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Figure 1: Our method takes as input a set of panoramic images (inset, left) representative of an urban environment (e.g., a
London neighborhood) along with 3D untextured polygon meshes (blue, right), and it outputs textures for the meshes (centre)
with a similar style to the input panoramic images.

Abstract

This paper proposes a method for automatic generation
of textures for 3D city meshes in immersive urban environ-
ments. Many recent pipelines capture or synthesize large
quantities of city geometry using scanners or procedural
modeling pipelines. Such geometry is intricate and real-
istic, however the generation of photo-realistic textures for
such large scenes remains a problem. We propose to gener-
ate textures for input target 3D meshes driven by the textu-
ral style present in readily available datasets of panoramic
photos capturing urban environments. Re-targeting such
2D datasets to 3D geometry is challenging because the
underlying shape, size, and layout of the urban structures
in the photos do not correspond to the ones in the target
meshes. Photos also often have objects (e.g., trees, vehi-
cles) that may not even be present in the target geometry.
To address these issues we present a method, called Projec-
tive Urban Texturing (PUT), which re-targets textural style
from real-world panoramic images to unseen urban meshes.
PUT relies on contrastive and adversarial training of a
neural architecture designed for unpaired image-to-texture
translation. The generated textures are stored in a texture
atlas applied to the target 3D mesh geometry. To promote
texture consistency, PUT employs an iterative procedure in
which texture synthesis is conditioned on previously gener-
ated, adjacent textures. We demonstrate both quantitative
and qualitative evaluation of the generated textures.

1. Introduction

Authoring realistic 3D urban environments is integral
to city planning, navigation, story-telling, and real-estate.

Although 3D meshes of cities with thousands or millions
of polygons can be synthesized through numerous proce-
dural modeling pipelines [41, 37, 30, 45, 12], they often
lack texture information. To create vibrant and realistic vir-
tual scenes, these meshes must be textured. Textures also
provide many of the cues that we use to identify locations
and purpose of buildings, including material and color. 3D
meshes of cities can alternatively be reconstructed through
mesh acquisition pipelines. However, texture generation for
the acquired meshes may still be desirable especially when
the captured textures have low quality and resolution (e.g.,
ones from aerial photogrammetric reconstruction), or when
a different textural style is desired. Manually creating high-
quality textures is time consuming – not only must the de-
tails of the textures match the geometry, but also the style
within single structures, as well as between adjacent struc-
tures and their surroundings (e.g., between buildings, street-
furniture, or sidewalks). An alternative is to programmati-
cally generate textures (e.g., using shape grammars [38]),
an approach which can create repeated features (e.g., win-
dows, pillars, or lampposts) common in urban landscapes,
but is time consuming to write additional such rules. This
approach is often challenged by lack of texture variance
(e.g., due to discoloration and aging of buildings).

We present Projective Urban Texturing (PUT), a method
to create street-level textures for input city meshes. Follow-
ing recent texture generation work, we use a convolutional
neural network with adversarial losses to generate textures.
However, the resolution of existing approaches is limited
by available memory and they often result in numerous ar-
tifacts, as naı̈vely tiling network outputs creates disconti-
nuities (seams) between adjacent tiles (see Figure 3). PUT



iteratively textures parts of a 3D city mesh by translating
panoramic street-level images of real cities using a neural
network, and merges the results into a single high-resolution
texture atlas. By conditioning the network outputs on pre-
vious iterations, we are able to reduce seams and promote
consistent style with prior iterations.

A central decision when developing texturing systems is
the domain to learn from. Learning to create textures in 3D
object-space (e.g., over facades) [26, 29] can exploit seman-
tic information. However, object-object interactions (e.g.,
between adjacent buildings or streets and buildings) are not
modelled, mesh semantic information is rarely available,
and mesh training data is rather sparse. In contrast, PUT
learns in panoramic image-space, texturing multiple objects
simultaneously and modeling their interactions consistently.

A particular advantage of panoramic image datasets is
that they contain massive amounts of urban image data
to train with. Advances in optics have given us low-cost
commodity 360 degree panoramic cameras which capture
omni-directional information quickly, while efforts such
as Google’s Street View have resulted in large panorama
datasets captured in different cities [1]. These images are
typically street-level – a single panorama captures multiple
objects such opposing facades, overhanging features (e.g.,
roof eaves), and the street itself.

