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Abstract

In this paper we propose a neural message passing ap-
proach to augment an input 3D indoor scene with new ob-
jects matching their surroundings. Given an input, poten-
tially incomplete, 3D scene and a query location (Figure
1), our method predicts a probability distribution over ob-
ject types that fit well in that location. Our distribution
is predicted though passing learned messages in a dense
graph whose nodes represent objects in the input scene and
edges represent spatial and structural relationships. By
weighting messages through an attention mechanism, our
method learns to focus on the most relevant surrounding
scene context to predict new scene objects. We found that
our method significantly outperforms state-of-the-art ap-
proaches in terms of correctly predicting objects missing in
a scene based on our experiments in the SUNCG dataset.
We also demonstrate other applications of our method, in-
cluding context-based 3D object recognition and iterative
scene generation.

1. Introduction
With the increasing number of 3D models and scenes

becoming available in online repositories, the need for ef-
fectively answering object queries in 3D scenes has become
greater than ever. A common type of scene queries is to
predict plausible object types that match well the surround-
ing context of an input 3D scene. For example, as shown
in Figure 1, given a query location close to a TV stand and
a room corner, a likely choice for an object to be added in
that location can be a speaker, or less likely a plant.

We designed a neural message passing method to pre-
dict a probability distribution over object types given query
locations in the scene. Our predicted distributions can be
used in various vision and graphics tasks. First, our method
can enhance 3D object recognition in scenes by taking into
account the scene context (Figure 2). Second, it can also be
used to automatically populate 3D scenes with more objects
by evaluating our probability distribution at different loca-
tions in the scene (Figure 3). Another related application is
to provide object type recommendations to designers while
interactively modeling a 3D scenes.
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Figure 1. SceneGraphNet captures relationships between objects
in an input 3D scene through iterative message passing in a dense
graph to make object type predictions at query locations.

Our method models the scene as a graph, where nodes
represent existing objects and edges represent various spa-
tial and structural relationships between them, such as sup-
porting, surrounding, adjacency, and object co-occurrence
relationships. The edges are not limited only to neighbor-
ing objects, but can also capture long-range dependencies
in the scene e.g., the choice of a sofa in one side of a room
can influence the selection of other sofas, chairs, or tables in
the opposite side of the room to maintain a plausible object
set and arrangement.

Our method is inspired by graph neural network ap-
proaches that learn message passing in graphs [1, 6, 7] to
infer node representations and interactions between them.
Our method learns message passing to aggregate the sur-
rounding scene context from different objects. It addresses
a number of challenges in this setting. First, scene objects
may have multiple types of relationships between them e.g.,
a nightstand can be adjacent to a bed, while at the same
time it is placed symmetrically wrt to another nightstand
surrounding the bed from both sides. We found that object
relationships are more effectively captured through neural
network modules specialized for each type of relationship.
In addition, we found that predictions are more plausible,
when we model not only local or strictly hierarchical object
relationships, but also long-range relationships captured in a
dense graph. Since we do not know a priori which relation-
ships are most important for predicting objects at query lo-
cations, we designed an attention mechanism to weigh dif-
ferent messages i.e., we find which edges are more impor-
tant for making object predictions. Finally, we found that
aggregating messages from multiple objects are better han-
dled with memory-enabled units (GRUs) rather than other
simpler schemes, such as summation or max-pooling.
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Figure 2. Context-based object recognition. Left: Object recogni-
tion using a multi-view CNN [20] without considering the scene
context. Right: Improved recognition by fusing the multi-view
CNN and SceneGraphNet predictions based on scene context.
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Figure 3. Iterative scene synthesis. Given an incomplete scene,
our method is used to populate it progressively with more objects
at their most likely locations predicted from SceneGraphNet.

We tested our method against several alternatives in a
large dataset based on SUNCG. We evaluated how accu-
rately different methods predict object types that are in-
tentionally left out from SUNCG scenes. Our method im-
proves prediction of missing object types by a large mar-
gin of 16% (51% → 67%) compared to the previous best
method adopted for this task. Our contribution is two-fold:
• a new graph neural network architecture to model

short- and long-range relationships between objects in
3D indoor scenes.
• an iterative message passing scheme, reinforced with

an attention mechanism, to perform object-related pre-
diction tasks in scenes, including spatial query an-
swering, context-based object recognition, and itera-
tive scene synthesis.

2. Related Work
Our work is related to learning methods for synthesizing

indoor 3D scenes by predicting new objects to place in them
either unconditionally or conditioned on some input, such
as spatial queries. Our work is also related to graph neural
networks and neural message passing.

