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Fig. 1. We present a neural network for discovering articulated parts of objects. Given a point set representing a 3D CAD model (A) and other functionally
similar objects in the form of a scan, 3D mesh or RGB image (B), our network (C) can co-segment the input objects into their articulated parts and parse their
underlying motion (D). The learned articulation can further be used for automatically animating the input CAD model (E).

Object functionality is often expressed through part articulation – as when
the two rigid parts of a scissor pivot against each other to perform the
cutting function. Such articulations are often similar across objects within
the same functional category. In this paper we explore how the observation of
different articulation states provides evidence for part structure and motion
of 3D objects. Our method takes as input a pair of unsegmented shapes
representing two different articulation states of two functionally related
objects, and induces their common parts along with their underlying rigid
motion. This is a challenging setting, as we assume no prior shape structure,
no prior shape category information, no consistent shape orientation, the
articulation states may belong to objects of different geometry, plus we allow
inputs to be noisy and partial scans, or point clouds lifted from RGB images.
Our method learns a neural network architecture with three modules that
respectively propose correspondences, estimate 3D deformation flows, and
perform segmentation. To achieve optimal performance, our architecture
alternates between correspondence, deformation flow, and segmentation
prediction iteratively in an ICP-like fashion. Our results demonstrate that
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our method significantly outperforms state-of-the-art techniques in the task
of discovering articulated parts of objects. In addition, our part induction is
object-class agnostic and successfully generalizes to new and unseen objects.
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1 INTRODUCTION
Our everyday living environments are largely populated with dy-
namic and articulated objects, which we can interact with through
their moving parts e.g., swivel chairs, laptops, bikes, tools, to name a
few. In order for autonomous agents to correctly interact with such
objects, the agents need to be equipped with algorithms that are
able to parse these objects into their functional parts and motion.
Decomposing 3D shape representations into their moving parts is
also important for several graphics, vision, and robotic applications,
such as predicting object functionality, human-object interactions,
guiding shape edits, animation, and reconstruction.
Recently, with the availability of large 3D datasets and the use

of deep learning techniques, significant progress has been made in
the task of supervised part segmentation. Given a large volume of
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3D shapes with part segmentation annotations, we can train deep
neural networks to reliably segment new shapes from the same ob-
ject category. Although progress in supervised part segmentation is
impressive, contemporary algorithms are still far inferior to humans
when it comes to parsing 3D shapes from novel object categories,
and also to discovering new functional parts whose types are not
covered in the training sets. Being able to parse 3D objects into
functional parts not seen before is fundamentally crucial towards
building intelligent agents that must understand the object func-
tionality, so as to have physical interactions with them, simulate
such interactions, assist humans in augmented reality scenarios or
autonomous robotics settings. Ideally, as new objects continuously
emerge, an agent should possess the ability to induce their structures
from the few observations and limited interaction experience.

In this work, we are interested in discovering 3D object structure
according to the mobility of their underlying parts. Articulation can
be a crucial clue in part structure determination, as it invariably
involves motion of one part against others. We also aim to induce
part structure from observations of different articulation states of
an object in noisy settings e.g., 3D partial scans, or even when the
articulation state observations originate from geometrically differ-
ent, yet functionally related, objects. Take Figure 1 as an example:
by observing different scissors under various opening angles, we
expect to induce that a scissor is made of two thin blades that can
rotate around a pivot.
Mobility-based shape parsing brings a novel angle to the part

determination problem. Among different principles for finding parts
of objects (e.g., Gestalt theory [Palmer 1977]), the mobility-based
principle provides an unambiguous decomposition. Besides, mobility
based parsing of an object can facilitate its functional understanding
– man-made objects are designed to function or interact with other
objects (including humans) in ways realized by particular moving
structures. As in the previous example, a scissor is designed with
two pivoting blades to enable cutting. Recently, there have been
increasing efforts devoted to obtaining a functional understanding
of 3D objects from a motion perspective [Hu et al. 2017; Pirk et al.
2017]. The recent work of [Hu et al. 2017] to infer part mobility
types such as rotation and translation is particularly relevant to our
effort, with the difference that they use a pre-segmentation of the
object – something we do not assume.
Though seemingly trivial for humans, automatic part induction

from observations of articulation states of objects is challenging for
a number of reasons. First, the input objects can differ considerably
in both geometry and pose. Second, the articulation differences must
be aggregated into coherently moving parts with clean boundaries.
Third, in the case of scans, part induction must be robust to both
noise and missing data.

We designed a deep neural network-based system to address the
problem, encouraged by its robustness to data variation in various
2D and 3D data understanding tasks. However, unlike previous su-
pervised methods, we do not assume any prior knowledge of the
input shape class or object structure (e.g., part labels, or pre-defined
components). The design of our neural network is motivated by
the following observations: (a) Establishing local correspondences
between the input shapes requires much less global and high-level
information compared with semantic understanding tasks such

as classification and segmentation, thus a learned correspondence
module is potentially much more transferrable to novel categories.
Based on the predicted correspondences, strong cues can be ob-
tained to infer a deformation flow field, capturing the differences in
the articulation states of the two input shapes, (b) However, local
correspondences are often ambiguous and fuzzy due to shape sym-
metries, noise in scans, and geometric differences between the input
shapes, thus one needs to incorporate global shape information to
robustly translate correspondence cues into deformation flow. (c)
Articulated parts can then be discovered by aggregating the defor-
mation flow into rigid part motions. Following these observations,
we designed a neural network that operates in three stages: (a) It
learns to extract discriminative local features and propose possible
correspondences between the input shape pair, (b) learns to disam-
biguate correspondence confusion caused by symmetries, noise, and
geometric differences by integrating global shape information to
predict deformation flow, and finally, (c) learns to group points into
parts from the predicted flow, leveraging a part rigidity assump-
tion. These three stages are executed by neural network modules
trained from a massive synthetic training dataset of articulated
shapes within a multi-task learning framework.
The three modules can also be executed iteratively to reinforce

each other. This iterative procedure is akin to ICP approaches or
RANSAC-based algorithms [Fischler and Bolles 1981] that iterate
between model fitting and geometric verification to discover primi-
tives out of clean and same instance pairs. However, our learning
based algorithm enjoys much stronger robustness to input data vari-
ation and corruption, which allows us to do induction from different
instances that may have limited overlap, and avoids the tedious and
error-prone tuning of sensitive hyper-parameters.
We performed extensive qualitative and quantitative evaluation

on both synthetic and real datasets. We also conducted ablation stud-
ies to confirm the utility of all the above mentioned network stages.
As we demonstrate in the results, previous methods largely fail to
obtain satisfactory results even for objects with a single Degree of
Freedom (DoF) in their joints, while our network successfully parses
objects with either one or several DoFs. Overall, results demonstrate
that our network dramatically outperforms existing state-of-the-art
methods.

In summary, this paper introduces a new deep learning method to
parse 3D objects into moving parts based only on input static shape
snapshots without any prior knowledge of the input object class or
structure (part labels, or pre-existing components). Specifically, our
method makes the following key contributions:

(1) Introduces a learning framework for mobility-based part seg-
mentation from articulated object pairs that generalizes to
novel object categories.

(2) Provides three new neural network modules: (a) a module
for robust dense correspondence estimation between shapes
with large geometric and articulation differences, with the
additional capability of partial shape matching through a cor-
respondence mask that handles structural shape differences
and missing data, (b) a module, called PairNet, capable of
inferring pairwise relationships, such as deformation flow,
between two input shapes, and finally (c) a module for shape
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segmentation by generating hypotheses of rigid motions from
deformation flow and sequentially extracting parts whose mo-
tion is consistent with these hypotheses. This new module
implements a differential, neural-based RANSAC procedure,
which can be useful in other applications requiring structure
discovery from noisy observed data.

(3) Demonstrates a neural net-based mutual reinforcement pro-
cedure iterating between correspondence, flow, and part esti-
mation.