On the other hand, there are several challenges in re-
targeting these panoramic image datasets to textures of city
meshes. Since panoramic images are captured from the real
world, buildings are often occluded (e.g., by trees or vehi-
cles), and contain camera artifacts (e.g., lens flare). Further,
these image datasets do not contain corresponding 3D ge-
ometry. In fact, the underlying shape, size, and layout of the
urban structures in the images can be quite different from
the ones in the target meshes. Another challenge is to gen-
erate a single, consistent output texture atlas by training on
an unorganized collection of images. PUT addresses these
challenges by employing contrastive and adversarial learn-
ing for unpaired image-to-texture translation along with a
texture consistency loss function. The generated textures
share a similar style with the one in the training images e.g.,
training on paroramas from London neighborhoods yields
London-like textures for target meshes (Figures 1, 5).

PUT offers the following contributions: i) an architec-
ture that learns to generate textures over large urban scenes
conditioned on meshes and previous results to promote tex-
ture consistency, ii) unpaired style transfer from panoramic
image datasets to texture maps in the form of texture atlases.

2. Related Work
PUT is related to methods for 2D texture synthesis and

texture generation for 3D objects as briefly discussed below.
Texture synthesis. Traditional learning-based methods

generate textures with local and stationary properties [11,

49, 33, 10, 32]. Later work creates larger, more varied tex-
tures quickly [9], some of which are domain specific [8].
Procedural languages can create homogeneous textures for
urban domains [38]; however, they lack realism since they
do not model the heterogeneous appearance of surfaces due
to weathering and damage. Such phenomena can be cre-
ated using simulation or grammars [4, 5, 20, 34], yet these
approaches require significant hand-engineering. With the
advent of convnets (CNNs), data-driven texture synthesis
has been achieved by optimization in feature space [16] or
with GANs [53, 15]. Image-to-image translation with U-
Nets [44, 26] has been demonstrated for style transfer [17];
these have been applied to various domains [18, 29, 52].
Processing panoramic images, such as street-view images,
with CNNs has been explored for depth prediction [46] and
image completion [47]. Approaches for unpaired image
translation have also been developed using cycle consis-
tency losses [54], which learn to translate from one image
domain to another, and back again. These techniques has
been extended to multi-domain [6, 25] and domain-specific
problems [19, 48]. A more recent approach uses patch-wise
contrastive learning [42]. We adopt this approach as our
backbone and incorporate it within our iterative pipeline
that conditions synthesis on input 3D meshes and previous
texture results, along with a novel texture consistency loss.

Texturing 3D objects. Early approaches directly project
photos onto reconstructed geometry [39, 2, 3]. This pro-
duces photorealistic results, but requires exact photo lo-
cations with consistent geometry (i.e., noise-free location
data [31]) and unobstructed views (i.e., no occlusions by
trees or vehicles [13]). 3D CNNs have been proposed to
generate voxel colours [40] as well as geometry [51, 50],
however such have high memory requirements and there
are sparse training 3D object datasets with realistic textures.
Attempts to overcome these limitations are ongoing, using
a variety of approaches [28, 21, 23, 35, 43, 22]; results are
generally low resolution or only in screen-space. GANs
have been previously proposed to align and optimize a set
of images for a scanned object [24] producing high qual-
ity results; however, they require images of a specific ob-
ject. In our case, we leverage large 2D panoramic image
datasets for generating textures for urban models without
paired image input. A key difference over prior work is
that our method learns textures by combining contrastive
learning-based image synthesis [42] with a novel blending
approach to wrap the texture over the geometry.