Indoor scene synthesis. Early work in 3D scene model-
ing employed hand-engineered kernels and graph walks to
retrieve objects from a database of 3D models that are com-
patible with the surrounding context of an input scene [3, 5].
Alternatively, Bayesian Networks have been proposed to
synthesize arrangements of 3D objects by modeling object
co-occurence and placement statistics [4]. Other probabilis-
tic graphical models have also been used to model pairwise
compatibilities between objects to synthesize scenes given
input sketches of scenes [24] or RGBD data [2, 10]. These

earlier methods were mostly limited to small scenes. Their
generalization ability was limited due to the coarse scene
relationships, shape representations, and statistics captured
in their shallow or hand-engineered statistical models.

With the availability of large scene datasets such as
SUNCG [19], more sophisticated learning methods have
been proposed. Henderson et al. [9] proposed a Dirichlet
process mixture model to model higher-order relationships
of objects in terms of co-occurences and relative displace-
ments. More related to our approach are deep networks pro-
posed for scene synthesis and augmentation. Wang et al.
[22, 15] use image-based CNNs to encode top-down views
of input scenes, then decode them towards object category
and location predictions. In a concurrent work, Zhang et al.
[25] use a Variational Auto-Encoder coupled with a Gener-
ative Adversarial Network to generate scenes represented in
a matrix where each column represents an object with loca-
tion and geometry attributes. Most relevant to our work is
GRAINS [12], a recursive auto-encoder network that gen-
erates scenes represented as tree-structured scene graphs,
where internal nodes represent groupings of objects accord-
ing to various relationships (e.g., surrounding, supporting),
and leaves represent object categories and sizes. GRAINS
directly encodes only local dependencies between objects of
the same group in its tree-structured architecture. The tree
representing the scene is created through hand-engineered
heuristic grouping operations. Concurrently to our work,
Wang et al. [21] proposed a graph neural network for scene
synthesis. The edges in the graph represent spatial and se-
mantic relationships of objects, however, they are pruned
through heuristics. Our method instead models scenes as
dense graphs capturing both short- and long-range depen-
dencies between objects. Instead of hand-engineering pri-
orities for object relationships, our methods learns to attend
the most relevant relationships to augment a scene.

Graph Neural Networks. A significant number of meth-
ods has been proposed to model graphs as neural networks
[16, 8, 7, 17, 13, 6, 1, 18]. Our method is mostly related
to approaches that perform message passing along edges to
update node representations through neural network opera-
tions [1, 6, 7]. In our graph network, nodes are connected
with multiple edges allowing the exchange of information
over multiple structural relationships across objects, and we
also use an attention mechanism that weigh the most rele-
vant messages for scene object predictions. We also adapt
the graph structure, node representations, message ordering
and aggregation in the particular setting of 3D indoor scene
modeling.

3. Method

The input to our method is a set of 3D models of objects
arranged in a scene s. We assume that the current objects in



Figure 4. An example of the graph structure used for neural message passing in SceneGraphNet for a bedroom scene. Left: an input 3D
scene. Middle: graph structure and object relationships we modeled (some relationships, e.g. dense “co-occurrence” and “next-to” ones,
are skipped for clarity). Right: messages received by the object “desk” from other nodes in the graph for all different types of relationships.

the scene are labeled based on their types (e.g., sofa, table,
and so on). Given a query location p in the scene (Figure 1),
the output of our method is a probability distribution over
different object types, or categories, P (C|p, s) expressing
how likely is for objects from each of these categories to
fit well in this location and match the scene context. The
probability distribution can be used in various ways, such
as simply selecting an object from a category with the high-
est probability to be placed in the query location for scene
augmentation tasks, or presenting a list of object type rec-
ommendations to a designer ordered by their probability for
interactive scene modeling tasks. Alternatively, for object
recognition tasks our distribution can be combined with a
posterior that attempts to predict the object category based
only on individual shape data.

To determine the target probability distribution, our
method first creates a graph whose nodes represent objects
in the scene and edges represent different types of rela-
tionships between objects (Figure 4). Information flows in
this graph by iteratively passing learned messages between
nodes connected through edges. We note that the graph we
use for message passing should not be confused with scene
graphs (often in the form of trees) used in graphics file for-
mats for representing objects in scenes based on hierarchi-
cal transformations. Our scene graph representation has a
much richer structure and is not limited to a tree.