2 PRIOR WORK
Our work is primarily related to 3D shape segmentation approaches
that aim to extract rigidly moving parts from 3D meshes, point
clouds or RGBD sequences. Our architecture extracts matching
probabilities between points on 3D shapes at an intermediate stage,
thus it is also related to learning-based 3D shape correspondence
approaches. We briefly overview these approaches here.

Rigid part extraction. Given an input sequence of meshes, point
clouds, or RGBD data representing an underlying articulated 3D
object under continuously changing poses, various approaches have
been proposed to detect and extract its rigidly moving parts. In
contrast to all these approaches, we do not assume that we are given
a continuous, ordered sequence of 3D object poses. In addition, our
method can infer the rigidly moving parts of the input 3D object
by matching it to other geometrically different shapes available
in online repositories, or partial scans. Thus, our setting is more
general compared to previous rigid part extraction methods, yet we
briefly overview them here for completeness.
In the case of RGBD sequences, early works attempt to esti-

mate the 3D motion field (scene flow) between consecutive frames
[Christoph et al. 2015; Hornacek et al. 2014; Quiroga et al. 2014; Vogel
et al. 2014]. To recover parts, super segments can be extracted and
grouped according to their estimated rigid transformations from the
motion field [Golyani et al. 2017]. Alternatively, patches or points
lifted from the RGBD frames can be clustered into segments based
on their overall flow similarity across frames using Expectation-
Maximization or coordinate descent formulations [Jaimez et al. 2015;
Stückler and Behnke 2015]. Parts can also be extracted from 3D
point flows through direct clustering on point trajectories [Pillai
et al. 2014; Tzionas and Gall 2016a]. More similarly to our approach,
the concurrent learning method by Shao et al. [2018] trains a joint
flow estimation and segmentation network for motion-based part
detection in objects. However, their approach mainly relies on RGB
color to compute flow, and cannot handle complex structures or
large articulation differences, as discussed in our results section.
In a similar spirit, in the case of raw 3D point cloud sequences,

given established point-wise correspondences between consecutive
point sets aligned through ICP, the point trajectories can be grouped
through clustering and graph cut techniques [Kim et al. 2016; Yuan
et al. 2016a]. Alternatively, joints with their associated transforma-
tions can be fitted according to these trajectories based on consensus
voting techniques, such as RANSAC [Li et al. 2016]. Another set of
methods attempts to fit pre-defined skeletons or templates to the
input sequences using non-rigid registration techniques (see [Chang
et al. 2012] for a survey), random forest regressors and classifiers

[Shotton et al. 2013], or more recently through neural networks
[Bogo et al. 2016; Mehta et al. 2017; Newell et al. 2016; Tomè et al.
2017; Toshev and Szegedy 2014]. However, these methods are spe-
cific to particular classes of objects, predominantly human bodies.
Finally, in the case of deforming meshes with explicit vertices and
triangle correspondences, mean shift clustering on rotation repre-
sentations can be used to recover the rigid parts of the deforming
shape [James and Twigg 2005].

The above approaches decouple shape correspondences and part
extraction in separate steps, which often contain several hand-tuned
parameters. Our method instead computes point correspondences
and part segmentations in a single deep-learned architecture trained
from a massive dataset of shapes.

Shape segmentation. A widely adopted approach in 3D shape seg-
mentation is to train a classifier that labels points, faces, or patches
based on an input training dataset of shapes with annotated parts
(see [Xu et al. 2016] for a recent survey). More recent supervised
learning approaches employ deep neural net architectures operating
on multiple views [Kalogerakis et al. 2017], volumetric grids [Mat-
urana and Scherer 2015], spatial data structures (kd-trees, octrees)
[Klokov and Lempitsky 2017; Riegler et al. 2017; Wang et al. 2017],
point sets [Qi et al. 2017a,b; Su et al. 2018], surface embeddings
[Maron et al. 2017], or graph-based representations of shapes [Yi
et al. 2017]. These methods can only extract parts whose labels have
been observed in the training set, and cannot discover new parts.

Our work is more related to co-segmentation and joint segmenta-
tion approaches that aim to discover common parts in an input set
of 3D shapes without any explicit tags. To discover common parts,
geometric descriptors can be extracted per point or patch on the
input 3D shapes, or geometric distances can be computed between
candidate shape segmentation, then clustering can reveal common
parts of shapes [Hu et al. 2012; Sidi et al. 2011; van Kaick et al. 2013].
However, the resulting clusters cannot be guaranteed to correspond
to common functional parts. Our architecture is instead optimized
to segment shapes under the assumption that functional parts in
articulated objects predominantly undergo rigid motions, which is
often the case for several man-made objects.
Alternatively, a family of approaches builds point-wise corre-

spondences or functional maps between shapes [Golovinskiy and
Funkhouser 2009; Huang et al. 2014, 2008; Kim et al. 2013], then
employ an optimization approach that attempts to find parts that
maximize geometric part similarity, or additionally satisfy cyclic
consistency constraints. These methods largely depend on the qual-
ity of the initial correspondences and maps, while part similarity
often relies on hand-engineered geometric descriptors. When input
shape parts undergo large rigid transformations, their optimization
approach can easily get stuck in unsatisfactory minima. Our ap-
proach instead learns to jointly extract shape correspondence and
parts even in cases of large motions. Our experiments demonstrate
significantly better results than co-segmentation approaches.

Shape correspondences. Since our architecture extracts point-wise
correspondence probabilities as an intermediate stage, our work
is also related to learning-based methods for 3D shape correspon-
dences. In the context of deformable human bodies, deep learning
architectures operating on intrinsic representations [Boscaini et al.
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2015; Masci et al. 2015; Monti et al. 2017] have demonstrated ex-
cellent results. However, these methods cannot handle 3D shapes
with largely different topology or structure, due to the instability
of their spectral domain. Volumetric, view-based and point-based
neural networks have been proposed to learn point-based descrip-
tors for correspondences between structurally and geometrically
different shapes [Huang et al. 2017; Qi et al. 2017b; Zeng et al. 2017].
Given shape correspondences extracted by these methods, one could
attempt to recover rigid parts using RANSAC or Hough voting tech-
niques [Li et al. 2016;Mitra et al. 2006] in a separate step. However, as
we demonstrate in our results section, decoupling correspondences
and part extraction yields significantly worse results compared to
our architecture.

3 OVERVIEW
Our method co-segments input 3D shapes into rigidly moving parts
through a deep architecture shown in Figure 1(C). Its modular design
is motivated by the observation that estimating correspondences
and deformation flows between shapes can provide cues for ex-
tracting rigidly moving parts, and in turn, the extracted piece-wise
rigid motions can further improve the shape correspondences and
deformation flows.

Neural network design. In contrast to prior rigid part extraction
and traditional ICP approaches, our shape correspondences are not
based on closest points and hand-engineered geometric descriptors
but instead are extracted through a learned neural network module.
This module, which we refer to as correspondence proposal module,
is trained to map the input shape pair geometry into probabilistic
point-wise correspondences (Figure 2). The module can handle large
differences in both geometry and articulations in the input shapes as
well as missing data and noise in the case of input 3D scans. Shape
correspondences can provide strong cues for deformation flows and
rigidly moving parts, but in general are not enough alone to reliably
extract those. The reason is that correspondences are often ambigu-
ous and fuzzy due to shape symmetries, missing parts and noise
in scans, geometric and structural differences between the input
shapes. Thus, our network incorporates another learned module,
which we refer to as flow module, that learns to robustly translate
the extracted fuzzy correspondences into a deformation flow field
(Figure 3). The module is based on a new type of network, called
PairNet, designed to extract pairwise relationships between point
sets. To discover the underlying shape structure, the deformation
flows are aggregated into piecewise rigid motions that reveal the
underlying shape parts. Instead of using hand-engineered voting or
clustering strategies, the deformation flows are aggregated through
a third, learned neural network module, called the segmentation
module (Figure 4). Since the number and motion of parts are not
known a priori, the module first extracts rigid motion hypotheses
from the deformation flows, discovers their support over the shape
(i.e, groups points that tend to follow the same underlying motion),
then sequentially extracts rigidly moving parts based on their sup-
port until no other parts can be discovered. The module is based
on a new recurrent net-based architecture, called Recurrent Part
Extraction Network, designed to handle sequential part discovery.

