
Eurographics Symposium on Geometry Processing 2022
M. Campen and M. Spagnuolo
(Guest Editors)

Volume 41 (2022), Number 5

PRIFIT: Learning to Fit Primitives Improves
Few Shot Point Cloud Segmentation

G. Sharma†1 , B. Dash†1 , A. RoyChowdhury1 ‡, M. Gadelha1,2 , M. Loizou3 , L. Cao1, R. Wang1,
E. G. Learned-Miller1 , S. Maji1 and E. Kalogerakis1

1University of Massachusetts Amherst 2Adobe 3University of Cyprus

Abstract
We present PRIFIT, a semi-supervised approach for label-efficient learning of 3D point cloud segmentation networks. PRIFIT

combines geometric primitive fitting with point-based representation learning. Its key idea is to learn point representations
whose clustering reveals shape regions that can be approximated well by basic geometric primitives, such as cuboids and ellip-
soids. The learned point representations can then be re-used in existing network architectures for 3D point cloud segmentation,
and improves their performance in the few-shot setting. According to our experiments on the widely used ShapeNet and PartNet
benchmarks, PRIFIT outperforms several state-of-the-art methods in this setting, suggesting that decomposability into primi-
tives is a useful prior for learning representations predictive of semantic parts. We present a number of ablative experiments
varying the choice of geometric primitives and downstream tasks to demonstrate the effectiveness of the method.

CCS Concepts
• Computing methodologies → Shape representations; Neural networks; • Theory of computation → Semi-supervised
learning;

1. Introduction

Several advances in visual recognition have become possible due
to the supervised training of deep networks on massive collections
of images. However, collecting manual supervision in 3D domains
is more challenging, especially for tasks requiring detailed surface
annotations e.g., part labels. To this end, we present PRIFIT, a semi-
supervised approach for learning 3D point-based representations,
guided by the decomposition of 3D shape into geometric primi-
tives. Our approach exploits the fact that parts of 3D shapes are
often aligned with simple geometric primitives, such as ellipsoids
and cuboids. Even if these primitives capture 3D shapes at a rather
coarse level, the induced partitions provide a strong prior for learn-
ing point representations useful for part segmentation networks,
as seen in Fig. 1. This purely geometric task allows us to utilize
vast amounts of unlabeled data in existing 3D shape repositories to
guide representation learning for part segmentation. We show that
the resulting representations are especially useful in the few-shot
setting, where only a few labeled shapes are provided as supervi-
sion.

The overall framework for PRIFIT is based on a point embedding
module and a primitive fitting module, as illustrated in Fig. 2. The

† Equal contribution.
‡ Now at Amazon, work done prior to joining.

point embedding module is a deep network that generates per-point
embeddings for a 3D shape. Off-the-shelf networks can be used for
this purpose (e.g., PointNet++ [QYSG17], DGCNN [WSL*19]).
The primitive fitting module follows a novel iterative clustering and
primitive parameter estimation scheme based on the obtained per-
point embeddings. It is fully differentiable, thus, the whole archi-
tecture can be trained end-to-end. The objective is to minimize a
reconstruction loss, computed as the Chamfer distance between the
3D surface and the collection of fitted primitives. We experimented
with various geometric primitives, including ellipsoids or cuboids
due to their simplicity. We further considered parameterized geo-
metric patches based on an Atlas [GFK*18], as an alternative sur-
face primitive representation.

Our method achieves 63.4% part Intersection over Union (IoU)
performance in ShapeNet segmentation dataset [CFG*15] with just
one labeled example per-class, outperforming the prior state-of-
the-art [GRS*20] by 1.6%. We also present results on the PartNet
dataset [MZC*19a] where our approach provides 2.1% improve-
ment compared to training from scratch approach while using 10
labeled examples per-class. We also present extensive analysis of
the impact of various design choices, primitive types, size of the
unlabeled dataset and different loss functions on the resulting shape
segmentations. Our experiments indicate that the use of ellipsoids
as geometric primitives provide the best performance, followed by
cuboids, then AtlasNet patches, as is shown in Table 2.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/https://orcid.org/0000-0002-7492-7808
https://orcid.org/https://orcid.org/0000-0002-8043-6669
https://orcid.org/0000-0002-6963-1148
https://orcid.org/0000-0002-4971-7980
https://orcid.org/0000-0002-2920-0087
https://orcid.org/0000-0002-3778-9135
https://orcid.org/https://orcid.org/0000-0002-3869-9334
https://orcid.org/https://orcid.org/0000-0002-5867-5735

G. Sharma et al. / PRIFIT: Learning to Fit Primitives Improves Few Shot Point Cloud Segmentation

Figure 1: PRIFIT uses primitive fitting within a semi-supervised
learning framework to learn 3D shape representations. Top row:
3D shapes represented as point clouds, where the color indicates
the parts such as wings and engines. The induced partitions and
shape reconstruction obtained by fitting ellipsoids to each shape
using our approach are shown in the middle row and bottom row
respectively. The induced partitions often have a significant overlap
with semantic parts.

2. Related Work

We are interested in learning per-point representations of 3D shapes
in a semi-supervised manner given a large number of unlabeled
shapes and only a few labeled examples. To this end, we briefly
review the literature on geometric primitive fitting and shape de-
composition, few-shot learning, and deep primitive fitting. We also
discuss the limitations of prior work and how we address them.

Geometric primitives and shape decomposition. Biederman’s
recognition-by-components theory [Bie87] attempts to explain ob-
ject recognition in humans by the ability to assemble basic shapes
such as cylinders and cones, called geons, into the complex ob-
jects encountered in the visual world. Early work in cognitive sci-
ence [HR83] shows that humans are likely to decompose a 3D
shape along regions of maximum concavity, resulting in parts that
tend to be convex, often referred to as the “minima rule”. Classi-
cal approaches in computer vision have modeled 3-D shapes as a
composition of simpler primitives, e.g. work by Binford [BLM87;
Bin71] and Marr [MN78]. More recent work in geometric pro-
cessing has developed shape decomposition techniques that gen-
erate different types of primitives which are amenable to tasks
like editing, grasping, tracking and animation [KYB19]. Those
have explored primitives like 3D curves [GSMC09; MZL*09;
GSV*17], cages [XLG12], sphere-meshes [TGB13], generalized
cylinders [ZYH*15], radial basis functions [CBC*01; MGV11]
and simple geometric primitives [SWK07]. This motivates the use

of our geometric primitive fitting as a self-supervised task for learn-
ing representations.