In the following sections, we explain message passing
(Section 3.1), different strategies for designing the graph
structure (Section 3.2), the target distribution prediction
(Section 3.3), and applications (Section 3.4).

3.1. Message passing

Figure 5 illustrates our message passing and underlying
neural architecture. Each node i in our scene graph rep-
resents a 3D object. The node internally carries a vecto-
rial representation hi encoding information about both the
shape and also its scene context based on the messages it

receives from other nodes. The messages are used to update
the node representations so that these reflect the scene con-
text captured in these messages. New messages are emit-
ted from nodes, which result in more information exchange
about scene context. In this manner, the message passing
procedure runs iteratively. In the following paragraphs, we
describe the steps of this message passing procedure.

Initialization. Each node representation is initialized
based on the shape representation xi at the node:

h
(0)
i = finit(xi;winit) (1)

where finit is a two-layer MLP with learnable parame-
ters winit outputting a 100-dimensional node representa-
tion (details are provided in the supplementary material). In
our implementation, the shape representation is formed by
the concatenation of three vectors xi = [ci,pi,di] where
ci is a one-hot vector representing its category, pi ∈ R3 is
its centroid 3D position in the scene, di ∈ R3 is its scale
(its oriented bounding box lengths).

Messages. A message from a node k to node i encodes
an exchange of information, or interaction, between their
corresponding shapes. The message carries information
based on the corresponding node representations h

(t)
i and

h
(t)
k and also depends on the type of relationship r between

the two nodes (e.g., a different message is computed for a
“surrounding” relationship or for a “supporting” relation-
ship). We discuss different types of relationships in Section
3.2. At step t the message m

(r,t)
k→i from node k to another

node i is computed as:

m
(r,t)
k→i = f (r)msg(h

(t)
k ,h

(t)
i ;w(r)

msg) (2)

where f (r)msg is a two-layer MLP with learnable parameters
w

(r)
msg (weights are different per relationship r) outputting a

100-dimensional message representation.
Weights on messages. Some messages might be more

important, or more relevant for prediction, than others.
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Figure 5. Overview of our message passing and underlying neural network architecture. We take the example in Figure 4 to illustrate a
single message passing iteration.

Thus, we implemented a form of attention mechanism for
messages. During message passing, each message m

(r,t)
k→i is

scaled (multiplied) with a scalar weight ak,i computed as
follows:

ak,i = fatt(xk,xi;watt) (3)

where fatt is a two-layer MLP followed by a sigmoid layer
with learnable parameters watt. Note that the attention
weights are computed from the raw shape representations.
We practically found that this strategy had more stable be-
havior (better convergence) compared to updating them us-
ing both the shape and latent representations. Furthermore,
weights that are almost 0 imply that the interaction between
two nodes is negligible. This can be used in turn to dis-
card edges and accelerate message passing at test time with-
out sacrificing performance. Note also that the shape rep-
resentations include positions of objects, thus weights are
expected to correlate with object distances.

Message aggregation. Messages are aggregated
through GRU modules learned for each type of relationship.
Specifically, for each node i, we pass a sequence of mes-
sages {m(r,t)

k→i}k∈N (i) coming from all the different nodes
k ∈ N (i) connected to it through a series of GRU units
(whereN (i) represents the set of nodes emitting to node i).
Each GRU unit receives as input a message from an emit-
ting node k and the previous GRU unit in the sequence, and
produces an aggregated message g

(r,t)
i,j (j = 1, ..., |N(i)| is

an index for each GRU unit) as follows:

g
(r,t)
i,j = f

(r)
GRU (g

(r,t)
i,j−1, ak,i ·m

(r,t)
k→i;w

(r)
GRU ) (4)

where w
(r)
GRU are learnable GRU parameters per type of

relationship r. The last GRU unit in the sequence pro-
duces the final aggregated message, denoted simply as g(r,t)

i

(dropping the last index j = |N (i)| in the GRU sequence
for clarity). We note that the first GRU unit in the sequence
receives an all-zero message. The order of messages also
matters, as generally observed in recurrent networks. In our
implementation, the messages from emitting nodes to the
node i are ordered according to the Euclidean distance of
their corresponding object centroid to the centroid of the
object represented at node i (from furthest to closest).

Node representation update. Finally, for each node i,
its latent representation is updated to reflect the transmitted
context captured in all messages sent to it across all differ-
ent types of relationships. Specifically, the aggregated mes-
sages g

(r,t)
i from all relationship types are concatenated,

and its latent representation is updated as follows:

h
(t+1)
i = fupd(h

(t)
i , Concat({gr,t

i }r∈R);wupd) (5)

where fupd is a two-layer MLP with learnable weights
wupd, and R is the set of relationships that we discuss in
the following section.