3. Method
Overview. Given untextured 3D geometry representing
an urban environment as input, our pipeline (Figure 2) syn-
thesizes a texture for it. We assume that the surface of the
input 3D geometry is unwrapped (parameterized), such that
UV coordinates assign 3D surface points to 2D locations
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Figure 2: At each iteration our system creates a partially textured image by rendering the 3D geometry(top left) using the
synthesized atlas containing texture from previous iterations. Mesh parts that have not been textured so far are rendered in
grayscale. The texture propagation module uses the generated image to update the texture atlas used in the next iteration. A
visualization of our iterative texturing synthesis output is displayed on a characteristic building facade on the right.

within a texture atlas (a 2D image map; Figure 2, bottom
left). The input urban geometry may come from a variety
of sources, such as procedural modeling (Figure 1, right) or
photogrammetric reconstruction (Figure 7, right).

Our texture synthesis system is iterative, working se-
quentially with selected viewpoints along street center-
lines: to begin each iteration, our rendering module cre-
ates a panoramic image representing the input 3D geometry
from a viewpoint, including any previously generated tex-
ture (Figure 2). The rendered images are partially textured,
since some parts of the 3D urban models may have asso-
ciated texture synthesized from previous iterations, while
others may not contain any texture at all. Untextured parts
are rendered in grayscale, and textured parts in colour.

As each iteration continues, the partially textured image
is translated into a fully textured RGB image through a neu-
ral network (Figure 2, image translation network). Our ex-
periments found that passing the partially textured images
through the network offered better performance, compared
to passing completely untextured (grayscale) images, or us-
ing separate images, or channels, for the textured and un-
textured parts. The network is trained on a set of panoramic
RGB images taken from streets of a particular city (e.g.,
London or New York) and a set of rendered images of urban
geometry meshes. The two sets are unpaired; we do not as-
sume that the urban geometry meshes have corresponding,
or reference, textures. Such a level of supervision would re-
quire enormous manual effort to create training textures for
each 3D urban model. Our system is instead trained to au-
tomatically translate the domain, or geographic “style”, of
the panoramic images of real-world buildings into textures
that match the geometry “structure” of the input 3D urban
models, and any prior textured parts.

At the end of the iteration, our texture propagation mod-
ule updates the texture atlas using the output fully textured
image from the network (Figure 2, synthesized atlas). Af-
ter the final iteration, all viewpoints have been processed,
the texture atlas is complete, and is used to render the urban

environment, as shown in Figure 5.
Viewpoint selection. In a pre-processing step, we create
paths along which we place viewpoints to sequentially cap-
ture the input geometry of the city blocks. The paths are
formed by following the centerlines of all streets contained
in the urban 3D scene (see Section 4). The paths trace the
street from the start to the end, “sweeping” the buildings
in each block on both sides of the road. Each viewpoint is
placed at 5m horizontal intervals along the street centerlines
with a vertical height of 2.5m. The horizontal intervals are
empirically selected such that each rendered image has an
overlap (about 25%) with the image rendered from the pre-
vious and next viewpoint. The vertical height is motivated
by the fact that real-world car mounted cameras are placed
at a height close to 2.5m, reducing the “domain gap” be-
tween our renderings and real-world panoramas taken from
cars. The viewpoint (camera) up and forward axes are set
such that they are aligned with the world upright axis and
street direction respectively. As a result, the cameras “look”
towards the buildings along both sides of the road.
Rendering. Given each viewpoint, each rendering is pro-
duced through equirectangular (panoramic) projection. As
a result, the domain gap with real-world panoramas is de-
creased with respect to the projection type. The geome-
try is rendered with global illumination using Blender [7]
at a 512x256 resolution. Any textured parts from previous
passes incorporate RGB color information from the texture
atlas, while for untextured parts, a white material is used,
resulting in a grayscale appearance. Background (e.g., sky)
is rendered as black. An example of the resulting “partially
textured” image is shown in Figure 2.
Neural network. The input to our image translation net-
work is a partially textured rendering (3x512x256) at each
iteration. The neural network uses the architecture from
Johnson et al. [27], also used in Contrastive Unpaired Trans-
lation (CUT) [42]. The network contains three convolution
layers, 9 residual blocks, two fractionally-strided convolu-
tion layers with stride 1/2, and a final convolution layer that