Unsupervised learning for 3D data. Several previous techniques
have been proposed to learn 3D representations without relying on
extra annotations. Many such techniques rely on reconstruction ap-
proaches [YFST18; GFK*18; GWM18; ZBDT19; YHH*19]. Fold-
ingNet [YFST18] uses an auto-encoder trained with permutation
invariant losses to reconstruct the point cloud. Their decoder con-
sists of a neural network representing a surface parametrized on
a 2D grid. AtlasNet [GFK*18] proposes using several such de-
coders that result in the reconstructed surface being represented as
a collection of surface patches. Li et al. [LCL18] presents SO-Net
that models spatial distribution of point cloud by constructing a
self-organizing map, which is used to extract hierarchical features.
The proposed architecture trained in auto-encoder fashion learns
representation useful for classification and segmentation. Chen et
al. [CYF*19] propose an auto-encoder (BAE-Net) with multiple
branches, where each branch is used to reconstruct the shape by
producing implicit fields instead of point clouds. However, this
requires one decoder for separate part, which restricts its use to
category-specific models. In contrast, our approach can train a sin-
gle network in a category-agnostic manner because our approach
is based on inducing convexity priors in the embedding through
primitive fitting – this does not require category-specific knowl-
edge, such as the number of semantic parts, making our approach
more general.

Yang et al. [YC21] also propose fitting cuboids to point clouds
for the task of co-segmentation. In order to segment the input point
cloud based on the fitted cuboids, they define point to primitive
membership based on point embeddings and enforce this member-
ship to give correct correspondence between points and primitives.
However, their method trains a category-specific model, thus suf-
fers from the same limitation as BAE-Net.

Other techniques proposed models for generating implicit func-
tions from point clouds [GCV*19; DGY*20; MON*19], but it is
unclear how well the representations learned by those methods per-
form in recognition tasks. Several works use reconstruction losses
along with other self supervised tasks. Hassani et al. [HH19] pro-
pose multiple tasks: reconstruction, clustering and classification to
learn point representation for shapes. Thabet et al. [TAG19] pro-
pose a self-supervision task of predicting the next point in a space
filling curve (Morton-order curve) using RNN. The output features
from the RNN are used for semantic segmentation tasks. Several
works have proposed learning point representation using noisy la-
bels and semantic tags available from various shape repositories.
Sharma et al. [SKM19] learn point representations using noisy part
hierarchies and designer-labeled semantic tags for few-shot seman-
tic segmentation. Muralikrishnan et al. [MKC18] design a U-Net
to learn point representations that predicts user-prescribed shape-
level tags by first predicting intermediate semantic segmentation.
More recently, Xie et al. [XGG*20] learn per-point representation
for 3D scenes, where point embeddings of matched points from
two different views of a scene are pushed closer than un-matched
points under a contrastive learning framework. Sun et al. [STD*21]
propose an approach for learning shape representations by canoni-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

G. Sharma et al. / PRIFIT: Learning to Fit Primitives Improves Few Shot Point Cloud Segmentation

Point
processing

network
Z Mean shift

clustering
Differentiable

primitive fitting

Predicted
Semantic

Labels Cross
entropy loss

Input Point Cloud

Per Point Embedding
N x D

N x 3

N x C

Point Embedding
Module

Primitive Fitting
Module

Fitted Ellipsoids

GT Semantic
Labels

Reconstruction
Loss

MLP

MLP

Figure 2: Overview of PRIFIT. Given a point cloud, the point-embedding module outputs a feature representation for each point. This is
processed through the primitive-fitting module, that uses mean-shift clustering to cluster the points and fit a geometric primitive to each
cluster. We train the network with a reconstruction loss between the fitted primitives and the input point cloud over the unlabeled shapes, and
a categorical cross entropy loss over a small number of labeled shapes.

calizing point clouds with the help of capsule network while simul-
taneously decomposing point clouds into parts.

Closely related to our work, Gadelha et al. [GRS*20] use ap-
proximate convex decomposition of watertight meshes as source
of self-supervision by training a metric over point clouds that re-
spect the given decomposition. Our approach directly operates on
point clouds and integrates the decomposition objectives in a uni-
fied and end-to-end trainable manner. Empirically we observe that
this improves performance. It also removes the need for having a
black-box decomposition approach that is separated from the net-
work training.

Semi-supervised learning for 3D data. Similar to our approach,
Alliegro et al. [ABT20] use joint supervised and self-supervised
learning for learning 3D shape features. Their approach is based on
solving 3D jigsaw puzzles as a self-supervised task to learn shape
representation for classification and part segmentation. Wang et al.
[WLF20] proposed semi-supervised approach that aligns a labeled
template shape to unlabeled target shapes to transfer labels using
learned deformation. Luo et al. [LMH*20] proposed discovering
3D parts for objects in unseen categories by extracting part-level
features through encoding their local context, then using agglomer-
ative clustering and a grouping policy to merge small part propos-
als into bigger ones in a bottom-up fashion. Our method follows an
orthogonal approach where features are learned and clustered into
parts guided by primitive fitting.

Deep primitive fitting. Several approaches have investigated the
use of deep learning models for shape decomposition. Their com-
mon idea is to learn point-level representations used to gen-
erate primitives. Several primitive types have been proposed,
including superquadrics [PvGG20; PUG19], cuboids [GGC*20;
TSG*17], generalized cylinder [LGB*21] and radial basis func-
tions [GCV*19]. However, all these approaches have focused on
generative tasks with the goal of editing or manipulating a 3D

shape. Our insight is that reconstructing a shape by assembling sim-
pler components improves representation learning for discrimina-
tive tasks, especially when only a few labeled training examples are
available.

3. Method

Our method assumes that one is provided with a small set of la-
beled shapes Xl and a large set of unlabeled shapes Xu. Each shape
X ∈ {Xl ,Xu} is represented as a point cloud with N points, i.e.,
X = {xi} where xi ∈ R3. The shapes in Xl additionally come with
part label Y = {yi} for each point. In our experiments we use the
entire set of shapes from the ShapeNet core dataset [CFG*15] and
few labeled examples from the ShapeNet semantic segmentation
dataset and PartNet dataset.

The architecture of PRIFIT consists of a point embedding mod-
ule Φ and a primitive fitting module Ψ. The point embedding
module Φ(X) maps the shape into embeddings corresponding to
each point {Φ(xi)} ∈ RD. The primitive fitting module Ψ maps
the set of point embeddings to a set of primitives {Pi} ∈ P . Thus
Ψ ◦Φ : X → P is a mapping from point clouds to primitives. In
addition the point embeddings can be mapped to point labels via
a classification function Θ and thus, Θ ◦Φ : X → Y . We follow a
joint training approach where shapes from Xl are used to compute
a supervised loss and the shapes from Xu are used to compute a
self-supervised loss for learning by minimizing the following ob-
jective:

min
Φ,Ψ,Θ

Lssl +Lsl, where (1)

Lssl = E
X∼Xu

[
ℓssl

(
X ,Ψ◦Φ(X)

)]
, and (2)

Lsl = E
(X ,Y)∼Xl

[
ℓsl
(
Y,Θ◦Φ(X)

)]
. (3)

Here ℓssl is defined as a self-supervision loss between the point

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

G. Sharma et al. / PRIFIT: Learning to Fit Primitives Improves Few Shot Point Cloud Segmentation

cloud and a set of primitives, while ℓsl is the cross entropy loss
between predicted and true labels. We describe the details of the
point embedding module in Sec.3.1 and the primitive fitting module
in Sec. 3.2. Finally in Sec. 3.3 we describe various loss functions
used to train PRIFIT.