Iterative execution. Inspired by ICP approaches which alternate
between estimating shape correspondences and alignment, our ar-
chitecture iteratively executes the correspondence, deformation
flow, and segmentation modules in a closed loop. Establishing cor-
respondences provides cues for predicting deformation flow, the
deformation flow helps extracting rigid parts, and in turn rigid parts
helps improving shape correspondences and deformation flow. The
loop is executed until the best possible alignment is achieved i.e.,
the total magnitude of the deformation flow field is minimized. In
practice, we observed that this strategy converges and yields signif-
icantly better segmentations compared to executing the network
pipeline only once.

4 NETWORK ARCHITECTURE
Our network takes as input a pair of shapes {P ,Q} in the form of 3D
point sets. If either shape is in the form of a 3D mesh, we uniformly
sample its surface using N points (N = 512 in our implementation).
The only requirement for the input shape pair is that they should
represent functionally related objects with rigidly moving parts in
different articulation state. We do not make any assumptions on the
shape orientation, order of points in the point set representations,
number of underlying parts and DoFs. Next, we discuss the modules
of our architecture in detail.

4.1 Correspondence Proposal Module
The processing of the input shape pair {P ,Q} starts with the corre-
spondence proposal module visualized in Figure 2. Each shape in
the pair is processed through a PointNet++ branch that outputs a
64−dimensional feature representation for each point on the shape
(we refer to the supplementary material for details regarding the
PointNet++ structure). The two PointNet++ branches share their
parameters i.e., have identical MLP layers such that the input ge-
ometry is processed in a consistent manner independently of the
shape order in the pair. Then, for each pair of points across the
two shapes, our architecture concatenates their extracted feature
representation i.e., given the representation u(p)i for a point i on the
shape P , and the representation u(q)j for a point j on the other shape

Q , the resulting pair representation is ui j = {u(p)i , u
(q)
j }. Performing

this concatenation for all pairs of points (or in other words, using
the cartesian product of the point set representations of the two
shapes) yields a tensor of size NxNx2D (N = 512 is the number of
input points per shape, D = 64 in our implementation). Each pair
representation ui j is transformed through a Multi-Layer Perceptron
(MLP) (containing 128 nodes in each of its 3 hidden layers) into a
confidence value ci, j that expresses how likely the point pi matches,
or corresponds to point qj . The confidence is further transformed
into a probability using the softmax function. Executing the same
MLP for all pairs of points and passing the resulting confidences
through softmax yields a pairwise matching probability matrix M
with size NxN that describes the probability of matching any pair
of points on the two shapes. The network is then trained to output
high probabilities for corresponding points in the training data.
Since there might be points on the first shape P that have no

correspondences to any other point on the second shape Q due
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Fig. 2. Correspondence proposal module. We use a PointNet++ based sub-module to extract point-wise features for the input point clouds. The learned
features are further fed into a matching sub-module for correspondence proposal. The sub-module also predicts a correspondence mask that determines
which points should be matched or not.

to missing data or structural differences, the correspondence pro-
posal module also outputs the probability for each point on the
first shape being matched or not. We refer to this output as cor-
respondence mask. Specifically, the confidences of each point on
the shape P , stored in the vector ci = ci,∗ (where ∗ means all other
points on the shape Q) are processed through a PointNet, that ag-
gregates confidences throughout the whole vector, to determine the
probability ci for matching the point i of shape P with any other
point on the shape Q . During training, the network also receives
supervisory signal for this output i.e., whether each training point
possesses a correspondence or not. We multiply each row of the
above pairwise matching probability matrixM with the estimated
probability of the corresponding point being matched, resulting in
the refined pairwise matching probability matrix M̂ as the output
of our correspondence proposal module.

4.2 Flow Module
The flow module, visualized in Figure 3, aims to produce a 3D de-
formation flow field f from the shape P to shape Q , which provides
cues for determining common shape parts along with their rigid
motions. One possibility would be to use the pairwise matching
probability matrix M̂ alone to infer this field. However, we found
that this is not sufficient, which is not surprising since the flow
should also depend on point positions as well i.e., if we rotate one
shape, the pairwise correspondence probabilities should remain the
same, yet the flow would change. Thus, we pass both point position
and correspondence information as input to the flow module.

Specifically, for each pair of points across the two shapes, we com-
pute their relative displacement, or disparity i.e., di j = x(q)j − x(p)i ,

where x(p)i is the position of point i from shape P , and x(q)j is the
position of point j from shape Q . Computing the all-pairs displace-
ment matrix yields a NxNx3 pairwise displacement matrix, where 3
corresponds to the xyz channels. The pairwise displacement matrix
is concatenated together with the refined matching probability ma-
trix M̂ along their 3rd dimension, forming a NxNx4 matrix passed
as input to the flow module.
The flow module first processes each row of the stacked matrix

through a PointNet (see supplementary material for architecture

details). The PointNet aggregates information from all possible dis-
placements and correspondences for each point on shape P . Note
here that the set, which PointNet aggregates on, is the set of points
from Q . The output of the PointNet is a representation of dimen-
sionality 256 that encodes this aggregated information per point.
Processing all points of shape P through the same PointNet, yields
a matrix of size Nx256 that stores all point representations of shape
P . This point set representation is then processed through a Point-
Net++ (see supplementary material for architecture details). The
PointNet++ hierarchically captures local dependencies in these point
representations (e.g., neighboring points are expected to have sim-
ilar flows), and outputs the predicted flow field f (Nx3) on shape
P . As explained in the next section, the module is trained to ex-
tract flow using supervisory signal containing the ground-truth 3D
flows for several possible shape orientations to ensure rotational
invariance.
We refer to the combination of the PointNet and PointNet++ as

PairNet. PairNet takes a pairwise matrix between two sets as input.
It first globally aggregates information along the second set through
the PointNet to extract a per-point representation for each point
in the first set. The point representations are then hierarchically
aggregated into a higher-level representation through a PointNet++,
to encode local dependencies in the first set.

Even facilitated by the power of neural networks, the deformation
flow estimation is still far from perfect (Figure 5). It is inherently
not well-defined due to geometric or structural differences across
shape pairs. As described in the next paragraph, learning plays a
key role to reliably extract parts from the estimated flow.

4.3 Segmentation Module
Given the estimated deformation field f from shape P to Q , the
segmentation module decodes it towards rigid motion modes as well
as the corresponding part segments between the two shapes (Figure
4). The design of the module is inspired by RANSAC approaches.
First, the module generates hypotheses of rigid motions, then for
each rigid motion it finds support regions on the shape (i.e., groups
of shape points that follow the same rigid motion hypothesis), and
finally extracts the rigid parts from the support regions one-by-one
starting from the most dominant ones i.e., the ones with largest
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Fig. 3. Flow Module. The refined matching probabilities are concatenated with the pairwise disparity and fed into the flow module. The flow module learns a
point-wise deformation flow from one point set to the other.

support. In contrast to traditional RANSAC approaches that employ
hand-engineered techniques with user-defined thresholds in each of
the stages (e.g., the target number of segments, inlier thresholds etc),
ourmodule implements them through learned neural network layers.
In this sense, this module can be considered as a neural network
based, differentiable sequential RANSAC procedure. Different from
[Brachmann et al. 2017], we learn to generate hypothesis efficiently
to avoid expensive sampling, plus we have a sequential hypothesis
selection step which allows decoding multiple modes from input
samples. In the next paragraphs, we explain this module in detail.