maps the features to a RGB image (3x512x256). Since our
input is a panoramic image, we use equirectangular convo-
lution for the first convolutional layer of the network [14].
Equirectangular convolution is better suited for processing
panoramic images and offers better performance in our ex-
periments. As discussed in Section 4, we follow a training
procedure and loss inspired by [42], yet with important dif-
ferences to handle partially textured images and ensure con-
sistency in the texture generated from different viewpoints.
Texture propagation. At each iteration, we use the gen-
erated image from the above network to update the texture
atlas. For each texel t with center coordinates (ut, vt) in the
atlas, we find the corresponding 3D point pt on the input
geometry. Then for this 3D point, we find its corresponding
pixel location in the generated image at the current iteration
i: [xt,i, yt,i] = Πi(pt), where Πi is the equirectangular
projection function used during the frame rendering of the
current iteration. The color of the texel is transferred with
the mapping: color[ut, vt] = Ri[xt,i, yt,i], where Ri is
the generated image from the network at the current iter-
ation. However, this strategy can create artifacts since it
will overwrite the color of texels that were updated from
previous iterations, resulting in sharp discontinuities in the
generated texture (Figure 3, left).

Figure 3: Texture w/o blending (left), w/ blending (right)

Instead, we follow a pooling strategy, where colors for
each texel are aggregated, or blended, from different itera-
tions. Specifically, at each iteration, the color of each texel
is determined as a weighted average of pixel colors origi-
nating from images generated from previous iterations:

color[ut, vt] =
∑
i∈Vt

wi,tRi[xt,i, yt,i] (1)

where Vt is the set of iterations where the texel’s corre-
sponding 3D point pt was accessible (visible) from the
cameras associated with these iterations. The blending
weights wi,t are determined by how close pt was to the
center of the projection at each iteration. The closer to the
centre the point pt was, the higher the weight was set for
the color of its corresponding pixel at the generated image.
Specifically, if di,t is the distance of the point pt to the pro-
jection centerline for the camera at iteration i, the weight of
its corresponding pixel color from the generated image at
this iteration was determined as wi,t = 1 − di,t/

∑
i′ di′,t,

where i′ are iteration indices where the point was visi-
ble. The weights were further clamped to [0.3, 0.7], then
were re-normalized between [0, 1] to eliminate contribu-
tions from cameras located too far away from the point.

4. Training
To train the image translation neural network of our

pipeline, we require a set of training examples from both
domains: rendered panorama images from the (untextured)
3D geometry, and real-world panoramic photographs. The
two sets are unpaired, i.e., the real-world images have no ge-
ometric or semantic correspondences with rendered panora-
mas. We discuss the datasets used for these domains in the
following paragraphs, then explain our training procedure.
Real-world panorama dataset. For real-world panora-
mas, we use the dataset from [36], with 29, 414 images from
London and 6, 300 images from New York; these photos are
taken from city streets with vehicle mounted cameras.
Rendered panoramas from 3D geometry. We demon-
strate our system on two classes of 3D urban meshes -
procedural and photogrammetrically reconstructed meshes.
Procedural meshes are generated using the CGA lan-
guage [37]; each generated scene has unique street graph,
block-subdivision, and building parameters (e.g., style, fea-
ture size, height etc.). We found that the inclusion of details
such as pedestrians, trees, and cars helped the multi-layer
patch-wise contrastive loss used in our network to identify
meaningful correspondences between the real and rendered
panorama domains. We also export the street center-line
data from the procedural models (no other “semantic” in-
formation or labels are used). We generated 10 scenes with
1600 viewpoints sampled from 18 random paths on streets
of each scene. This resulted in 16K viewpoints in total,
from which we rendered grayscale images of the input ge-
ometry using equirectangular projection. We use 9 scenes
(14.4K grayscale, rendered panoramic images) for training,
and keep one scene for testing (1.6K images). We note that
the streets, building arrangements, and their geometry are
unique for each street and scene, thus, the test synthetic ren-
derings were different from the training ones.

