance is shown in Table 6. The
labeling accuracy for a shape is measured as the percentage
of surface area labeled correctly according to the ground-
truth face labeling provided in the L-PSB [26] and COSEG
[50] datasets.

A.2. ShapeBoost results on RGB-D sensor data

We applied ShapeBoost on the same objects used in Figure
4 of our paper. The method failed to produce compelling
results - see Figure 5 below, and compare with the results of
our method shown in Figure 4 of our paper. We suspect that
the underlying reason for these failure cases of ShapeBoost
(and in general methods that rely on hand-engineered geo-
metric descriptors) is that noise, holes, and mesh degenera-
cies easily distort geometric descriptors. Another potential
reason is that shallow classifiers tend to underfit datasets of
shapes with significant variability.

back

seat
leg

armrest

frame

wheel

handle

seat
tank

top
leg

Figure 5. Labeled segmentations produced by ShapeBoost on
noisy objects reconstructed from RGBD sensor data.

A.3. Additional data

We provide visualizations of segmentations pro-
duced by our method, ShapeBoost [26] and Guo
et al. [13] on our test shapes from ShapeNet-
Core, PSB and COSEG in our project page (see:
http://people.cs.umass.edu/kalo/papers/shapepfcn/). We
also provide a text file (splits.txt) that includes the training
and test splits we used in our experiments.

#train/test #part ShapeBoost Guo et al. ShapePFCNshapes labels
psbAirplane 12 / 8 5 96.1 91.6 93.0

psbAnt 12 / 8 5 98.7 97.6 98.6
psbArmadillo 12 / 8 11 92.6 85.0 92.8
psbBearing 12 / 8 5 92.2 77.4 92.3

psbBird 12 / 8 5 89.6 83.1 88.5
psbBust 12 / 8 8 63.4 34.8 68.4
psbChair 12 / 8 4 98.1 96.7 98.5
psbCup 12 / 8 2 94.0 92.1 93.8
psbFish 12 / 8 3 95.7 94.5 96.0

psbFourLeg 12 / 8 6 83.3 82.4 85.0
psbGlasses 12 / 8 3 96.9 95.3 96.6
psbHand 12 / 8 6 94.4 73.8 84.8

psbHuman 12 / 8 8 86.8 85.6 94.5
psbMech 12 / 8 5 99.5 98.5 98.7

psbOctopus 12 / 8 2 98.2 97.4 98.3
psbPlier 12 / 8 3 95.2 95.2 95.5
psbTable 12 / 8 2 99.4 98.5 99.5
psbTeddy 12 / 8 5 98.7 97.3 97.7
psbVase 12 / 8 5 81.7 77.8 86.8

cosegCandelabra 12 / 16 4 85.5 85.9 95.4
cosegChairs 12 / 8 3 94.8 93.8 96.1
cosegFourleg 12 / 8 5 92.3 88.2 90.4
cosegGoblets 6 / 6 3 97.0 86.1 97.2
cosegGuitars 12 / 32 3 97.7 97.7 98.0
cosegIrons 12 / 6 3 87.2 79.7 88.0

cosegLamps 12 / 8 3 76.3 78.0 93.0
cosegVases 12 / 16 4 86.4 84.4 84.8

cosegVasesLarge 12 / 288 4 89.7 80.1 90.6
cosegChairsLarge 12 / 388 3 76.5 80.8 91.1
cosegTeleAliens 12 / 188 4 81.7 80.0 95.7

Table 5. Dataset statistics and labeling accuracy per category for
test shapes in PSB & COSEG.

ShapeBoost Guo et al. ShapePFCN
Category Avg. 90.6 86.3 92.6

Category Avg. (>3 labels) 89.5 83.3 90.9
Dataset Avg. 84.2 82.1 92.2

Dataset Avg. (>3 labels) 87.2 81.0 92.1
Table 6. Aggregate labeling accuracy on PSB & COSEG.

References
[1] M. Blum, J. T. Springenberg, J. Wülfing, and M. Riedmiller.

A learned feature descriptor for object recognition in RGB-D
data. In Proc. ICRA, pages 1298–1303. IEEE, 2012. 2

[2] L. Bo, X. Ren, and D. Fox. Unsupervised feature learning for
RGB-D based object recognition. In Experimental Robotics,
pages 387–402. Springer, 2013. 2

[3] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan,
Q.-X. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
J. Xiao, L. Yi, and F. Yu. Shapenet: An information-rich 3d
model repository. arxiv abs/1512.03012, 2015. 8

[4] S. Chaudhuri, E. Kalogerakis, S. Giguere, , and
T. Funkhouser. AttribIt: Content creation with semantic at-
tributes. ACM UIST, 2013. 1

[5] S. Chaudhuri, E. Kalogerakis, L. Guibas, and V. Koltun.
Probabilistic reasoning for assembly-based 3D modeling.
Trans. Graph., 30(4), 2011. 1