Hypothesis generation. The first stage of our segmentation mod-
ule is to generate hypotheses of candidate part motions from the
shape P towards corresponding parts of the shape Q . We here use a
PointNet++ (see supplementary material for architecture details), to
hierarchically aggregate the deformation flow f along with the point
positions of the shape P to generate rigid motion hypotheses. The
point positions are used as additional input to this stage along with
the flow, since knowing the flow field alone without knowing the
underlying geometry is not sufficient to determine a rigid motion.
The output of the PointNet++ is a hypothesis for a rigid motion
estimated per point i of the shape P . We experimented with various
rigid motion output parameterizations, including predicting directly
a 3x3 rotation matrix and a 3x1 translation vector, axis-angle and
quaternion parameterizations of rotations, and affine matrice out-
puts followed by SVD to extract their rotational component. We
found that the best performing rigid motion parameterization was
through a 3x3 matrix R̂i and a 3x1 vector t̂i , from which the rota-
tional component is computed as Ri = R̂i + I followed by an SVD to
project the matrix to the nearest orthogonal matrix, while the trans-
lational component is computed after applying the inferred rotation:
ti = −(Ri − I ) · x(p)i + fi + t̂i , where I is the identity transformation,
x(p)i is the ith point position and fi is the corresponding flow. We
suspect that this parameterization resulted in better rigid motion
and segmentation estimates due to the fact that the rotational and
translational components of a rigid motion are not independent of
each other and also because the elements of R̂i and t̂i have more
compatible scales. Thus, for computing rotations, we predict the
intermediate matrix R̂i which is equal to the zero matrix in case
of the identity transformation (i.e., a “residual” rotation matrix),
while the translation is predicted conditioned on the estimated ro-
tation (again, a “residual” translation vector). We found that these
residual representations are much easier to train and yield the best
performance in terms of rigid motion and segmentation estimation.

Support prediction. Following the rigid motion hypothesis gen-
eration stage, our segmentation module predicts a probability for
each point on the shape P to support, or in other words follow, each
generated rigid motion hypothesis. To predict this probability, the
segmentation module first examines how well each rigid motion hy-
pothesis explains the predicted flow per point. This can be examined
by applying the motion hypothesis to each point, computing the
resulting displacement, and then comparing it with the predicted
flow from our previous module. The displacement of a point i ′ after
applying the hypothesis i is computed as di,i′ = Rix

(p)
i′ + ti − x(p)i′ ,

and the difference between this displacement and predicted flow
is simply calculated as di,i′ − fi′ . Computing the flow difference
for each point i ′ and each motion hypothesis i yields a NxN pair-
wise flow difference matrix, where the rows correspond to rigid
motion hypotheses (same number as the number of points of P )
and columns corresponds to points. The module then aggregates
information from all flow differences per rigid motion hypothesis
to calculate its support. This is done through a PointNet operating
on each row of the flow difference matrix. The PointNet is trained
to output the probability of each point supporting a rigid motion
hypothesis based on the estimated flow difference. Computing these
probabilities for all available hypotheses yields aNxN matrix, which
we refer to as support matrix S. The rows of the matrix correspond
to candidate rigid motion hypotheses and columns correspond to
the per-point support probabilities.

Rigid part extraction. The last stage of the segmentation module is
to decode the support matrix into a set of rigid segments in a sequen-
tial manner. Decoding is performed through a recurrent net-based
architecture, that we refer to as Recurrent Part Extraction Network
(RPEN). The RPEN outputs one segment at each step and also decides
when to stop. It maintains a hidden state ht = (et , zt , st ), where
et represents an internal memory encoding the already segmented
regions so that subsequent steps decode the support matrix into
different segments, zt is a learned representation of the recurrent
unit input designed to modulate the support matrix such that al-
ready segmented regions are downplayed, and st denotes a learned
weight representing the importance of each hypothesis for segment
prediction.

At each step t , the recurrent unit transforms its input support ma-
trix S, as well as the memory et−1 from the previous time step, into
a compact representation zt through a PairNet (same combination
of PointNet and PointNet++ used in the flow module). Each row of
S is concatenated with et−1, forming a NxNx2 matrix, and is then
fed to the PairNet to generate zt with dimensionality Nx32. Then
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Fig. 4. Segmentation module. The predicted deformation flow on the first point set together with its point positions are fed into this module, which acts as a
neural net-based, differentiable sequential RANSAC . Similar to sequential RANSAC, the inputs are processed through three sub-modules including hypothesis
generation, verification and recurrent part extraction network, resulting in a set of soft segmentation indicator functions and part confidence scores.

the recurrent net decodes the representation zt into the following
two outputs through two different PointNets: (a) a continuation
score rt (a scalar value between 0 or 1) which indicates whether
the network should continue predicting a new segment or stop,
and (b) a Nx1 vector st representing how much weight the support
region of each hypothesis should be given to determine the output
segment of shape P at the step t . The soft segmentation assign-
ment variable yt is generated by computing the weighted average
of the corresponding hypothesis support probabilities, or mathemat-
ically yt = ST · st . At inference time, the per-point soft segment
assignments are converted into hard assignments through graph
cuts [Boykov et al. 2001]. The associated rigid motion is estimated
by fitting a rigid transformation to the deformation flow f on the
segment. By applying the fitted rigid transformation on the points
of the segmented part of shape P , we find the corresponding points
on shape Q using a nearest neighbor search, then execute the same
graph cuts procedure to further refine the corresponding segmented
part on Q .

At each step, the Recurrent net also updates the hidden internal
state ht . The hidden state is updated in the following way: zt =
fPairNet(S, et−1), st = д(zt ), et = (1− et−1) ⊙ (ST st )+ et−1, where
fPairNet(·) denotes the operation of PairNet, д(·) denotes a PointNet
operation and ⊙ denotes element-wise multiplication. Notice st in
the hidden state is directly outputted to determine the segment of
shape P . The segmentation module stops producing segments when
the continuation score falls below 0.5 (50% probability).

4.4 Iterative Segmentation and Motion Estimation
When there are large articulation differences between the two input
shapes or in the presence of noise and outliers in input scans, the
execution of a single forward pass through our architecture often
results in a noisy segmentation (Figure 5). In particular, an excessive
number of small parts is often detected, which should be grouped
instead into larger parts. We found that the main source of this
problem is the estimation of the flow field f , which tends to be noisy
in the above-mentioned conditions.

Inspired by ICP-like approaches, our method executes an iterative
procedure to refine the prediction of the flow field. Specifically,
given an initial estimated flow field f , along with rigid motions
{Ht } and segmented parts {Pt } of shape P based on a first forward
pass of the initial shape pair through our correspondence, flow, and

Point Set 1

Point Set 2

0.15

0

Segmentation

Deformation

Point Set 2

Point Set 1 Segmentation

Deformation
0.15

0

Iteration 1 Iteration 2 Iteration 5 Iteration 9

Fig. 5. Iterative refinement of deformation flow and segmentation. The
outputs usually converge after 5 iterations.

segmentation modules, we produce a new deformed version P ′ of
the original shape P . The deformed shape is produced by applying
the detected rigid motions on the associated parts of the original
shape i.e.,Ht ·Pt . Then we compute a new “residual” flow field f ′ by
passing the pair {P ′,Q} through the same correspondence and flow
module of our network. The “residual” flow field is added to the
piecewise rigid deformation field P ′ − P to compute a new refined
flow field i.e., P ′ − P + f ′. This refined flow field is subsequently
processed through our segmentation module to further update the
rigid motions {Ht } and segmented parts {Pt } of the original shape
P . The procedure can repeat till it converges or reaches a maximum
number of iterations (10 in our case).