3.2. Graph structure and Object Relationships

A crucial component in our method is the underlying
graph structure used for message passing. One obvious
strategy is to connect each node (object) in a scene with
neighboring nodes (objects) based e.g., on Euclidean dis-
tance between them. However, we found that connecting
the graph via simple neighboring relationships resulted in
poor object prediction performance for a number of reasons.
First, it is hard to define a global distance threshold or single
number of nearest neighbors that work well for all different
scenes. Second, and most importantly, such “neighboring”
relationships are coarse and often ambiguous. For exam-
ple, a pillow and a nightstand are both “nearby” a bed, yet



their structural and spatial relationships wrt the bed can be
quite different i.e., the pillow is “on top of” the bed, while a
nightstand is “adjacent” or “next to” the bed. We found that
representing more fine-grained relationships in the graph
significantly increases the prediction performance of our
method. We also found that forming dense graphs captur-
ing long-range interactions between scene objects was bet-
ter than using sparse graphs or constraining them to be tree-
structured, as discussed in our results section. Below we
discuss the different types of relationships we used to form
connections between nodes for message passing.

“Supporting” relationship. A node i is connected to a
node k via a directed edge of this relationship if the object
represented by node i supports, or is “on top of”, the object
at node k. The relationship can be detected by examining
the bounding boxes of the two objects (details are provided
in the supplementary material).

“Supported-by” relationship. This is the opposite rela-
tionship to the previous one i.e., a node i is connected to a
node k via an edge of this relationship if the object at node
i is supported by node k. Note that a “supporting” relation-
ship i → k implies a “supported-by’ relationship k → i.
Yet, we use different weights for these relationships i.e., the
node i sends a message to k learned through a MLP whose
weights are different from the MLP used to infer the mes-
sage from k to i. Using such assymetric messages improved
performance compared to using symmetric ones, since in
this manner we capture the directionality of this relation-
ship. Having exclusively “supporting” relationships (and
not vice versa) also resulted in lower performance.

“Surrounding” relationship. If there is a set of objects
surrounding another object i.e., the set has objects of same
size whose bounding boxes are placed under a reflective or
rotational symmetry around a central object, then all these
objects are connected to the central object via directed edges
of the “surrounding” relationship type (details are provided
in the supplementary material).

“Surrounded-by” relationship. This is the opposite re-
lationship to the previous one. A central object is con-
nected to the objects surrounding it via directed edges of
‘surrounded-by” relationship type.

‘Next-to” relationship. Two nodes i and k are connected
via an undirected edge of “next-to” relationship type if the
node i is adjacent to node k and lie on the same underlying
supporting surface. Note that in contrast to the previous re-
lationships, this is a symmetric relationship, thus messages
are inferred by the same MLP in both directions.

“Co-occuring” relationship. Two nodes i and k are con-
nected via an undirected edge of “co-occuring” relationship
type if their objects co-exist in the same scene. This type
of relationship obviously results in a fully connected graph.

As discussed earlier in the introduction, the selection of ob-
jects to place in a location may be strongly influenced by
other objects further away from that location. We found
that capturing such long-range, “object co-occurence” inter-
actions, in combination with our attention mechanism that
learns to weigh them, improved the prediction performance
of our method, even if this happens at the expense of more
computation time. We note that edges can be dynamically
discarded during message passing by examining the atten-
tion weights in the graph, thus accelerating the execution at
test time. For scenes containing 50-100 objects, message
passing in our graph takes a few seconds at test time.

Figure 4 illustrates our scene graph structure with all the
different types of relationships for a toy scene example. We
note that in all our training and test scenes, there is a “floor”
node and “wall” nodes, since these objects are also con-
stituent parts of indoor scenes and are useful for making
predictions (i.e., when we want to predict an object hanging
on the wall).

3.3. Prediction

Given a query location in a form of a point p in the scene,
we form a special “empty” node m in our graph represent-
ing the “missing object” to predict. The node is initialized
to an all-zero shape category and size representation vector,
and 3D position set to the p. We connect it to other nodes in
the graph based on the relationships discussed in the previ-
ous section (including our directed relationships which can
be inferred by examining the relative position of the query
point wrt other objects in the scene). This special node
along with its edges form our final scene graph s based on
the input scene and query.