The photogrammetric mesh dataset is from Google
Earth. The 3D meshes are coarse and noisy (Fig. 7, right,
blue mesh). They contain holes, vehicles, and trees. This
contrasts the precise, high-detail, data in procedural meshes.
Street centerlines are collected from OpenStreetMap. We
use 2 scenes and 1, 411 rendered images. One is used for
training and the other for testing.
Training Procedure. As mentioned above, since there
are no target reference texture images for the input 3D ge-
ometry, we resort to a training procedure that uses the un-
paired real-world RGB panoramas and our partially tex-
tured panorama renderings. Contrastive Unpaired Transla-
tion (CUT) [42] is a fast and flexible method to train im-
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Figure 4: Training procedure: the green arrow shows the mapping h from a grayscale rendering of a training city block to
the partially textured image. This mapping is performed in our rendering module that integrates previous texture information
with the help of a binary mask indicating prior textured regions. The image translation network g maps the partially textured
image to a fully textured one, mimicking real-world statistics with the help of an adversarial loss. The partially-textured
image is compared to the fully textured image in the inter-frame consistency loss to discourage seams in the output texture.

age translation networks between unpaired domains. One
potential strategy is to use CUT’s losses and training as-is
in our setting. However, this strategy disregards the need
for consistency between generated textures at different iter-
ations of our pipeline. Further, our image translation net-
work processes partially textured images, which are dif-
ferent from both the domain of real-world panoramas and
the domain of grayscale rendered images. Next, we explain
how our training procedure promotes consistency and han-
dles the different kinds of inputs required for our network.

Multi-layer Patch-wise Contrastive Loss. The goal of
our training procedure is to learn the parameters of our im-
age translation network g : P → R mapping the domain
P of partially textured images to the domain R of fully
textured ones mimicking real-world statistics. To associate
input and output structure we use a multi-layer patch-wise
contrastive loss between input and output. The association
between images is achieved by the comparison of the stack
of features for selected layers in the encoder network f .

Specifically, in our setting, given an untextured
(grayscale) rendering S from our set of untextured ren-
derings S, we first convert it to a partially textured one
by integrating previously textured parts indicated from a
binary mask M (1 for previously textured parts, 0 for
untextured ones). This conversion h : S → P is a
fixed, parameter-free mapping implemented in our render-
ing module. Given a rendered image S and the gener-
ated image g(h(S)), we generate their stack of features
z = f(S) and ẑ = f(g(h(S))). Pairs of patches from the
rendered and generated images at the same location n are
treated as positive, while pairs from different locations are
treated as negative. A temperature-scaled cross-entropy loss
H (with temperature τ = 0.07) computes the probability
of the positive example being selected over negatives [42].
The loss is summed over our dataset and samples:

LcontrS = ES∼S

L∑
l=1

Nl∑
n=1

H(ẑnl , z
n
l , z

Nl/n
l ) (2)

where L is the number of selected layers and Nl is the in-

dex set of spatial locations in feature maps at each layer.
As in CUT [42], to avoid unnecessary generator changes, a
cross-entropy loss LcontrR is also applied on patches sam-
pled from the real images domainR.

Adversarial losses. Apart from the contrastive losses, we
use an adversarial loss to ensure that the fully textured im-
ages generated from the image translation network g share
similar statistics with the real-world panoramas:

Lgan = ER∼R[log(dr(R))]

+ ES∼S[1− log(dr(g(h(S)))]

where R is the training set of real-world panoramas, dr is
a discriminator network following the architecture of CUT
applied to real images domain.

Inter-frame consistency loss. We introduce an inter-
frame consistency loss to promote consistency in the gener-
ated textured images from our image translation network g
across different iterations (“frames”) of our pipeline. Given
a fully textured image g(h(S)) generated from the image
translation network during training, and a partially textured
image h(S) containing texture from prior iterations, we
compare the textured regions in h(S) with the correspond-
ing generated regions. The comparison is performed with
the help of the binary maskM containing 1s for the partially
textured regions of h(S) and 0s otherwise. Using the above-
mentioned mappings, the loss is expressed as follows:

Lcons = ES∼S[‖ (g(h(S)))�M − h(S)�M ‖1] (3)

where � is the Hadamard product. We discuss the effect of
this loss in our experiments and ablation study.

Full Objective. The full objective is a weighted combina-
tion of the above losses:

L = λ1Lgan + λ2Lcons + λ3LcontrS + λ4LcontrR (4)

where λ1, λ2, λ3, λ4 are hyper-parameters set to 1.0, 10.0,
0.5, 0.5 respectively.