Initialization. As in the case of ICP-like approaches, when the
orientation of the two shapes differs significantly e.g., their upright
or front-facing orientation is largely inconsistent, the algorithm
might converge to a suboptimal configuration. In this case, at an ini-
tialization stage, we search over several different 3D global rotations
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for one of the two shapes (in our implementation, 48 3D rotations,
uniformly sampled from SO(3)), and initialize our iterative proce-
dure from the one that yields the smallest flow magnitude according
to the flow module. The flow evaluation is fast: it takes about 10 ms
(measured on a TitanX GPU) to evaluate each candidate rotation,
thus in the case of inconsistent shape orientation for the input pair,
this initialization stage takes less than half of a second.

Results. The iterative version of our algorithm significantly im-
proves both the deformation flow between P and Q as well as the
segmentation of P , as demonstrated in the results section. We also
refer to Figure 5 for qualitative results.

5 TRAINING
Our network is trained on a large synthetic dataset consisting of
pairs of shapes with ground-truth annotations of corresponding
parts along with their rigid motions. In this section, we describe the
synthetic training dataset, multi-task objective function, then we
describe the training procedure.

5.1 Training Dataset
Our training dataset is based on semantic part annotations [Yi et al.
2016] of ShapeNetCore [Chang et al. 2015], which contains 16, 881
segmented man-made shapes in 16 categories. For each shape P
in this dataset, we generate 2 deformed versions of it by applying
rotations on randomly picked segments about random axes pass-
ing through the contact regions between adjacent parts, including
random translations along axes that are perpendicular to planar
approximations of contact regions under the constraint that the
resulting transformations keep the parts connected. We generate
one pair of shapes for each P , resulting in a total number of 16, 881
pairs, with 2 to 6 moving parts per pair. We set a ratio of 1 : 3 for
the percentage of translations versus rotations in our deformation.
For each pair of deformed shapes, we additionally generate 5 pairs
of synthetic scans from random viewpoints and we conduct farthest
point sampling on each synthetic scan, resulting 512 points per scan,
which are then normalized to have bounding box centered at (0, 0, 0)
and with a diagonal 1.
We refer the readers to the supplementary material for a list of

the categories and example visualizations of the training set. The
resulting shape pairs contain (a) ground-truth part correspondences,
(b) reference rigid motion per part, (c) ground-truth flow field from
one shape to the other, (d) point-wise correspondences of corre-
sponding parts since we know the underlying rigid motion that
maps the points of one part onto the other, and finally (e) a binary
flag for each point indicating whether it has correspondences with
any other point on the other shape or not.

5.2 Multi-task objective function
Given a training set T of shape pairs, the network is trained ac-
cording to a multi-task objective such that the predictions of each
module in our architecture agrees as much as possible with the
ground-truth annotations. Specifically, we minimize a loss L that
includes terms related to the correct prediction of point correspon-
dences along with existence of those (Lcorr ), flow field (Lf low ),

rigid motions (Lmotion ), and part segmentations (Lseд):

L =
∑

{P,Q }∈T

(
Lcorr (P ,Q) + Lf low (P ,Q) + (1)

Lmotion (P ,Q) + Lseд(P ,Q)
)

(2)

We discuss the above loss terms in the following paragraphs.

Correspondence loss. Given a setM of ground-truth pairs of cor-
responding points across a training shape pair {P ,Q}, and a set
N of points on shape P that do not match any point on shape Q ,
the correspondence loss penalizes outputs of the correspondence
module that are incompatible with the above sets. Specifically, the
correspondence loss is expressed as a weighted sum of two losses.
The first loss La penalizes low probabilities for matching point pairs
deemed as corresponding in the setM. The second loss Lb penalizes
low probabilities for matching a point that does not belong to the
set N and similarly low probabilities for not matching a point that
belongs to the setN . Since the matching of point pairs in our corre-
spondence module is posed as a multi-class classification problem,
La is formulated as a softmax classification loss. Since the decision
of whether a point on shape P has a correspondence is a binary
classification problem, Lb is expressed through binary cross-entropy.
Specifically, the correspondence loss is set as Lcorr = λaLa + λbLb ,
where:

La = −
∑

{p,q }∈M

log(so f tmax(cp,q ))

Lb = −
∑
p<N

log(siдmoid(cp )) −
∑
p∈N

log(1 − siдmoid(cp ))

and λa , λb are weights both set to 1 through hold-out validation.

Flow loss. Given the ground truth flow field f (дt )(P ,Q) and the
predicted field f(P ,Q) from our flow module for a training shape
pair {P ,Q}, the flow loss directly penalizes their difference using
the L2 norm: Lf low (P ,Q) = λc | |f (дt ) − f | |2, where λc is a weight
for this loss term again set to 1 through hold-out validation.

Rigid motion loss. The rigid motion loss penalizes discrepancies
between the ground-truth rotations and translations assigned to
points of rigid parts of the training shapes and the hypothesized
ones. We found that using a loss operating directly on the elements
of the rotational and translational component of the rigid motion
(e.g., Frobenius or L2 norm difference) resulted in poor performance
in terms of flow and segmentation prediction. The reason was that
it was hard to balance the weights between the two components i.e.,
often either the rotational or translational component dominated at
the expense of the other.

We instead found that significantly better performancewas achieved
when using a loss that compared the positions of points belong-
ing to the same underlying rigid part of shape P , after applying
the hypothesized rigid motion, with the positions of corresponding
points on shape Q . Specifically, for each pair of ground-truth corre-
sponding points in the setM for the training shape pair {P ,Q}, we
find all other pairs of corresponding points belonging to the same
underlying rigid part, and measure the L2 norm of the difference in
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the positions of points on shapeQ and position of the corresponding
points on shape P after applying each hypothesized rigid motion:

Lmotion = λd
∑

{p,q }∈M

∑
{p′,q′ }∈M

par t (p′)=par t (p)

| |q′ − (Rpp′ + tp )| |2

where λd is a weight for this loss term set to 1 through hold-out
validation, and part(p),part(p′) return the part that the points p,p′
belong to respectively i.e., in the above summation, we consider
pairs of {p,p′} belonging to the same rigidly moving part.

Segmentation loss. We designed the segmentation loss such that
supervisory signal is received on (a) the support prediction stage
of the segmentation module, which outputs the support matrix S
storing the probability of each point on a shape to follow the rigid
motion hypotheses generated from each other point on the shape, (b)
the recurrent net stage of the segmentation module, which outputs
the soft segmentation assignment variables yt and the continuation
score rt at each step t . We found that incorporating supervision
for both these stages of the segmentation module offered the best
performance. Specifically, the segmentation loss is a weighted sum
of three terms: Lseд = λeLe + λf Lf + λдLд , where Le is a loss term
that evaluates the predicted support matrix, Lf evaluates the as-
signments of the recurrent net segmentation variables, Lд evaluates
the recurrent net continuation scores, and λe , λf , λд are loss term
weights set to 0.5, 1, 1 respectively through hold-out validation.

The prediction of the support matrix S can be treated as a binary
classification problem: a point p on shape P either follows or not
the rigid motion hypothesis generated from another point p′ on the
same shape. Since we know whether {p′,p} fall onto the same rigid
part or not based on the ground-truth annotations, we can evaluate
the predicted support matrix through binary cross-entropy:

Ls = −
∑
p,p′:

par t (p)=par t (p′)

log(Sp,p′) −
∑
p,p′:

par t (p),par t (p′)

log(1 − Sp,p′)

where part(p),part(p′) return the rigid part the points p,p′ belong
to respectively.