[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Semantic image segmentation with deep con-
volutional nets and fully connected CRFs. In Proc. ICLR,
2015. 2

[7] X. Chen, A. Golovinskiy, and T. Funkhouser. A benchmark
for 3D mesh segmentation. Trans. Graph., 28(3), 2009. 6

[8] H.-P. Chiu, H. Liu, L. Kaelbling, and T. Lozano-Pérez.
Class-specific grasping of 3D objects from a single 2D im-
age. In IROS, 2010. 1

[9] S. Choi, Q.-Y. Zhou, S. Miller, and V. Koltun. A large dataset
of object scans. arXiv:1602.02481, 2016. 8

[10] M. Cimpoi, S. Maji, and A. Vedaldi. Deep filter banks for
texture recognition and segmentation. In Proc. CVPR, 2015.
2

[11] S. Fidler, S. Dickinson, and R. Urtasun. 3D object detec-
tion and viewpoint estimation with a deformable 3D cuboid
model. In Proc. NIPS, 2012. 1

[12] H. Fu, D. Cohen-Or, G. Dror, and A. Sheffer. Upright ori-
entation of man-made objects. ACM Trans. Graph., 27(3),
2008. 8

[13] K. Guo, D. Zou, and X. Chen. 3D mesh labeling via deep
convolutional neural networks. Trans. Graph., 35(1):3:1–
3:12, 2015. 3, 7, 9

[14] S. Gupta, P. Arbelaez, and J. Malik. Perceptual organization
and recognition of indoor scenes from RGB-D images. In
Proc. CVPR, 2013. 2, 8

[15] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik. Learning
rich features from RGB-D images for object detection and
segmentation. In Proc. ECCV, 2014. 1, 2

[16] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simul-
taneous detection and segmentation. In Proc. ECCV, 2014.
2

[17] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-
columns for object segmentation and fine-grained localiza-
tion. In Proc. CVPR, 2015. 2

[18] C. Hazirbas, L. Ma, C. Domokos, and D. Cremers. Fusenet:
Incorporating depth into semantic segmentation via fusion-
based CNN architecture. In Proc. ACCV, 2016. 2

[19] R. Hu, L. Fan, and L. Liu. Co-segmentation of 3D shapes via
subspace clustering. Comp. Graph. For., 31(5):1703–1713,
2012. 3

[20] H. Huang, E. Kalogerakis, and B. Marlin. Analysis and syn-
thesis of 3D shape families via deep-learned generative mod-
els of surfaces. Computer Graphics Forum, 34(5), 2015. 3

[21] H. Huang, E. Kalogerakis, E. Yumer, and R. Měch. Shape
synthesis from sketches via procedural models and convolu-
tional networks. TVCG, 22(10):1, 2016. 1

[22] Q. Huang, V. Koltun, and L. Guibas. Joint shape segmenta-
tion with linear programming. Trans. Graph., 30(6):125:1–
125:12, 2011. 3

[23] Q. Huang, F. Wang, and L. Guibas. Functional map networks
for analyzing and exploring large shape collections. Trans.
Graph., 33(4):36:1–36:11, 2014. 3

[24] Q. Huang, H. Wang, and V. Koltun. Single-view reconstruc-
tion via joint analysis of image and shape collections. Trans.
Graph., 34(4), 2015. 1

[25] E. Kalogerakis, S. Chaudhuri, D. Koller, and V. Koltun. A
probabilistic model for component-based shape synthesis.
Trans. Graph., 31(4):55, 2012. 1

[26] E. Kalogerakis, A. Hertzmann, and K. Singh. Learn-
ing 3D mesh segmentation and labeling. Trans. Graph.,
29(4):102:1–102:12, 2010. 3, 6, 7, 9

[27] V. G. Kim, W. Li, N. J. Mitra, S. Chaudhuri, S. DiVerdi,
and T. Funkhouser. Learning part-based templates from large
collections of 3D shapes. Trans. Graph., 32(4):70:1–70:12,
2013. 3

[28] D. Koller and N. Friedman. Probabilistic Graphical Models:
Principles and Techniques. The MIT Press, 2009. 5

[29] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchi-
cal multi-view RGB-D object dataset. In Proc. ICRA, pages
1817–1824. IEEE, 2011. 2

[30] J. J. Lim, A. Khosla, and A. Torralba. FPM: Fine pose parts-
based model with 3D cad models. In Proc. ECCV, 2014.
1

[31] G. Lin, C. Shen, I. Reid, et al. Efficient piecewise training
of deep structured models for semantic segmentation. arXiv
preprint arXiv:1504.01013, 2015. 2

[32] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In Proc. CVPR, pages
3431–3440, 2015. 2

[33] Z. Lun, E. Kalogerakis, R. Wang, and A. Sheffer. Function-
ality preserving shape style transfer. Trans. Graph., 2016.
1