3.1. Point embedding module

This module produces an embedding of each point in a point
cloud. While any point cloud architecture [QSMG17; QYSG17;
WSL*19] can be used, we experiment with PointNet++ [QYSG17]
and DGCNN [WSL*19], two popular architectures for point cloud
segmentation. These architectures have also been used in prior
work on few-shot semantic segmentation making a comparison eas-
ier.

3.2. Primitive fitting module

The primitive fitting module is divided into a decomposition step
that groups the set of points into clusters in the embedding space,
and a fitting step that estimates the parameters of the primitive for
each cluster.

Decomposing a point cloud. These point embeddings Φ(xi)∈RD

are grouped into M clusters using a differentiable mean-shift clus-
tering. The motivation behind the choice of mean-shift over other
clustering approaches such as k-means is that it allows the num-
ber of clusters to vary according to a kernel bandwidth. In general
we expect that different shapes require different number of clus-
ters. We use recurrent mean-shift updates in a differentiable man-
ner as proposed by [KF18]. Specifically, we initialize seed points
as G(0) = Z ∈ RN×D and update them as follows:

G(t) = KZD−1. (4)

We use the von Mises-Fisher kernel [MJ09] K =
exp(G(t−1)ZT /b2), where D = diag(KI) and b is the band-
width. The bandwidth is computed dynamically for each shape by
using the average distance of each point to its 100th neighbor in
the embedding space [Läu88]. K is updated after every iteration.
The embeddings are normalized to unit norm, i.e., ||zi||2 = 1, after
each iteration. We perform 10 iterations during training. After
these updates, a non-max suppression step yields M cluster centers
cm,m = {1, . . . ,M} while making sure number of clusters are
bounded. The non-max suppression is done as follows: we start
by extracting the highest density points that include at least one
other point within a prescribed radius b. Then we remove all points
within that radius and repeat until no other high density points
are left. All selected high density points in this way act as cluster
centers.

Having updated the embeddings with the mean-shift iterations,
we can now define a soft membership W for each point xi, repre-
sented by the embedding vector gi

†, to the cluster center cm as

wi,m =
exp(c⊤m gi)

∑m exp(c⊤m gi)
, (5)

† Superscript t is dropped.

where wi,m = 1 represents the full membership of the ith point to
the mth cluster.

Ellipsoid fitting. Given the clustering, we then fit an ellipsoid
to each of the clusters. Traditionally, fitting an ellipsoid to a
point cloud is formulated as a minimum volume enclosing ellip-
soid [FP93] and solved using the Khachiyan algorithm. However,
it involves an optimization procedure that is not readily differen-
tiable, thus, making it hard to incorporate in an end-to-end training
pipeline. It is also susceptible to outliers (see supplementary mate-
rials for details). We instead rely on a simpler and faster differential
approximation based on singular value decomposition (SVD) for
ellipsoid fitting.

Given the membership of the point to mth cluster we first center
the points and compute the SVD as

µ =WmXZ−1, (6)

X = X −µ, and (7)

U,S,V = SVD(XTWmXZ−1). (8)

Here Wm is the diagonal matrix with wi,m as its diagonal entries
(Wm [i, i] = wi,m for mth cluster) and Z = trace(Wm). The orien-
tation of an ellipsoid is given by V . The length of the principal axes
can be computed from the singular values as ai = κ

√
Sii. We select

κ =
√

3/2 by cross validation. The matrix Wm selects the points
with membership to the mth cluster in a ‘soft’ or weighted fashion,
and the SVD in Eq. 8 gives us the parameters of the ellipsoid that
fits these weighted points.

Discussion — alternate choices for primitives. Our approach
can be used to fit cuboids instead of ellipsoids by considering the
bounding box of the fitted ellipsoids instead. This may induce dif-
ferent partitions over the point clouds, and we empirically compare
its performance in the Sec. 4. Another choice is to represent the sur-
face using an Atlas – a collection of parameterized patches. We use
the technique proposed in AtlasNet [GFK*18] where neural net-
works fθ parameterize the coordinate charts fθ : [0,1]2 → (x,y,z)
conditioned on a latent code computed from the point cloud. The
decoders are trained along with the encoder using gradient descent
to minimize Chamfer distance between input points and output
points across all decoders. An encoder trained in this fashion learns
to decompose input points into complex primitives, i.e. via arbi-
trary deformations of the 2D plane. Point representations learnt in
this fashion by the encoder can be used for downstream few-shot
semantic segmentation task as shown in Sec. 4 and Tab. 2. How-
ever, this approach requires adding multiple decoder neural net-
works. Our ellipsoid fitting approach does not require significant
architecture changes and avoids the extra parameters required by
AtlasNet.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

G. Sharma et al. / PRIFIT: Learning to Fit Primitives Improves Few Shot Point Cloud Segmentation

3.3. Loss functions

Reconstruction loss. This is computed as the Chamfer distance of
input point clouds from predicted primitives. For the distance of a
point on the input surface to the predicted surface we use

L1 =
N

∑
i=1

min
m

D2
m(xi). (9)

Here N is the number of points on the input shape and Dm(xi) is the
distance of input point xi from the mth primitive. This is one side
of Chamfer distance, ensuring that the predicted primitives cover
the input surface. In order to compute the distance of a point x
from an ellipsoid or cuboid primitive, first the point is centered and
re-oriented using the center and principal axes computed for the
primitive in Eq. 6 and Eq. 8 respectively: p = V T (x−µ). Then we
compute the signed distance SD(p) of the point to each primitive,
as described in the next paragraphs. Note that the unsigned distance
used in Eq. 9 is simply computed as D(p) = |SD(p)|.

In the case of an ellipsoid primitive, we compute the approximate
signed distance [Qui] of the transformed point p = (px, py, pz) to it
as

SD(p) = k1(k1 −1)/k2, (10)

where k1 and k2 are calculated as

k1 =

√
(

px

sx
)2 +(

py

sy
)2 +(

pz

sz
)2 and (11)

k2 =

√
(

px

s2
x
)2 +(

py

s2
y
)2 +(

pz

s2
z
)2 (12)

Here s = (sx,sy,sz) is a vector storing the lengths of the ellipsoid
semi-axis in all 3 directions.