We then execute message passing in our graph. The
node representations are updated at each time step syn-
chronously (i.e., all messages are computed before they are
sent to other nodes), including the representation h

(t)
m of our

special node. Message passing is executed up to t = T
time steps (practically T = 3 iterations in our implemen-
tation). Then the representation in our special node is de-
coded through a two-layer MLP and a softmax to predict
our target probability distribution:

P (c|p, s) = fpred(h
(T )
m ;wpred) (6)

where fpred represents the MLP and wpred its learnable pa-
rameters. For interactive modeling tasks, we also found use-
ful to predict the size dm of the object to place in the scene.
This is done through one more MLP regressing to object
size from the learned node representation.

Training. All the MLPs in our network, including the
GRU modules, are trained jointly. To train our graph net-
work, given a training scene, we remove a random object
from it (excluding “walls” and “floor”). Our training aims
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Figure 6. Prediction of most likely object categories to add in
the scene and associated placement distributions. Left: An in-
put scene. Middle: the top-two most plausible categories to add
in the scene (sofa and chair) along with the evaluated placement
probability at each scene location. Right: Resulting scene with a
sofa and chair placed at the most likely location.

to predict correctly the category of the removed object. This
means that we place a query in its location, and execute our
message passing interactive procedure. Based on the pre-
dicted distribution for the corresponding empty node, we
form a categorical cross entropy loss for the missing ob-
ject’s category. To train the MLP regressing to the object
size, we additionally use the L2 loss between the ground-
truth size and the predicted one.

Implementation details. Training is done through the
Adam optimizer [11] with learning rate 0.001, beta coef-
ficients are (0.9, 0.999) and weight decay is set to 10−5.
The batch size is set to 350 scenes. The model converges
around 8K iterations for our largest room dataset. We pick
the best model and hyper-parameters based on hold-out val-
idation performance. Our implementation is in Pytorch
and is provided at: https://github.com/yzhou359/

3DIndoor-SceneGraphNet .

3.4. Applications
Object recognition in scenes. Objects in 3D scenes may
not be always tagged based on their category. One approach
to automatically recognize 3D objects is to process them in-
dividually through standard 3D shape processing architec-
tures operating on a volumetric (e.g. [23]), multi-view (e.g.,
[20]), or point-based representations (e.g., [14]). However,
such approaches are not perfect and are susceptible to mis-
takes, especially if there are objects whose shapes are sim-
ilar across different categories. To improve object recogni-
tion in scenes, we can also use the contextual predictions
from SceneGraphNet. Specifically, given a posterior distri-
bution P (C|o) for an object extracted by one of the above
3D deep architectures given its raw shape representation o
(voxels, multi-view images, or points), and our posterior
distribution extracted from the node at the location of the

object P (C|p, s), we can simply take the product of these
two distributions and re-normalize. In our experiments,
we used a popular multi-view architecture [20], and found
that the resulting distribution yields better predictions com-
pared to using multi-view object predictions alone. Figure
2 demonstrates a characteristic example.

Incremental scene synthesis. Our posterior distribution
is conditioned at a query location to evaluate the fitness of
an object category at that location. We can use our dis-
tribution to incrementally synthesize a scene by evaluating
P (C|p, s) over a grid of query locations p in the scene (e.g.,
a 2D regular grid of locations on the floor, or the surface of
a randomly picked object in a scene, such as desk), pick-
ing the location and object category that maximizes the dis-
tribution, then retrieving a 3D model from a database that
matches the predicted size at the location (we note that we
assume a uniform prior distribution over locations here).
Figure 6 shows examples of the most likely object predic-
tion and the evaluated probability distribution for placement
across the scene. Figure 3 shows an example of iterative
scene synthesis. Although some user supervision is eventu-
ally required to tune placement, specify object orientation,
and stop the iterative procedure, we believe that our method
may still provide helpful guidance for 3D scene design.

4. Results and Evaluation
We evaluated our method both qualitatively and quanti-

tavely. Below we discuss our dataset, evaluation metrics,
comparisons with alternatives, and our ablation study.

Dataset. Following [22], we experimented with four
room types (6K bedrooms, 4K living rooms, 3K bathrooms,
and 2K offices) from the SUNCG dataset. The number
of object categories varies from 31 to 51. Dataset statis-
tics are presented in the supplementary material. To ensure
fair comparisons with other methods [12, 22] that assume
rectangular rooms with four walls as input, we excluded
SUNCG rooms that do not have this layout (we note that our
method does not have this limitation). All methods were
trained for each of the four room types separately. We used
a random split of 80% of scenes for training, 10% for hold-
out validation, 10% for testing (the same splits and hyper-
parameter tuning procedure were used to train all methods).