Evaluating the output segmentation assignment variables of the
recurrent net is more challenging because the order of the output
segments does not necessarily match with the order of ground-truth
segments specified for the training shapes. To handle the uncer-
tainty in the order of the output segments, we use a loss function
inspired by Romera and Torr [2016]. Assuming that the shape P in
an input training pair has K annotated rigid segments, the segments
can be represented through binary indicator vectors {ŷk }k=1...K ,
where each vector ŷk stores a binary value per point indicating
whether it belongs to the segment with index k or not. The output
of our recurrent net is a soft indicator vector {yt }t=1...T , which
contains the probability of a point belonging to the output seg-
ment at step t (where T is the number of the executed RNN steps).
During training, we set the maximum number of RNN execution
steps as T = K + 2 i.e., we predict two extra segments compared
to ground-truth (we experimented with more steps, but did not
have any noticeable effect in performance). We use the Hungar-
ian algorithm [Kuhn 1955] to find a bipartite matching between

the ground-truth segment indicator vectors {ŷk } and predictions
{yt }, then employ a relaxed version of the Intersection over Union
(IoU) score [Krähenbühl and Koltun 2013] to evaluate the matched
pairs of segments. The relaxed IoU between a predicted segment
output yt and a matched ground-truth segment ŷk(t ) is defined

as: IoU (yt , ŷk(t )) =
<yt , ŷk (t )>

| |yt | |1+ | |ŷk (t ) | |1−<yt , ŷk (t )>
. Then the loss term

Lf is expressed as the negative of a sum of IoUs over K matched
segment pairs: Lf = −

∑
t=1...K

IoU (yt , ŷk (t ))

Finally, the loss term Lд evaluates the recurrent net continuation
scores, penalizing low continuation probability for the first K − 1
RNN execution steps, and high continuation probability after per-
forming K steps. The decision to continue producing segments can
be considered as a binary classification problem, thus the loss term
on continuation can be expressed through binary cross-entropy:
Lд =

∑
t<K

log(rt ) +
∑
t ≥K

log(1 − rt )

5.3 Training Procedure and Implementation Details
We minimize our loss function using the Adam variant of batch
gradient descent with a learning rate of 0.0001. To better balance
variant losses, we adopt a stage-wise training strategy. We first
optimize the correspondence proposal and flow module by mini-
mizing the sum of Lcorrs and Lf low for 100 epochs. Then we feed
the ground truth flow to the segmentation module and optimize the
hypothesis generation and verification submodule by minimizing
Lmotion and Le for 100 epochs. Finally we include all the loss terms
in the optimization and further train the whole pipeline in an end-
to-end manner for another 100 epochs with a learning rate decay
set to a factor of 0.001.

Hyper-parameter selection. Our architecture makes extensive use
of PointNet and PointNet++ networks. Their number and type of
layers were selected using the default architecture blocks provided
in [Qi et al. 2017a,b]. Regarding the layer hyper-parameters of our
architecture (grouping radius in PointNet++, dimensionality of in-
termediate feature representations, memory size in our RPEN), we
performed a grid search over different values in a hold-out valida-
tion set with ground-truth shape segmentations, and selected the
ones that offered the best performance in terms of IoU.

Implementation. Our method is implemented in Tensorflow. Our
source code, datasets and trained models are available in our project
page: https://github.com/ericyi/articulated-part-induction

6 EXPERIMENTS
In this section, we evaluate the quality of our approach and compare
it to state-of-the-art methods. We conducted experiments on both
synthetic and real datasets and demonstrate the performance of the
whole framework as well as each module component.

6.1 Test Dataset
Synthetic Dataset. We leveraged the annotated dataset in [Hu

et al. 2017], which contains articulated 3D CADmodels with ground
truth part segmentations and motion annotations, and generated
three synthetic datasets: 1) Point cloud pairs originating from two
different articulations of the same 3D CAD model (SF2F); 2) Point
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cloud pairs consisting of one full shape and one partial scan from the
same 3Dmodel but with different articulations(SF2P); 3) RGBD pairs
consisting of two partial views of the same object with different ar-
ticulations(SP2P). For each CAD model, we randomly transformed
its moving parts 10 times following the part segmentation and mo-
tion annotations in [Hu et al. 2017]. Then we randomly create 5
shape pairs by randomly selecting two different articulations of the
same model out of its 10 generated configurations. We also added
random perturbations to the global poses of the shapes. Then we
uniformly sample points from the full shapes or conduct virtual
scans from random viewpoints to generate partial point clouds using
rendering tools developed from [Hassner et al. 2015]. We normalize
the point sets so that their bounding boxes are centered at (0, 0, 0)
and have diagonals with length 1. We removed categories whose
part motions cannot be distinguished from sampled point clouds.
This could be due to either tiny parts (e.g., the button on a remote
control, which might not be sampled in the point cloud, or sampled
by less than 10 points), or due to rotational symmetries of a part
(a rotating bottle cap cannot be distinguished in the sampled point
clouds, because its rotations yield almost the same points). In total,
for each synthetic dataset, we constructed 875 pairs covering 175
shapes from 23 categories. We refer readers to the supplementary
material for a visualization of this test dataset, included a list of
object categories in it. Note that our synthetic dataset has only one
category overlapping with our training dataset (laptop). The rest of
the categories are particularly useful for testing the cross-category
generalization ability of all the different techniques included in our
evaluation.

Real Dataset. We also collected real data for evaluation under two
different settings. 1) Real scan pairs of the same object but with
different articulations(RP2P) 2) 3D pairs consisting of a full CAD
model downloaded online, and a partial scan captured from the real
world. In this case, the pair represents geometrically different objects
under different articulations (RF2P). For RP2P, we collected 231
scan pairs from 10 categories. We manually segmented the scans
into their moving parts. For RF2P we collected 150 pairs from
10 categories and also manually segmented the CAD models into
moving parts. The testing categories in all our test datasets are
different from the ones used for training. We also note that in this
setting, there is a potential domain shift in our testing since our
training data do not necessarily include realistic motion, as in the
case of real data.

6.2 Deformation Flow
We first evaluate our predicted deformation flow on two synthetic
datasets SF2F and SF2P (where ground-truth flow is available).

Methods. We test our method against various alternatives, includ-
ing both learning and non-learning approaches. Specifically, we
compare with three learning approaches including a 3D scene flow
estimation approach (3DFlow) [Liu et al. 2018], feature-based match-
ing with learned descriptors from a volumetric CNN (3DMatch)
[Zeng et al. 2017] and from a multi-view CNN (LMVCNN) [Huang
et al. 2017]. For all three approaches, we train the corresponding
networks from scratch using the same training data as ours. For

Table 1. EPE evaluation on dataset SF2F and SF2P for all competing meth-
ods. EPE measures the Euclidean distance between predicted flow and the
ground-truth flow. Smaller EPE means more accurate flow prediction.

Ours 3DFlow ED NRR 3DMatch LMVCNN
SF2F 0.0210 0.0536 0.0481 0.0394 0.0715 0.0582
SF2P 0.0422 0.0892 0.0805 0.0556 0.138 0.093

3DMatch and LMVCNN, we extracted point-wise descriptors with
the learned networks and estimated the flow by finding nearest
neighboring points in descriptor space. In addition, we also compare
with two non-learning approaches [Sumner et al. 2007] and [Huang
et al. 2008], which leveraged non-rigid deformation for deformation
flow estimation. We will refer to [Sumner et al. 2007] as ED and
refer to [Huang et al. 2008] as NRR in our baseline comparison.

Metrics. We use two popular measures to evaluate the flow pre-
dicted by all methods. First, we use End-Point-Error (EPE) as de-
fined in [Yan and Xiang 2016], which has been widely used for
optical flow and scene flow evaluation. To be specific, given a
ground truth flow field f (дt ) and a predicted flow field f , the EPE

is EEPE = 1
n

n∑
i=1

√
(fi − fдti )2. We also use the Percentage of Correct

Correspondences (PCC) curve as described in [Kim et al. 2011], where
the percentage of correspondences that are consistent with ground
truth under different prescribed distances is shown.