In the case of a cuboid primitive, the distance of the transformed
point p to the primitive is computed as follows:

q =
(
|px|− sx, |py|− sy, |pz|− sz), (13)

q+ = (max{qx,0},max{qy,0},max{qz,0}), and (14)

SD(p) = ||q+||2 +min{max{qx,qy,qz},0}. (15)

Here s = (sx,sy,sz) stores here the half-axes lengths of the cuboid.
Note that the above equations measuring distances of points to
primitives are analytic and differentiable with respect to the point
coordinates.

To ensure that the input surface covers the predicted primitives
we minimize the loss

L2 =
M

∑
m=1

∑
p∼Em

N
min
i=1

||xi − p||22, (16)

where Em is the mth fitted primitive. We sample 10k points over
all ellipsoids, weighted by the surface area of each primitive. We
uniformly sample each primitive surface. These point samples are
a function of the parameters of the predicted primitives and hence

the gradients of the loss function can be back-propagated to the
network. In the case of an ellipsoid, its parametric equation is:(

x,y,z
)
=

(
sx cosusinv,sy sinusinv,sz cosv

)
, (17)

and its inverse parameterization is:(
v,u

)
=

(
arccos(sz/C),atan2(sy/B,sx/A)

)
, (18)

where (u, v) are the parameters of the ellipsoid’s 2D parametric do-
main, (x, y, z) the point coordinates, and (sx, sy, sz) the lengths
of semi-axis of the ellipsoid. To sample the ellipsoid in a near-
uniform manner, we start by creating a standard axis-aligned and
origin centered mesh using the principal axis lengths predicted by
PRIFIT. Then we apply Poisson surface sampling to gather points
on the surface in an approximately uniform manner. We then com-
pute parameters (u,v) of the sampled points using Eq. 18. Note
that this is done outside the computation graph. We inject the com-
puted parameters back to the computation graph using Eq. 17 to
compute point coordinates (x,y,z) again. These point coordinates
are rotated and shifted based on the predicted axis and center re-
spectively. Sampling over the cuboid surfaces is done in a similar
manner.

We use the two-sided loss to minimize reconstruction error

ℓrecon = L1 +L2. (19)

The hypothesis is that for a small number of primitives the above
losses encourage the predicted primitives to fit the input surface.
Since the fitting is done using a union of convex primitives, each
diagonal entry of the matrix Wm in Eq. 8 should have higher weights
to sets of points that belong to convex regions, thereby resulting in
a convex (or approximately convex) segmentation of a point cloud.
The point representations learnt in this manner are helpful for point
cloud segmentation as shown in Table 2.

Intersection loss. To encourage spatially compact clusters we in-
troduce a loss function that penalizes overlap between ellipsoids.
Note that the clustering objective does not guarantee this as they op-
erate on an abstract embedding space. Specifically, for each point p
sampled inside the surface of predicted shape should be contained
inside a single primitive. Alternatively the corresponding primitive
should have negative signed distance Sm(p) at that point p, whereas
the signed distance (SD) should be positive for the remaining prim-
itives. Let Vm be the set of points sampled inside the primitive m.
Then intersection loss is defined as

ℓinter = ∑
m

∑
p∼Vm

∑
j ̸=m

⌊S j(p)⌋2
−, (20)

where ⌊Sm(p)⌋− = min(Sm(p),0) includes only the points with
negative SD, as points with positive SD are outside the primitive
and do not contribute in intersection. We use a differentiable ap-
proximation of the signed distances to ellipsoid and cuboid as de-
scribed in Eq. 10 and Eq. 15. In the Table 5 we show that including
intersection loss improves semantic segmentation performance.

Similarity loss. Due to the general initialization schemes of the
network weights, all the per-point embeddings are similar, which
leads to mean-shift clustering grouping all points into a single clus-
ter. This trivial clustering results in a single ellipsoid fitted to the

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

G. Sharma et al. / PRIFIT: Learning to Fit Primitives Improves Few Shot Point Cloud Segmentation

entire shape which is similar to the PCA of the point cloud. This lo-
cal minima results in negligible gradients being back-propagated to
the network and prevents learning of useful features. We observed
this phenomenon in several point-based network architectures. This
local minima can be avoided by spreading the point embeddings
across the space. We add a small penalty only at the early stage of
training to minimize the similarity of output point embeddings G
from mean-shift iterations (Eq. 4) as

ℓsym = ∑
i ̸= j

(1+gig
⊤
j)

2. (21)

We discuss the quantitative effect of this loss in the Section 4.

3.4. Training details

We train our network jointly using both a self-supervised loss and a
supervised loss. We alternate between our self-supervised training
while sampling point clouds from the entire unlabeled Xu dataset
and supervised training while taking limited samples from the la-
beled Xl set. Hence our joint supervision and self-supervision ap-
proach follows semi-supervised learning paradigm.

L = ∑
X∼Xu

ℓrecon +λ1ℓinter +λ2ℓsym︸ ︷︷ ︸
ℓssl(self-supervision)

+ ∑
X∼Xl

ℓce︸ ︷︷ ︸
ℓsl(supervision)

(22)

where ℓce is a cross entropy loss, λ1 = 0.001 and λ2 = 2 are con-
stants. To produce segmentation labels for each point we implement
the classification function Θ in Eq. 3 using a 1D convolution layer
followed by a softmax function. More implementation details are
provided in the supplementary material.

Back-propagation and numerical stability

• To back-propagate the gradients through SVD computation we
use analytic gradients derived by Ionescu et al. [MN99]. We im-
plemented a custom Pytorch layer following [LSD*18]. SVD of
a matrix X ∈Rm,n is given by X =UΣV T with m ≥ n, UTU = I,
V TV = I and Σ ∈ Rn,n possessing diagonal structure. We define
an SVD layer that receives a matrix X as input and produces a tu-
ple of 3 matrices U , Σ and V , defined as f (X) = (U,Σ,V). Given
a loss function L = L(f (X)), we are interested in ∂L

∂X . Assum-
ing, ∂L

∂U , ∂L
∂Σ

, ∂L
∂V are known using automatic differentiation. For

our purpose, we assume that ∂L
∂U = 0 as U is not a part of the

computation graph. Then gradient of the output w.r.t. the input X
is given by

∂L
∂X

=U(
∂L
∂Σ

)diagV T +2UΣ(KT ◦ (V T (
∂L
∂V

)))symV T , (23)

Ki j =

{ 1
σ2

i −σ2
j
, i ̸= j

0, i = j.
(24)

σi is the ith singular value. Msym = 1
2 (M +MT) and Mdiag is M

with off diagonal entries set to 0. When back-propagating gra-
dients through SVD, gradients can go to infinity when singular
values are indistinct. This happens when membership weights

in a cluster are concentrated on a line, point or sphere. Follow-
ing [IVS15], the above term Ki j is changed to Ki j = 1/(σi +

σ j)sign(σi −σ j)(max(|σi −σ j|,ε) with ε = 10−6. SVD com-
putation can still be unstable when the condition number of the
input matrix is large. In this case, we remove that cluster from
the backward pass when condition number is greater than 105.