[34] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich. Feed-
forward semantic segmentation with zoom-out features. In
Proc. CVPR, 2015. 2

[35] H. Noh, S. Hong, and B. Han. Learning deconvolution net-
work for semantic segmentation. In Proc. ICCV, 2015. 2

[36] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Multi-view
and 3D deformable part models. PAMI, 37(11):14, 2015. 1

[37] B. T. Phong. Illumination for computer generated pictures.
Comm. ACM, 18(6), 1975. 3

[38] C. R. Qi, H. Su, M. Niessner, A. Dai, M. Yan, and L. J.
Guibas. Volumetric and multi-view CNNs for object classi-
fication on 3D data. In Proc. CVPR, 2016. 1, 2, 3

[39] D. J. Rezende, S. M. A. Eslami, S. Mohamed, P. Battaglia,
M. Jaderberg, and N. Heess. Unsupervised learning of 3D
structure from images. In NIPS, 2016. 2

[40] R. B. Rusu. Semantic 3D Object Maps for Everyday Robot
Manipulation. Springer, 2013. 1

[41] L. Shapira, S. Shalom, A. Shamir, D. Cohen-Or, and
H. Zhang. Contextual part analogies in 3D objects. IJCV,
89(2-3):309–326, 2010. 3

[42] J. Shotton, A. Fitzgibbon, A. Blake, A. Kipman, M. Finoc-
chio, R. Moore, and T. Sharp. Real-time human pose recog-
nition in parts from a single depth image. In Proc. CVPR,
2011. 1, 2

[43] O. Sidi, O. van Kaick, Y. Kleiman, H. Zhang, and D. Cohen-
Or. Unsupervised co-segmentation of a set of shapes
via descriptor-space spectral clustering. Trans. Graph.,
30(6):126:1–126:10, 2011. 3

[44] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In Proc. ICLR,
2015. 4

[45] S. Song, S. P. Lichtenberg, and J. Xiao. SUN RGB-D:
A RGB-D scene understanding benchmark suite. In Proc.
CVPR, 2015. 2

[46] S. Song and J. Xiao. Deep sliding shapes for amodal
3D object detection in RGB-D images. arXiv preprint
arXiv:1511.02300, 2015. 1

[47] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-
view convolutional neural networks for 3D shape recogni-
tion. In Proc. ICCV, 2015. 1, 2, 3, 7

[48] O. van Kaick, A. Tagliasacchi, O. Sidi, H. Zhang, D. Cohen-
Or, L. Wolf, and G. Hamarneh. Prior knowledge for part
correspondence. Comp. Graph. For., 30(2):553–562, 2011.
3

[49] L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fergus. Reg-
ularization of neural networks using DropConnect. In Proc.
ICML, 2013. 5

[50] Y. Wang, S. Asafi, O. van Kaick, H. Zhang, D. Cohen-Or,
and B. Chen. Active co-analysis of a set of shapes. Trans.
Graph., 31(6):165:1–165:10, 2012. 3, 6, 9

[51] Y. Wang, M. Gong, T. Wang, D. Cohen-Or, H. Zhang, and
B. Chen. Projective analysis for 3D shape segmentation.
Trans. Graph., 32(6):192:1–192:12, 2013. 3

[52] Z. Xie, K. Xu, W. Shan, L. Liu, Y. Xiong, and H. Huang. Pro-
jective feature learning for 3D shapes with multi-view depth
images. Comp. Graph. For., 34(7):1–11, 2015. 3

[53] K. Xu, V. G. Kim, Q. Huang, and E. Kalogerakis. Data-
driven shape analysis and processing. Comp. Graph. For.,
2016. 3, 7

[54] T. Xue, J. Liu, and X. Tang. Example-based 3D object re-
construction from line drawings. In Proc. CVPR, 2012. 1

[55] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee. Perspec-
tive transformer nets: Learning single-view 3D object recon-
struction without 3D supervision. In NIPS, 2016. 2

[56] L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su,
C. Lu, Q. Huang, A. Sheffer, and L. Guibas. A scalable ac-
tive framework for region annotation in 3D shape collections.
Trans. Graph., in press, 2016. 6, 7

[57] F. Yu and V. Koltun. Multi-scale context aggregation by di-
lated convolutions. In Proc. ICLR, 2016. 2, 4, 5

[58] M. E. Yumer, W. Chun, and A. Makadia. Co-segmentation of
textured 3D shapes with sparse annotations. In Proc. CVPR,
2014. 3

[59] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,
Z. Su, D. Du, C. Huang, and P. H. Torr. Conditional random
fields as recurrent neural networks. In Proc. ICCV, 2015. 2

[60] T. Zhou, P. Krähenbühl, M. Aubry, Q. Huang, and A. A.
Efros. Learning dense correspondence via 3D-guided cycle
consistency. In Proc. CVPR, 2016. 1