Results. We show the comparison of different approaches in Ta-
ble 1 in the case of the EPE metric. Our approach outperforms all
the baseline methods by a large margin. SF2F contains pairs of full
shapes from the same objects with different articulations while pairs
in SF2P include one full shape and one partial scan. Due to the large
missing data, the flow predictions of all approaches are less accu-
rate on SF2P compared with those on SF2F, but still, our approach
demonstrates more robustness and achieves the best performance.
We visualize the deformation flow predicted by various approaches

Point Set 1 Point Set 2

(a) (b) (c)

(d) (e) (f)

0.5

0

(a) (b) (c)

(d) (e) (f)

Point Set 1 Point Set 2

0.5

0

Fig. 6. Deformation flow visualization. We estimate a dense flow from the
point set 1 to point set 2 and apply the flow to deform the point set 1.
Deformation results are shown from (a) to (f): (a) Ours, (b) 3DFlow, (c) 3D
match, (d) LMVCNN, (e) ED, (f) NRR. Colors on the deformed point set
denote the flow error of each point, whose range is shown on the color bar
at the right side of each row.
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Fig. 7. Percent of correspondences which have Euclidean error smaller than
a threshold. The x-axis corresponds to different thresholds.

in Figure 6. Similar to us, 3DFlow leverages PointNet in their scene
flow estimation scheme. Their approach tends to have degraded per-
formance while dealing with large motion, especially large rotations,
which is a common scenario in part motions for man-made objects.
They do not leverage motion structure between two frames, such as
piecewise rigidity. In addition, they do not model missing data from
one point cloud to another, resulting in a much worse performance
on SF2P compared to our approach. 3DMatch and LMVCNN are
not very suitable for dense flow estimation as they suffer from ambi-
guities due to symmetry, cannot handle missing data well and lack
smoothness in their flow prediction. Deformation-based approaches
(ED, NRR) ignore the piece-wise rigidity property of objects and also
result in artifacts when the articulation difference in the input pair
is large, where a good set of initial correspondences becomes hard
to estimate. We also note that given large portions of missing data,
deformation-based approaches tend to generate largely unrealistic
deformations around missing shape regions. Compared to all the
above methods, our approach is able to parse the piecewise rigid
motion of the objects much more reliably. Due to the explicit mod-
eling of missing data, our approach avoids deforming the portion of
point set 1 which has no correspondences in point set 2, and instead
tends to generate the flow field via considering the other points on
the same rigid part.

Figure 7 shows the PCC curves of different approaches. We again
observe that our method outputs more accurate flow estimation
both in the local and global sense compared to other approaches.

6.3 Segmentation
We then evaluate our segmentation performance both on synthetic
datasets SF2F and SF2P and real datasets RF2F and RF2P.

Methods. To ensure a fair comparison, we compare our approach
with several other co-segmentation/motion segmentation baselines
using our deformation flow prediction. Since our segmentation mod-
ule can be regarded as a neural network-based version of sequential
RANSAC with learnable hypothesis generation, verification and se-
lection steps, we implemented a sequential RANSAC baseline, where
we repeat the following steps until a stopping criterion is met: (a)
figure out the largest rigid motion mode as well as its support in
the current point set from the deformation flow; (b) remove all the
supporting points from the discovered mode. We set the stopping
criterion to be either a maximum number of iterations has been met
(10 in our case), or the remaining points are less than 5% of the initial
point set. Once we discovered the dominant motion modes as well

Table 2. RI and IoU evalution on both synthetic and real datasets for all
competing methods. Numbers in each cell represent RI/IoU. Both RI and
IoU measure the segmentation consistency. Higher RI and higher IoU mean
better segmentation prediction.

SeqRANSAC SC JLC NRR Ours
SF2F 60.2/55.8 80.6/69.4 74.7/67.3 74.1/57.3 83.8/77.3
SF2P 48.2/37.6 67.0/55.6 66.2/58.2 72.7/53.9 75.6/66.6
RS2S 56.7/43.0 79.1/67.1 80.4/73.0 78.4/65.5 88.3/83.5
RF2S 58.7/44.2 71.9/53.6 72.7/58.4 72.8/54.7 87.6/81.8

as their associated supporting points, we assign labels to the rest of
the points according to their closest motion modes. In addition, we
also implemented several other baselines for comparison, including
a spectral clustering approach (SC) [Tzionas and Gall 2016b] and a
JLinkage clustering approach (JLC)[Yuan et al. 2016b]. The spectral
clustering approach leverages the fact that two points belonging
to the same rigid part should maintain their Euclidean distance as
well as the angular distance between their normals before and af-
ter deformation. The JLinkage clustering approach samples a large
number of motion hypotheses first and associates each data point
with a hypotheses set. The closeness among data points can be de-
fined based on the hypotheses sets and an iterative merging step is
adopted to generate the final segmentation. We also compare with
the simultaneous flow estimation and segmentation approach (NRR)
by Huang et al. [2008]. We found their segmentation results per-
forms better using their own flow prediction (yet, the segmentation
results are much worse than ours in any case). Therefore we report
their segmentation results based on their own flow prediction.

Metrics. We use two evaluation metrics: Rand Index (RI) used
in [Chen et al. 2009] and average per-part intersection over union
(IoU) used in [Yi et al. 2016]. Rand index is a similarity measurement
between two data clusterings. We use the implementation provided
by [Chen et al. 2009]. Average per-part IoU is a more sensitive metric
to small parts. To compute per-part IoU between a set of ground
truth segments {ŷk }k=1...K and the predicted segments {yt }t=1...T ,
we first use the Hungarian algorithm to find a bipartite matching
between the ground-truth segment indicator vectors {ŷk } and the
predicted segment indicator vectors {yt } so that yt (k ) denotes the
match of ŷk . We then compute the per-part IoU as: IoU (yt (k), ŷk ) =

<yt (k ), ŷk>
| |yt (k ) | |1+ | |ŷk | |1−<yt (k ), ŷk>

. If a part ŷk in the ground truth set has
no match in the prediction set (the number of predicted parts is less
than the ground truth), we count its IoU (yt (k), ŷk ) as 0. The final
average per-part IoU is simply an average of the above IoU for all
parts and all shapes.

Results. We compare our approach with various baseline methods
on four different datasets including two synthetic ones (SF2F,SF2P)
and two real ones (RP2P,RF2P). The results are reported in Table 2
using the rand index and average per-part IoU as the evaluation
metrics. Our approach outperforms all the baseline methods by a
large margin, both on synthetic and real datasets, especially when
using the per-part IoU metric, which indicates our approach has a
better ability to capture the correct number of parts and is more
capable to detect small parts.

ACM Trans. Graph., Vol. 37, No. 6, Article 209. Publication date: November 2018.



209:12 • Yi et. al.

SF2F

TeterBoard

Windwill

SF2P

Basket

FilpPhone

Point Set1 Point Set2 GT Ours Seq RANSAC SC JLC NRR

Point Set1 Point Set2 GT Ours Seq RANSAC SC JLC NRRImage Reference

RP2P

Tricycle

Doll

RF2P

Chair

Box

Fig. 8. Segmentation visualization for all competing methods on synthetic and real data.