• Membership function: In Eq. 5 the input to the exponential func-
tion is clamped to avoid numerical instability during training.
Furthermore, the quantity r = maxi,m cT

mgi is subtracted from the
arguments of exponential function in both numerator and de-
nominator to avoid weights becoming infinity.

• Differentiability of mean shift clustering procedure: The mem-
bership matrix W ∈ RN×M is constructed by doing non-max
suppression (NMS) over output G of mean shift iteration. The
derivative of NMS w.r.t embeddings G is either zero or un-
defined, thereby making it non-differentiable. Thus we remove
NMS from the computation graph and back-propagate through
the rest of the graph, which is differentiable through Eq. 5.
This can be seen as a straight-through estimator [SHWA15],
which has been used in previous shape parsing works [LSD*18;
SLM*20].

The code of our implementation can be found on the web page:
https://hippogriff.github.io/prifit/.

4. Experiments

4.1. Datasets

As a source of unlabeled data for the task of self supervision, we
use the ShapeNet Core dataset [CFG*15], which consists of 55
categories with 55,447 meshes in total. We sample these meshes
uniformly to get 2048 points per shape. For the task of few-shot
semantic segmentation, we use the ShapeNet Semantic Segmenta-
tion dataset, which consists of 16,881 labeled point clouds across
16 shape categories with total 50 part categories.

We also evaluate our method on the PartNet dataset [MZC*19b].
This dataset provides fine-grained semantic segmentation annota-
tion for various 3D shape categories, unlike the more coarse-level
shape parts in the ShapeNet dataset. We use 12 categories from
“level-3”, which denotes the finest level of segmentation. For train-
ing different approaches in few-shot framework, we remove test
shapes of labeled dataset Xl from our self-supervision dataset Xu.
This avoids train-test set overlap.

4.2. Few-shot part segmentation on ShapeNet

For each category from the ShapeNet part segmentation dataset, we
randomly sample k labeled shapes (16×k in total) and use these for
training the semantic segmentation component of our model. We
use the entire training set from the ShapeNet core dataset for self
supervision task. We train a single model on all 16 shape categories
of ShapeNet.

Baselines. Our first baseline takes the PointNet++ as the base ar-
chitecture and trains it from scratch on only labeled training ex-
amples, using k labeled shapes per category in a few-shot setup.
Second, we create a reconstruction baseline – we use a PointNet++

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://hippogriff.github.io/primfit/

G. Sharma et al. / PRIFIT: Learning to Fit Primitives Improves Few Shot Point Cloud Segmentation

Figure 3: Visualization of predicted semantic labels and ellipsoids on the ShapeNet dataset. Top: Ground truth point clouds, middle:
predicted labels using our fitting approach, trained using k = 10 labeled examples per category, bottom: predicted ellipsoids. PRIFIT predicts
variable number of ellipsoids to approximate the input point cloud while maintaining correspondence with semantic parts.

Samples/cls. k=1 k=3 k=5 k=10 k=20 k=50 k=100 k=max

Baseline 53.15 ± 2.4 59.54 ± 1.4 68.14 ± 0.9 71.32 ± 0.5 75.22 ± 0.8 78.79 ± 0.4 79.67 ± 0.3 81.40 ± 0.4
PRIFIT 63.14 ± 3.4 71.24 ± 1.3 73.75 ± 0.7 75.03 ± 0.9 76.73 ± 0.5 79.28 ± 0.2 80.16 ± 0.2 80.40 ± 0.1

Table 1: Few-shot segmentation on the ShapeNet dataset (class avg. IoU over 5 rounds). The number of shots or samples per class is denoted
by k for each of the 16 ShapeNet shape categories used for supervised training. Our proposed method PRIFIT consistently outperforms the
baselines.

as a shared feature extractor, which extracts a global shape encod-
ing that is input to an AtlasNet decoder [GFK*18] with 25 charts. A
separate decoder is used to predict per-point semantic labels. This
network is trained using a Chamfer distance-based reconstruction
loss using the entire unlabeled training set and using k labeled train-
ing examples. We use 5 different rounds with sampled labeled sets
at various values of k and report their average performance. We
train a single model for all categories.

Discussion of results. Table 1 shows results on few-shot segmen-
tation at different number of labeled examples. Our method PRIFIT

performs better than the supervised baseline showing the effective-
ness of our method as semi-supervised approach.

In Table 2 we compare our approach with previous methods us-
ing instance IOU and class IOU [QYSG17], using 1% and 5%
of the labeled training set to train different methods. Note that
instance IOU is highly influenced by the shape categories with
large number of testing shapes e.g. Chair, Table. Class IOU, on
the other hand gives equal importance to all categories, hence
it is a more robust evaluation metric. PRIFIT performs better
than previous self-supervised [TAG19; GRS*20; HH19] and semi-
supervised [ABT20; WLF20] approaches. Notable our approach
significantly outperforms learned deformation based approach pro-

Method 1% 5% 1% 5%
ins IoU ins IoU cls IoU cls IoU

SO-Net [LCH18] 64.0 69.0 - -
PointCapsNet [ZBDT19] 67.0 70.0 - -
MortonNet [TAG19] - 77.1 - -
Deformation [WLF20] 68.9 - 66.2 -
JointSSL [ABT20] 71.9 77.4 - -
Multi-task [HH19] 68.2 77.7 - 72.1
ACD [GRS*20] † 75.1 78.6 74.6 77.5
PRIFIT w/ Atlas 73.8 78.6 74.5 78.9
PRIFIT w/ Cuboid 74.6 78.6 75.2 78.6
PRIFIT w/ Ellipsoid 75.4 78.7 75.3 79.0

Table 2: Comparison with state-of-the-art few-shot part segmentation
methods on ShapeNet. Performance is evaluated using instance-averaged
and class-averages IoU. † - We re-ran the publicly-released code from
ACD [GRS*20] on our data splits, ensuring fair comparison.

posed by Wang et al. [WLF20] ‡. PRIFIT with ellipsoid as primi-
tive outperforms previous methods including PRIFIT baseline with

‡ We run their code on all 16 categories on 5 different random splits

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

G. Sharma et al. / PRIFIT: Learning to Fit Primitives Improves Few Shot Point Cloud Segmentation

b.

c.

d.

a.

Figure 4: Visualization of various primitive fitting approaches. a)
input point cloud. b) Ellipsoid fitting using our approach. c) cuboid
fitting using our approach. d) different primitives from AtlasNet.
Different colors are used to depict different primitives. For AtlasNet
we visualize each chart with a unique color. Notice that geometric
primitives are better localized and approximate the shape in fewer
primitives in comparison to AtlasNet.

AtlasNet. Interestingly, PRIFIT with AtlasNet outperforms all pre-
vious baselines except ACD§. We speculate that since primitives
predicted by AtlasNet are highly overlapped and less localized in
comparison to our ellipsoid and cuboid fitting approaches as shown
in Figure 4, this results in worse performance of AtlasNet.