Implementation details. We use the Adam optimizer
with learning rate 2 · 10−4 to train the above architecture.
We train the model for 200 epochs. During the first 150
epochs the learning rate is fixed, then it gradually decays
for the last 50 epochs. All our code and datasets, includ-
ing the rule-set and scripts for the procedural generation of
the training and test scenes are available on our project page
https://ygeorg01.github.io/PUT/ .

5. Evaluation
We now evaluate our pipeline on test models generated

with the process described in Section 4. As discussed
earlier, no identical city blocks exist in our train and test
meshes. We trained our translation network separately on
the images datasets of London and New York.
Qualitative Evaluation. First, we evaluate the quality of
our output textures by placing perspective cameras at the
street level for each of our test meshes and rendering the
meshes with texture atlases created by our method. Results
can be seen in Figure 5, for the network trained on London
data. Our method transfers the appearance of large struc-
tures such as multi-storey walls, streets, or sidewalks from
real panoramas and often aligns texture details with geomet-
ric ones i.e., texture edges of windows and doors with ge-
ometry edges. A side-effect of our method is that shadows
are sometimes translated to streets and sidewalks (Figure 5).
City style transfer. Our method can be trained on street-
level panoramic images collected from different cities in the
world to give urban 3D models the appearance of a city’s
distinctive style, as illustrated by our London and New York
examples in Figure 6. The generated textured city blocks
appear distinctively textured with our pipeline trained on
New York versus the ones textured with London panora-
mas. For example, a red brick-like appearance is visible
in the walls of the meshes textured by our network trained
in New York panoramas; such appearance is common in
New York buildings. In contrast, meshes textured by our
network trained on London panoramas appear with white,
yellow and brown distributions of color on their facades, a
color distribution which is common around London.
Mesh type generalization. We also demonstrate our
pipeline on a city 3D model from Google Earth, shown in
Figure 7. Our method generates consistent facade textures,
even for such challenging polygon soups that are noisy and
do not contain any facade or window geometric informa-
tion, as shown in the untextured rendering of the same
model (Figure 7, right). However, the absence of accurate
facade geometry limits the diversity of texturing.
Inter-frame consistency. We qualitatively evaluate the
degree of consistency between consecutive output textures
from our architecture in Figure 8. We display six consec-
utive intermediate panoramic outputs of our image transla-
tion network trained on the London dataset. We note that

each consecutive output tends to be consistent with the pre-
ceding images. This helps to preserve some details in the
generated textures, as seen at the top of Figure 8, which
shows a close-up rendering of the textured 3D mesh on the
right side of the street.

Quantitative evaluation. We first compare PUT to the
CUT network when generating texture atlases. We note that
CUT does not condition its image translation network on
the partially textured image and does not use our inter-frame
consistency loss. Both networks were trained on the Lon-
don dataset. For fair comparison, we use the same equirect-
angular convolution for the first convolution layer of both
architectures. Table 1 shows FID scores for panoramic ren-
derings produced by PUT and CUT for our test procedural
scene. Since a large area of panoramic images consists of
road and sky with little or no variation in texture, we also
evaluate the FID on cropped versions of these renderings
that isolate the facades from the roads and sky; we call this
variant score as “crop FID”. We additionally show the per-
formance of PUT and CUT using three different blending
approaches: no blend where no blending is applied between
frames, average blending which takes the average RGB val-
ues between frames and our texture propagation (without
weights), weighted uses the weighted averaging scheme of
Equation 1. Our model outperforms CUT regardless of
the blending approach. Note that, our texture propagation
approach based on our weighted averaging scheme outper-
forms the no-blend or average-blend baselines.

We also compare our model to FrankenGAN [29] us-
ing the author-provided trained model. Note that blending
cannot be used in FrankenGAN since it generates textures
for 3D objects individually (e.g., facade, window, or roof).
FrankenGAN has the additional benefit of semantic labels
for these objects. In contrast, we do not assume that such
labels are available for test meshes. As shown in Table 1,
our approach still outperforms FrankenGAN.