To better understand the performance gain of our approach, we
visualize the prediction results of different methods on the two syn-
thetic datasets in Figure 8. Since it is hard to acquire perfect flow field
prediction, the segmentation approach needs to be robust to input
noise and imperfect flow while generating the predictions. Sequen-
tial RANSAC can handle input noise to some degree by properly
setting a noise threshold while generating inlier supports. However
different input shape pairs seem to require different thresholds –
a single threshold fails to provide satisfactory results in all cases.
Our implementation of sequential RANSAC uses a cross-validated
threshold and it tends to generate small discontinuous pieces in the
shown examples. The SC and JLC approaches predict segmentations

mainly based on the motion cues with little consideration of the
underlying geometry, therefore they can over-group parts, such as
the platform with the fulcrum. Our segmentation module instead
considers both the motion cue and the underlying geometry, thus it
is able to generate the correct segmentation even if the input flow
is noisy and imperfect. Moreover, the SC and JLC approaches both
require hand-tuned thresholds, which are quite sensitive to different
types of shapes. Again we set the thresholds via cross-validation
and find that they usually fail to discover rigid parts. NRR often
leads to under-segmentations such as the USB example in Figure 8
while in other cases, it results in over-segmentations such as the
flip phone example.
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The experiments on the two real datasets demonstrate that our
approach, trained on synthetic data, is able to generalize to real
scans. We also visualize prediction results on RP2P and RF2P in
Figure 8. The RP2P dataset contains two scans of the same under-
lying object with different articulations. In the challenging tricycle
example, our approach successfully segments out the two small ped-
als and groups them together through their motion pattern. None
of the baseline methods are capable of achieving this. When the
number of parts and DoFs increase, such as the articulated doll ex-
ample, the baseline approaches cannot generate a proper number of
parts in contrast to ours. The RF2P dataset contains pairs of shapes
from different objects, which is very challenging since the flow
field from the point set 1 to point set 2 contains both motion flow
and geometric flow caused by their geometric difference. To down-
weigh the influence of geometric flows, we also tried to optimize
our predicted deformation flow with an as-rigid-as-possible (ARAP)
objective [Sorkine and Alexa 2007] to preserve the local geome-
try before passing it to various segmentation approaches. Baseline
methods either under-segment or over-segment the point sets and
the segmentation boundaries are also very noisy. Our segmentation
module again demonstrates robustness and is more capable of pre-
dicting the number of segments properly and generating cleaner
motion boundaries.

We also refer readers to our supplementary material for an abla-
tion study evaluating different design choices of our architecture,
and a discussion on the computational cost of our method.

Comparison with Shao et al. We compare here our method with
the concurrent learning method by Shao et al. [2018]. Their method
trains a joint flow estimation and segmentation network for motion-
based object segmentation. They take an RGB-D pair as input, and
they convert the depth image into a partial point cloud with known
camera parameters. Then their network consumes the RGB infor-
mation as well as the point clouds and generates a motion-based
segmentation for the input frames. To compare with that approach,
we use our synthetic dataset SP2P, where we can render CAD mod-
els with different articulations into RGBD pairs and apply both their

RGB

Depth

scene 
flow

segmentation

Shape 2Shape 1 GT Ours Shao et al. 2018 

scene 
flow

segmentation

RGB

Depth

Fig. 9. Comparison with [Shao et al. 2018]. The input includes a pair of RGB
and a pair of depth images representing the underlying shape pair. Both
[Shao et al. 2018] and our method predict a scene flow plus a motion based
segmentation, visualized here together with the ground truth (GT).

approach and ours for motion segmentation. Note that our approach
only uses the point cloud information, while their approach exploits
both the rendered images as well as the partial point clouds. We also
rendered our training data into RGB-D pairs, and asked the authors
of [Shao et al. 2018] to re-train their network on our training set so
that they can handle the CAD rendered images. The quantitative
comparison is shown in Table 3. Our flow field and segmentation
estimation outperforms [Shao et al. 2018] by a large margin. We
visualize the prediction results in Figure 9. [Shao et al. 2018] can-
not reliably estimate flows for complex structures, in particular in
texture-less settings, such as the drawer in a cabinet. This leads
to largely inaccurate segmentation results. Our approach instead
fully operates on 3D and is more effective to capture the object
structure. In addition, [Shao et al. 2018] cannot group object parts
whose centers are very close to each other and do not move much,
e.g. the scissors example.

6.4 Applications
Our framework co-analyzes a pair of shapes, generating a dense flow
field from one point set to another and also the motion-based part
segmentation of the two shapes. These outputs essentially reveal
the functional structure of the underlying dynamic objects and can
benefit various applications we discuss below.

Shape Animation. The output of our framework can be directly
used to animate shapes. Given a shape pair (P ,Q), we co-segment
them into rigid parts {Pt } and also estimate the corresponding
rigid motions {Ht } We can then interpolate between the motion
states of P and Q , generating in-between motion frames for P . To
interpolate between two rigid motions Hi and Hj , we sample the
geodesic paths connecting Hi and Hj following [Žefran and Kumar
1998]. Assuming 4x4 homogeneous matrices representation for Hi
and Hj , an interpolation between Hi and Hj can be computed as
F (t ;Hi ,Hj ) = exp(t log(HjH

−1
i ))Hi , t ∈ [0, 1]. We fix the motion

for a selected part and generate different motion states for the rest
of the parts, and visualize our results in Figure 10. We are able to
animate both revolute joints and prismatic joints. Such animation
reveals the underlying functionality of the object and is useful for
adding interactivity to that object in a virtual environment.

Part Induction from a Shape-Image Pair. Recently we have wit-
nessed a lot of progress in single image-based 3D reconstruction,
which opens up a new application of our framework, namely joint
motion segmentation for a shape and image pair. Given an articu-
lated 3D shape and a related 2D product image as input, we lift the
2D image onto 3D and then apply our framework to co-segment
the lifted 3D shape and the input 3D shape. The segmentation infor-
mation can be later propagated back from the lifted 3D shape back
onto the 2D image, resulting in a motion segmentation for the image
as well. This results in a co-segmentation for both the 3D shape

Table 3. Numerical evaluation compared to [Shao et al. 2018].

SP2P EPE (Corrs) RI (Seg) IoU (Seg)
[Shao et al. 2018] 0.0862 0.686 0.563

Ours 0.0369 0.833 0.756
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and the 2D image based on discovered motion cues. This setting is
attractive since given an articulated 3D shape of a man-made object,
we can easily find lots of images online describing related objects
with different articulation states through product search. Being able
to extract motion information for these shape image pairs benefit a
detailed functional understanding of both domains. For the purpose
of lifting the 2D product image onto 3D, we design another neural
network and we refer to the supplementary for more details on this
lifting network.
We visualize our shape-image pair co-analysis in Figure 11. In

each row, we are given an input shape plus an input product image
describing a related but different object. We first convert the 2D
image into a 3D point set using the lifting network. The lifted 3D
shapes are visualized in the 3rd column. We then apply our frame-
work for the input pair, resulting in a deformed version of the input
shape visualized in the 4th column. We note that articulation of
the deformed input shape becomes more similar to the one of the
lifted point set. We visualize the segmentation for the input shape
in the 5th column and we propagate the segmentation of the lifted
point set back to the 2D image (our lifting procedure maintains the
correspondence between the image pixels and the lifted points),
which is shown in the last column.

7 LIMITATIONS AND FUTURE WORK
We presented a neural network architecture that is able to discover
parts of objects by analyzing the underlying articulation states and
geometry of different shapes. Our network is able to generalize to
novel objects and classes not observed during training.

There are several avenues for future research directions. First, our
method uses 3D point cloud representations, which might under-
sample small parts, or cannot deal with rotationally symmetric parts,
such as bottle caps. We also found that parts that slide towards the
interior of a shape, such as sliding knives, are more challenging
since point samples on folding shape layers are hard to differentiate
. Increasing the point cloud resolution or introducing an attention
mechanism that results in a dynamic adaptation of resolution could

FlipLadder

Syringe

Truck

Lamp

Point Set 1 Point Set 2 Motion StatesSegmentation

Fig. 10. Our method can be used for shape animation. Given the predicted
segmentation of articulated parts (left), one can generate a sequence of
animated shapes by interpolating the motion (right).

Shape Image 3D lifting Deformed 
Shape

Shape 
Segmentation

Image 
Segmentation

Fig. 11. Our method can be used for joint shape-image analysis. Given a
pair including a 3D shape and a 2D image, we can jointly align them and
output the segmentation for both the shape and the image.

help to deal with these cases. Second, part induction between differ-
ent shape instances with large topology variation remains a chal-
lenging problem. The point-wise deformation flow itself becomes
harder to define in these cases. When it comes to large geometric
differences, the segmentation module would need to be redesigned
to deal with both local rigid and non-rigid deformation flow. Fi-
nally, our method currently infers parts and motions from pairs of
shapes. In the future, it would be interesting to infer those from a
single input, or analyze larger sets of objects to discover common
articulation patterns within a shape family.
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