PRIFIT with ellipsoid primitives gives the best results, outper-
forming ACD without having to rely on an external black-box
method for the self-supervisory training signal. This shows that our
approach of primitive fitting in an end-to-end trainable manner is
better than training a network using contrastive learning guided by
approximate convex decomposition of water-tight meshes as pro-
posed by ACD.

In Figure 3 we show predicted semantic labels using PRIFIT

along with fitted ellipsoids. In Figure 4 we show outputs of vari-
ous self supervision techniques using primitive fitting. We exper-
imented with both cuboid and ellipsoid fitting as a self supervi-
sion task. We observed that both performs similar qualitatively and
quantitatively. The fitted primitives using ellipsoid/cuboid fitting
approaches are more aligned with different parts of the shape in
comparison to the outputs of AtlasNet.

Effect of the size of unlabeled dataset. In the Table 3 we show
the effect of size of unlabeled dataset used for self-supervision. We

§ We run their code on our random split for fair comparison.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
NMI

0

20

40

60

N
u
m

b
e
r

o
f

sh
a
p
e
s

points

PriFit

0.2 0.4 0.6 0.8
Recall

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

PriFit
points

Figure 5: Analysis of clustering. We analyze two clustering ap-
proaches, 1) PRIFIT and 2) directly clustering points using K-
Means. Top: normalized mutual information (NMI) and bottom:
precision vs recall between predicted clusters and semantic part
labels. PRIFIT gives higher average NMI (54.3 vs 35.4) and higher
precision than clustering with only points as features.

size 0 2.5k 25k 52k
class avg. IOU 68.1 68.9 72.6 73.7

Table 3: Effect of the size of unlabeled dataset used for self-
supervision on 5-shot semantic segmentation on ShapeNet.

observe improvement in performance of 5-shot semantic segmen-
tation task with increase in unlabeled dataset.

Effect of similarity loss. Similarity loss is only used in the ini-
tial stage of training as it prevents the network converging to a lo-
cal minima at this early phase. Without this procedure, our perfor-
mance is similar to Baseline (training from scratch). However, us-
ing only similarity loss (without reconstruction loss) leads to worse
results (44.2 mIOU) than Baseline (68.1 mIOU) on few-shot k=5
setting.

Analysis of learned point embeddings In Figure 5 we quanti-
tatively analyze the performance of clustering induced by PRI-
FIT and compare it with clustering obtained by running the K-
Means algorithm directly on point clouds. We take 340 shapes from
the Airplane category of ShapeNet for this experiment and show
the histogram of Normalized Mutual Information (NMI) [SG03]
and the precision-recall curve [FM83] between predicted clusters
and ground truth part labels. Our approach produces clusters with

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

G. Sharma et al. / PRIFIT: Learning to Fit Primitives Improves Few Shot Point Cloud Segmentation

Figure 6: TSNE visualization of learned embeddings. For each shape category, we take a fixed number of shapes and extract point em-
beddings from PRIFIT. We run TSNE on each category separately to project the 128-D embeddings to 3D color space. Notice that points
belonging to same semantic parts are colored similarly, which indicates the consistency of learned embeddings.

higher NMI (54.3 vs 35.4), which shows better alignment of our
predicted point clusters with the ground truth part labels. Our ap-
proach also produces higher precision clusters in comparison to
K-Means at equivalent recall, which shows the tendency of our
algorithm to over-segment a shape. To further analyze the con-
sistency of learned point embedding across shapes, we use TSNE
[vdMaa14] to visualize point embedding by projecting them to 3D
color space. We use a fixed number of shapes for each category and
run TSNE on each category separately. Figure 6 shows points be-
longing to same semantic parts are consistently projected to similar
colors, further confirming the consistency of learned embeddings.

4.3. Few-shot segmantic segmentation on PartNet

Here we experiment on the PartNet dataset for the task of few-shot
semantic segmentation. For each category from this dataset, we ran-
domly sample k labeled shapes and use these for training semantic
segmentation part of the architecture. Similar to our previous ex-
periment, we use the complete training shapes from the ShapeNet
Core dataset for the self-supervision task. We choose DGCNN as
a backbone architecture for this experiment. Unlike our ShapeNet
experiments, in the PartNet experiment we train a separate model
for each category, as done in the original paper [MZC*19b].

Similar to our previous experiment, we create two baselines –
1) we train a network from scratch providing only k labeled exam-
ples, and 2) we train the AtlasNet on the entire unlabeled training
set using the self-supervised reconstruction loss and only k labeled
examples as supervision.

Table 4 shows part avg. IOU for the different methods. The
AtlasNet method shows improvement over the purely-supervised
baseline. PRIFIT shows improvement over both AtlasNet and Base-
line, indicating the effectiveness of our approach in the fine-grained

Samples/cls. k=10 k=20 k=40

Baseline 27.2±0.7 31.6±0.6 36.7±0.9
PRIFIT w/ Atlas 28.5±0.7 31.7±0.7 36.5±0.7
PRIFIT w/ Cuboid 29.3±0.4 32.4±0.7 37.5±0.5
PRIFIT w/ Ellipsoid 29.4±0.7 32.6± 0.6 37.6±0.4

Table 4: Few-shot segmentation on the PartNet dataset (part avg.
IoU over 5 rounds). The number of shots or samples per class is
denoted by k for each of the 12 PartNet categories used for super-
vised training. Our proposed method PRIFIT consistently outper-
forms the baseline.

semantic segmentation setting as well. We further experiment with
cuboids as the primitive, which achieves similar performance as
using ellipsoid primitives, consistent with our previous ShapeNet
results.

Effect of intersection loss. We also experiment with adding in-
tersection loss while training PRIFIT with ellipsoid primitives, as
shown in Table 5. This gives improvements only on the PartNet
dataset, and we speculate that since PartNet contains fine-grained
segmentation of shapes, minimizing overlap between primitives
here is more helpful than in the ShapeNet dataset, which contains
only a coarse level of segmentation. On ShapeNet, we observed that
the intersection loss is beneficial for 9 out of 16 categories (Air-
plane, Bag, Chair, Guitar, Lamp, Laptop, Mug, Rocket and Table).
On the PartNet dataset we observed the intersection loss is benefi-
cial for 8 out of 12 categories (Bed, Bottle, Dishwasher, Display,
Knife, Microwave, StorageFurniture and TrashCan). In general, we
observed that the benefits from this loss function varies with the

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

G. Sharma et al. / PRIFIT: Learning to Fit Primitives Improves Few Shot Point Cloud Segmentation

Method
ShapeNet
cls. IoU

PartNet
part avg. IoU

k=1% k=5% k=10 k=20
PRIFIT w/ Ellipsoids 75.3 79.0 28.9 32.1
PRIFIT w/ Ellipsoids+inter 75.0 79.0 29.4 32.6

Table 5: Effect of intersection loss. Average performance over all
categories for PRIFIT trained with intersection loss (+inter) and
without intersection loss on ShapeNet and PartNet dataset. PRIFIT

trained with intersection loss (+inter) gives improvement on Part-
Net dataset.

category of shape and the coarseness of the segmentation. Similar
observation was also made by Kawana et al. [KMH20].