Evaluation metrics. For the task of scene augmentation
conditioned on a 3D query point location, we used the
following procedure for evaluation. Given a test SUNCG
scene, we randomly remove one of the objects (excluding
floor and walls). Then given a query location set to cen-
troid of this object, we compute the object category pre-
diction distributions from all competing methods discussed
below. First, we measure the classification accuracy i.e.,
whether the most likely object category prediction produced

https://github.com/yzhou359/3DIndoor-SceneGraphNet
https://github.com/yzhou359/3DIndoor-SceneGraphNet


by a method agrees with the ground-truth category of the
removed object. We also evaluate top-K classification ac-
curacy, which measures whether the ground-truth category
is included in the K most probable predictions produced by
a method. The reason for using the top-K accuracy is that
some objects from one category (e.g., a laptop on a desk)
can be replaced with objects from another category (e.g., a
book) in a scene without sacrificing the scene plausibility.
Thus, if a method predicts book as the most likely category,
then laptop, the top-K accuracy (K>1) would be unaffected.
We also evaluate the accuracy of predictions for object size.
Objects are annotated with physical size in SUNCG, thus
we report the error in terms of centimeters (cm) averaged in
all three dimensions across all test queries.

Comparisons. We compare with two state-of-the-art
methods for scene synthesis: GRAINS [12] and Wang et
al.’s view-based convolutional prior [22]. Wang et al. [22]
trains a CNN module that takes as input a top-down view of
a scene and outputs object category predictions conditioned
on a 2D location in that view. To compare with Wang et al.
[22], we project our input 3D query location onto the corre-
sponding 2D location in the top-down view of the scene. We
use their publicly available code to train their module. To
compare with GRAINS [12], we first encode the input scene
as a tree based on its heuristics (again, we use their publicly
available code). For a fair comparison (i.e., provide same
input information to GRAINS as in our method), we also
include an “empty” node representing the query, connect-
ing it to rest of the tree based on the same procedure as ours.
The node has the same all-zero category and size represen-
tation as in our method, and its 3D position is set according
to the query position expressed relatively to its sibling in
the tree (GRAINS encodes relative positions of objects rel-
ative to sibling nodes). The tree is processed through their
recursive network, then decoded it to the same tree with
the goal to predict the category of the “empty” node. To
train GRAINS, we used the same loss as our method. The
same dataset and splits were used for all methods. We note
that GRAINs has 5M learnable parameters, Wang et al. has
42M , while SceneGraphNet has much fewer (1.5M ).

Results. Table 1 shows the top-K accuracy averaged over
the whole dataset across all room types for all different
methods (K = 1, 3, 5). Our method outperforms the two
other competing methods with a significant margin ranging
from 10.2% for top-5 accuracy to 16.4% for top-1 accuracy.
In the supplementary material, we include detailed evalua-
tion for each room type. Figure 8 shows the top-3 accuracy
per each room type binned according to the total number of
objects in the input scene. We observe that the performance
gap between our method and others tends to increase for
larger scenes with more objects. Figure 7 shows the most
likely predicted categories for SceneGraphNet, GRAINS
[12], and Wang et al. [22] for two input scenes and queries.

Method Average
Top1 Top3 Top5

GRAINs[12] 44.2 63.9 73.6
Wang et al. [22] 50.9 70.7 79.3

SGNet-tree 61.1 79.7 87.0
SGNet-sparse 60.0 78.6 86.5

SGNet-co-occur 56.5 75.4 83.3
SGNet-sum 57.7 77.6 85.1
SGNet-max 63.1 81.5 87.3

SGNet-vanilla-rnn 64.8 82.3 88.5
SGNet-no-attention 60.3 79.1 85.8
SGNet-dist-weights 63.8 81.6 87.9

SceneGraphNet (full model) 67.3 83.8 89.5
Table 1. Top-K accuracy for our scene augmentation task for
different methods and variants of SceneGraphNet.

In terms of object size, we compare our method with
GRAINS, since GRAINS is also able to predict the oriented
bounding box size of the object to add in the scene. We
found that GRAINS has 38cm average error in size predic-
tion, while our method results in much lower error: 26cm.