No-Blend↓ Average↓ Weighted↓
Method full crop full crop full crop
CUT 131.6 110.2 135.2 113.4 121.7 101.1

FrankenGAN 174.3 135.8 - - - -
PUT 128.2 95.6 132.6 97.3 115.4 86.3

Table 1: FID comparisons between PUT and alternatives.

In Figures 9 and 10 we show qualitative comparisons be-
tween PUT and CUT. Figure 9 (top) shows failure cases
of CUT, i.e. undesired tree artifacts on the facades which
PUT decreases (bottom) by using the inter-frame consis-
tency loss. Moreover, the style of the facade between the
first and the third panorama produced by CUT differs in
Figure 10 (top) in contrast to PUT which generates more
consistent results (bottom).

https://ygeorg01.github.io/PUT/


Figure 5: Renderings of our test scene textured by PUT trained on London panoramas. We show street-level renderings.

Finally, we performed a perceptual user study which
showed that users preferred results generated from PUT
much more compared to the results from CUT; see supple-
mentary materials for additional details.
Ablation study. We also designed an ablation study to
support the three main design choices for our network ar-
chitecture, namely the use of the mask M in the inter-
frame consistency loss (Equation 3), the use of equirect-
angular convolution for the first convolutional layer of the
network [14], and the merging of the untextured (grayscale)
and partially textured image to create 3-channel inputs.

Table 2 reports the “crop FID” scores for five varia-
tions of PUT produced by combination of the three design
choices we made. Each row is a different model, incorpo-
rating different variations of the three choices. Comparing
PUT 1 and PUT 2 we can see that our choice to merge un-
textured and partially textured images in a 3-channel input
improves FID scores. Adding equirectangular convolution
in the first convolution layer of PUT 3 slightly improves FID
score, while incorporating the mask in the inter-frame con-
sistency in PUT 4 gives a much larger improvement com-
pared to PUT 2. Finally, using all three modifications re-
sults in the best FID score for the full model.

Model Masked Cons. Equir. Conv. Gray+RGB crop FID ↓
PUT 1 – – – 93.10
PUT 2 – – X 92.47
PUT 3 – X X 92.23
PUT 4 X – X 87.56

full PUT X X X 86.30

Table 2: FID scores for PUT design choices. “Masked
Cons.” means whether we use the mask in the consistency
loss, “Equir. Conv.” means whether we use equirectangu-
lar convolution, “Gray+RGB” means whether we merge the
grayscale rendering with the RGB partially textured image
in a 3-channel image (or treat it as 4-channel image).

6. Limitations and Conclusion

We presented PUT, a method for texturing urban 3D
scenes. Our method is able to texture large urban meshes
by training on unpaired panoramic image and 3D geometry.
One limitation of PUT is its inability to texture roofs; incor-
porating aerial images into our pipeline can help. Another
limitation affecting the output texture resolution is that stor-
ing our large atlas is memory intensive. PUT can also be
challenged by large domain gaps in the distributions of fea-



Figure 6: Street-level renderings of buildings in our test
scene textured by our method trained on London images
(left) and New York images (right).

Figure 7: Our method can generate textures for challenging
polygon meshes such as those from Google Earth. Here we
show a street-level rendering of a Google Earth mesh tex-
tured by our method trained on London panoramas. The
mesh geometry is noisy with non-planar facades lacking
window and door cues (right). Still our method manages
to create an approximate mesh texture with such cues.

tures between panoramic photos and geometry. A related
issue is the reconstruction of artifacts due to lens aberra-
tions and shadows in panoramas. In the future, we would
like to allow users to explore the style-space of an urban en-
vironment by navigating a latent space. Another direction

Figure 8: A sequence of six consecutive panoramic out-
puts of our network trained on London data (bottom). No-
tice how each consecutive output tends to be more consis-
tent with the previous, which allows our texture propagation
module to better preserve some details and better align fea-
tures such as windows and doors on facade geometry (top).

Figure 9: Tree artifacts appear on the facades in images gen-
erated from CUT (top row). Our inter-frame consistency
loss reduces these artifacts (bottom row).

Figure 10: Style discontinuities occur between consecutive
images generated from CUT (top row) in contrast with PUT
which generates more consistent colors (bottom row).

is to increase our texture resolution to better portray fine
details using super-resolution neural architectures.
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