5. Conclusion

We propose a simple semi-supervised learning approach, PRIFIT,
for learning point embeddings for few shot semantic segmentation.
Our approach learns to decompose an unlabeled point cloud into
a set of geometric primitives, such as ellipsoids and cuboids, or
alternatively deformed planes as in AtlasNet. We provide an end-
to-end trainable framework for incorporating this task into standard
network architectures for point cloud segmentation. PRIFIT can be
readily applied to existing architectures for semantic segmentation
and shows improvements over fully-supervised baselines and other
approaches on the ShapeNet and PartNet datasets. This indicates
that learning to reconstruct a shape using primitives can induce
representations useful for discriminative downstream tasks. PRI-
FIT also has limitations: we currently rely on basic primitives of
a single type (i.e. ellipsoid, cuboids, or deformed planes). Predict-
ing combinations of primitives or other types of primitives for each
shape could be useful to capture more part variability. In addition,
our primitives capture the shape rather coarsely, making our repre-
sentations less fit for fine-grained tasks. Finally, it would be inter-
esting to explore unsupervised approaches based on primitive and
other forms of surface fitting.

6. Acknowledgements

The work is supported in part by NSF grants 1908669 and 1749833.
The experiments were performed using equipment obtained under
a grant from the Collaborative Fund managed by the Mass. Tech.
Collaborative.

References
[ABT20] ALLIEGRO, ANTONIO, BOSCAINI, DAVIDE, and TOMMASI,

TATIANA. Joint Supervised and Self-Supervised Learning for 3D Real-
World Challenges. 2020 3, 7.

[Bie87] BIEDERMAN, IRVING. “Recognition-by-components: a theory of
human image understanding.” Psychological review 94.2 (1987) 2.

[Bin71] BINFORD, I. “Visual perception by computer”. IEEE Conference
of Systems and Control. 1971 2.

[BLM87] BINFORD, THOMAS O, LEVITT, TOD S, and MANN, WAL-
LACE B. “Bayesian inference in model-based machine vision”. Proceed-
ings of the Third Conference on Uncertainty in Artificial Intelligence.
1987 2.

[CBC*01] CARR, JONATHAN C, BEATSON, RICHARD K, CHERRIE, JON
B, et al. “Reconstruction and representation of 3D objects with radial ba-
sis functions”. Proceedings of the 28th annual conference on Computer
graphics and interactive techniques. 2001 2.

[CFG*15] CHANG, ANGEL X., FUNKHOUSER, THOMAS A., GUIBAS,
LEONIDAS J., et al. “ShapeNet: An Information-Rich 3D Model Repos-
itory”. CoRR abs/1512.03012 (2015) 1, 3, 6.

[CYF*19] CHEN, ZHIQIN, YIN, KANGXUE, FISHER, MATTHEW, et al.
“BAE-NET: branched autoencoder for shape co-segmentation”. Pro-
ceedings of the IEEE International Conference on Computer Vision.
2019 2.

[DGY*20] DENG, BOYANG, GENOVA, KYLE, YAZDANI, SOROOSH, et
al. “CvxNet: Learnable Convex Decomposition”. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2020 2.

[FM83] FOWLKES, E. B. and MALLOWS, C. L. “A Method for Compar-
ing Two Hierarchical Clusterings”. Journal of the American Statistical
Association 78.383 (1983) 8.

[FP93] FANG, SHU-CHERNG and PUTHENPURA, SARAT. Linear Opti-
mization and Extensions: Theory and Algorithms. USA: Prentice-Hall,
Inc., 1993. ISBN: 0139152652 4, 12.

[GCV*19] GENOVA, KYLE, COLE, FORRESTER, VLASIC, DANIEL, et al.
“Learning Shape Templates with Structured Implicit Functions”. Inter-
national Conference on Computer Vision. 2019 2, 3.

[GFK*18] GROUEIX, THIBAULT, FISHER, MATTHEW, KIM, VLADIMIR
G., et al. “AtlasNet: A Papier-Mâché Approach to Learning 3D Surface
Generation”. Proceedings IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR). 2018 1, 2, 4, 7.

[GGC*20] GADELHA, MATHEUS, GORI, GIORGIO, CEYLAN, DUYGU, et
al. “Learning Generative Models of Shape Handles”. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2020 3.

[GRS*20] GADELHA, MATHEUS, ROYCHOWDHURY, ARUNI, SHARMA,
GOPAL, et al. “Label-Efficient Learning on Point Clouds using Approx-
imate Convex Decompositions”. European Conference on Computer Vi-
sion (ECCV). 2020 1, 3, 7.

[GSMC09] GAL, RAN, SORKINE, OLGA, MITRA, NILOY J., and
COHEN-OR, DANIEL. “iWIRES: An Analyze-and-Edit Approach to
Shape Manipulation”. ACM Transactions on Graphics (Siggraph) 28.3
(2009) 2.

[GSV*17] GORI, GIORGIO, SHEFFER, ALLA, VINING, NICHOLAS, et al.
“FlowRep: Descriptive Curve Networks for Free-Form Design Shapes”.
ACM Transaction on Graphics 36.4 (2017) 2.

[GWM18] GADELHA, MATHEUS, WANG, RUI, and MAJI, SUBHRANSU.
“Multiresolution Tree Networks for 3D Point Cloud Processing”. ECCV.
2018 2.

[HH19] HASSANI, KAVEH and HALEY, MIKE. “Unsupervised multi-task
feature learning on point clouds”. Proceedings of the IEEE International
Conference on Computer Vision. 2019 2, 7.

[HR83] HOFFMAN, DONALD D and RICHARDS, WHITMAN. “Parts of
recognition”. (1983) 2.

[IVS15] IONESCU, C., VANTZOS, O., and SMINCHISESCU, C. “Matrix
Backpropagation for Deep Networks with Structured Layers”. IEEE In-
ternational Conference on Computer Vision (ICCV). 2015 6.

[KF18] KONG, SHU and FOWLKES, CHARLESS C. “Recurrent pixel em-
bedding for instance grouping”. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2018 4.

[KMH20] KAWANA, YUKI, MUKUTA, YUSUKE, and HARADA, TAT-
SUYA. “Neural Star Domain as Primitive Representation”. Proceedings
of the 34th International Conference on Neural Information Processing
Systems. 2020 10.