Ablation Study. We also evaluated our method against
several other degraded variants of it based on the same
dataset and classification evaluation metrics (Table 1). We
tested the following variants. SGNet-tree: we build the
scene graph using only supporting, supported-by, surround-
ing, and surrounded-by relationships such that the result-
ing graph has guaranteed tree structure (we break cycles,
if any, by prioritizing supporting relationships). SGNet-
sparse builds the graph with all the relationships except for
the dense “co-occurring” ones, resulting in a sparse graph
structure. SGNet-co-occur: we build a fully connected
graph with only the “co-occurring” relationships between
edges. SGNet-sum uses the full graph structure, yet ag-
gregates messages using a summation over their represen-
tations instead of a GRU module. SGNet-max instead ag-
gregates messages using max-pooling over their represen-
tations. SGNet-vanilla-rnn instead aggregates messages
using a vanilla RNN. SGNet-no-attention uses the full
graph structure, yet does not use the weighting mechanism
on messages (all messages have same weight). SGNet-
dist-weights instead computes weights on messages by set-
ting them according to Euclidean distance between nodes

(weights are set as αk,i = c · exp−
||dk,i||

b , where dk,i is the
Euclidean distance between object centroids k and i, c and
b are parameters set through hold-out validation). We found
that our method outperforms all these degraded variants.

Performance wrt iteration number. After completing
the first iteration of message passing, the top-5 accuracy is
72.7%. In the second iteration, it increases to 88.2%, and
in the third one, the performance arrives at 89.5%. The per-
formance oscillates around 89% after the third iteration.
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Figure 7. Comparison of object category predictions for two 3D scenes and query positions (red points) across different methods. Given
the input scenes and queries (left), we show the predicted category distributions and rendered scenes with objects added from the most
likely predicted category per each method.

Method Bed Living Bath Office Avg
MVCNN 69.6 55.8 43.4 67.8 59.2

MVCNN+ Ours 79.9 74.7 56.4 73.0 72.2

Table 2. Object recognition accuracy using MVCNN alone [20]
and using the MVCNN together with our ShapeNetGraph poste-
rior evaluated for the objects in our test scenes.

Object recognition in 3D scenes. For each object in our
scene dataset, we use a MVCNN [20] to predict its ob-
ject category P (C|o) given its multi-view representation
o. Then we multiply this predicted distribution with the
context-aware predicted posterior P (C|p, s) from Scene-
GraphNet. Table 2 shows the average classification ac-
curacy for object recognition with and without combining
the SceneGraphNet’s posterior with the MVCNN one. Our
method significantly improves the accuracy in this context-
based object recognition task by 13%.
Timings. It takes 30 hours to train our network in our
largest room dataset (bedrooms) with 5K training scenes
measured on a GeForce 1080Ti GPU. At test time, given
an average-sized scene with 40 objects, our method takes
around 0.58 sec to infer the distribution given the query.

5. Discussion
We presented a neural message passing method that op-

erates on a dense scene graph representation of a 3D scene
to perform scene augmentation and context-based object
recognition. There are several avenues for future work. Our
method is currently limited to predicting object categories

Room size: number of objects in a single room
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Figure 8. Average top-3 classification accuracy for rooms binned
according to number of objects they contain.

at a given location. It could be extended to instead generate
objects and whole scenes from scratch. Our message pass-
ing update scheme is not guaranteed to converge, nor we
forced it to be a contraction map. Oscillations can happen
as in other message passing algorithms e.g., loopy belief
propagation. Training and testing with the same number of
iterations helps preventing unstable behavior. It would be
fruitful to investigate modifications that would result in any
theoretical convergence guarantees. Enriching the set of re-
lationships in our scene graph representation could also help
improving the performance. Another limitation is that our
method currently uses the coarse-grained labels provided in
SUNCG, as other methods did. Fine-grained and hierarchi-
cal classification are also interesting future directions.
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Supplementary Materials

Neural network details. The initialization MLP finit
takes as input a (C + 6)-dimensional raw object represen-
tation vector, where C is the number of object categories,
and the rest 6 dimensions represent the object’s 3D position
p ∈ R3 and scale d ∈ R3. It processes the input with a
hidden layer of 300 units, then ReLUs, and another hidden
layer of 300 units followed by ReLUs. It outputs a 100-
dimensional node representation.

The message MLP frmsg takes as input two concatenated
100-dimensional node representations. It processes the in-
put with a hidden layer of 300 units, then ReLUs, and an-
other hidden layer of 300 units followed by ReLUs. It out-
puts a 100-dimensional message representation.

The attention network fatt takes as input two concate-
nated raw object representations (input 2C + 12 dimen-
sions). It processes the input with a hidden layer of 300
units, then ReLUs, and another hidden layer of 300 units
followed by a sigmoid activation. The output is a single
scalar weight between 0 and 1.

The aggregation network fGRU processes 100-
dimensional message representations at each step. Its
internal memory and output is 100-dimensional.

The update network fupd operates on the node represen-
tation concatenated with the aggregated messages from six
relationships (700−dimensional input). It processes the in-
put with a hidden layer of 300 units, then ReLUs, and an-
other hidden layer of 300 units followed by ReLUs. It out-
puts a 100-dimensional updated node representation.

The prediction MLP processes the input 100-
dimensional node representation through a hidden layer of
300 units, then ReLUs, and another hidden layer of 300
units followed by a softmax activation to output object
category probabilities. We also use a MLP with the same
structure to regress to object size. The output of the last
hidden layer for this MLP is linearly transformed to object
size.

Details on relationship extraction. The “supporting” re-
lationship between two objects (i, j) is calculated by check-
ing if the bottom of the object i’s bounding box is higher and
also within a short range of distance (set as 0.05 meters to
prevent placement errors) compared to the top surface of the
object j’s bounding box. The “surrounding” relationship
is calculated by finding whether objects (k1, k2, ...) form a
symmetry wrt the central object (using a threshold differ-
ence of 0.2 meters). In addition, the surrounding objects
should have similar sizes (they qualify as similar if their
bounding boxes differ less than a factor 1.2x when com-
pared to each other).
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Figure 10. Top-K accuracy of object category prediction for dif-
ferent Ks.

Dataset details. Following Wang et al. [20], the experi-
ments are performed on the SUNCG dataset with four room
types: bedroom, living room, bathroom and office. We have
51 object categories in bedrooms, 31 in bathrooms, 51 in
living rooms, and 42 in offices. We also count the number
of objects in each room per room type. Figure 9 shows a
histogram over number of objects inside a room per each
room type. We note that we will publish the splits and im-
plementation upon acceptance.

Detailed results per room type. Table 3 shows the top-
K accuracy of category prediction for all different methods
and our degraded variants per each room type (K = 1, 3, 5)
separately. Based on Figure 9 and Table 3, we can see that
for bathrooms that have low number of objects (78% of
them has less than 20 objects), our method has 8.4% higher
prediction accuracy than Wang et al. [20] in terms of top-1
accuracy, while for living rooms that contain more objects
(only 15% of them has less than 20 objects), ours signifi-
cantly outperforms Wang et al. [20] by a margin of 21.0%
in terms of top-1 accuracy.



Method
Bedroom Living room Bathroom Office

Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5 Top1 Top3 Top5
GRAINS [12] 45.1 63.4 72.2 43.7 64.3 73.7 42.4 63.4 75.1 45.6 64.5 73.5

Wang et al. [20] 48.9 69.8 79.5 46.6 61.1 69.0 61.4 82.8 89.7 46.6 69.0 78.8
SGNet-tree 60.0 78.1 85.4 63.7 80.7 87.2 61.3 83.4 90.4 59.6 76.5 84.9

SGNet-sparse 59.3 77.7 84.8 62.4 79.7 86.5 60.5 82.6 90.4 57.9 74.5 84.1
SGNet-co-occur 57.6 76.1 83.4 41.1 62.8 72.7 67.7 86.8 92.3 59.4 75.7 84.7

SGNet-sum 57.3 76.2 83.6 59.0 77.9 84.1 55.5 79.7 88.2 59.0 76.8 84.4
SGNet-max 63.1 79.6 86.1 61.1 79.3 85.3 67.7 88.2 92.9 60.3 78.9 85.0

SGNet-vanilla-rnn 64.3 81.3 87.8 65.0 81.1 87.3 67.6 86.5 92.0 62.3 80.4 86.8
SGNet-no-attention 60.2 77.6 83.8 62.2 79.8 86.4 61.6 82.1 89.7 57.1 76.8 83.6
SGNet-dist-weights 61.8 79.3 86.8 63.6 81.2 87.4 67.0 86.6 92.3 62.7 79.3 85.3

SceneGraphNet (full model) 66.8 82.9 88.6 67.6 83.8 89.6 69.8 88.6 93.5 64.8 79.9 86.5

Table 3. Top-K accuracy for category prediction for each room type.

Performance for different top-K accuracy. Figure 10
shows the top-K accuracy of object category prediction
over different Ks (K = 1, 2, ..., 10) for competing meth-
ods.