[KYB19] KAISER, ADRIEN, YBANEZ ZEPEDA, JOSE ALONSO, and
BOUBEKEUR, TAMY. “A Survey of Simple Geometric Primitives De-
tection Methods for Captured 3D Data”. Computer Graphics Forum 38.1
(2019) 2.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

G. Sharma et al. / PRIFIT: Learning to Fit Primitives Improves Few Shot Point Cloud Segmentation

[Läu88] LÄUTER, H. “Silverman, B. W.: Density Estimation for Statistics
and Data Analysis. Chapman & Hall, London – New York 1986, 175
pp.” Biometrical Journal 30.7 (1988) 4.

[LCH18] LI, JIAXIN, CHEN, BEN M, and HEE LEE, GIM. “SO-Net: Self-
organizing network for point cloud analysis”. Proceedings of the IEEE
conference on computer vision and pattern recognition. 2018 7.

[LCL18] LI, JIAXIN, CHEN, BEN M, and LEE, GIM HEE. “SO-Net:
Self-Organizing Network for Point Cloud Analysis”. arXiv preprint
arXiv:1803.04249 (2018) 2.

[LGB*21] LIU, YANCHAO, GUO, JIANWEI, BENES, BEDRICH, et al.
“TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Re-
construction”. ACM Trans. Graph. 40.6 (Dec. 2021) 3.

[LMH*20] LUO, TIANGE, MO, KAICHUN, HUANG, ZHIAO, et al. “Learn-
ing to Group: A Bottom-Up Framework for 3D Part Discovery in Unseen
Categories”. arXiv preprint arXiv:2002.06478 (2020) 3.

[LSD*18] LI, LINGXIAO, SUNG, MINHYUK, DUBROVINA, ANASTASIA,
et al. Supervised Fitting of Geometric Primitives to 3D Point Clouds.
2018. eprint: arXiv:1811.08988 6.

[MGV11] MACEDO, IVES, GOIS, JOAO PAULO, and VELHO, LUIZ.
“Hermite radial basis functions implicits”. Computer Graphics Forum.
Vol. 30. 1. Wiley Online Library. 2011 2.

[MJ09] MARDIA, KANTI V and JUPP, PETER E. Directional statistics.
Vol. 494. John Wiley & Sons, 2009 4.

[MKC18] MURALIKRISHNAN, SANJEEV, KIM, VLADIMIR G., and
CHAUDHURI, SIDDHARTHA. “Tags2Parts: Discovering Semantic Re-
gions from Shape Tags”. Proc. CVPR. IEEE, 2018 2.

[MN78] MARR, DAVID and NISHIHARA, HERBERT KEITH. “Represen-
tation and recognition of the spatial organization of three-dimensional
shapes”. Proceedings of the Royal Society of London. Series B. Biologi-
cal Sciences 200.1140 (1978) 2.

[MN99] MAGNUS, JAN R. and NEUDECKER, HEINZ. Matrix Differential
Calculus with Applications in Statistics and Econometrics. Second. John
Wiley, 1999 6.

[MON*19] MESCHEDER, LARS, OECHSLE, MICHAEL, NIEMEYER,
MICHAEL, et al. “Occupancy Networks: Learning 3D Reconstruction
in Function Space”. Proceedings IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR). 2019 2.

[MZC*19a] MO, KAICHUN, ZHU, SHILIN, CHANG, ANGEL X., et al.
“PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchi-
cal Part-Level 3D Object Understanding”. Computer Vision and Pattern
Recognition (CVPR). 2019 1.

[MZC*19b] MO, KAICHUN, ZHU, SHILIN, CHANG, ANGEL X., et al.
“PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchi-
cal Part-Level 3D Object Understanding”. Computer Vision and Pattern
Recognition (CVPR). 2019 6, 9.

[MZL*09] MEHRA, RAVISH, ZHOU, QINGNAN, LONG, JEREMY, et al.
“Abstraction of Man-Made Shapes”. ACM Transactions on Graphics
28.5 (2009) 2.

[PUG19] PASCHALIDOU, DESPOINA, ULUSOY, ALI OSMAN, and
GEIGER, ANDREAS. “Superquadrics Revisited: Learning 3D Shape
Parsing beyond Cuboids”. Computer Vision and Pattern Recognition
(CVPR). 2019 3.

[PvGG20] PASCHALIDOU, DESPOINA, van GOOL, LUC, and GEIGER,
ANDREAS. “Learning Unsupervised Hierarchical Part Decomposition
of 3D Objects from a Single RGB Image”. Proceedings IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR). 2020 3.

[QSMG17] QI, CHARLES R, SU, HAO, MO, KAICHUN, and GUIBAS,
LEONIDAS J. “PointNet: Deep Learning on Point Sets for 3D Classi-
fication and Segmentation”. Proc. CVPR. 2017 4.

[Qui] QUILEZ, INIGO. Ellipsoid SDF. https://www.iquilezles.
org/www/articles/ellipsoids/ellipsoids.htm. Ac-
cessed: 2020-11-15 5.

[QYSG17] QI, CHARLES R., YI, LI, SU, HAO, and GUIBAS, LEONIDAS.
“PointNet++: Deep Hierarchical Feature Learning on Point Sets in a
Metric Space”. Proc. NIPS. 2017 1, 4, 7.

[SG03] STREHL, ALEXANDER and GHOSH, JOYDEEP. “Cluster Ensem-
bles — a Knowledge Reuse Framework for Combining Multiple Parti-
tions”. J. Mach. Learn. Res. 3 (Mar. 2003) 8.

[SHWA15] SCHULMAN, JOHN, HEESS, NICOLAS, WEBER, THEO-
PHANE, and ABBEEL, PIETER. “Gradient Estimation Using Stochastic
Computation Graphs”. Neural Information Processing Systems. 2015 6.

[SKM19] SHARMA, GOPAL, KALOGERAKIS, EVANGELOS, and MAJI,
SUBHRANSU. “Learning Point Embeddings from Shape Repositories for
Few-Shot Segmentation”. International Conference on 3D Vision (3DV).
2019 2.

[SLM*20] SHARMA, GOPAL, LIU, DIFAN, MAJI, SUBHRANSU, et al.
“ParSeNet: A Parametric Surface Fitting Network for 3D Point Clouds”.
Computer Vision and Pattern Recognition (CVPR). 2020 6.

[STD*21] SUN, WEIWEI, TAGLIASACCHI, ANDREA, DENG, BOYANG, et
al. “Canonical Capsules: Self-Supervised Capsules in Canonical Pose”.
Advances in Neural Information Processing Systems. Vol. 34. 2021 2.

[SWK07] SCHNABEL, R., WAHL, R., and KLEIN, R. “Efficient RANSAC
for Point-Cloud Shape Detection”. Computer Graphics Forum 26.2
(2007) 2.

[TAG19] THABET, ALI, ALWASSEL, HUMAM, and GHANEM, BERNARD.
“MortonNet: Self-Supervised Learning of Local Features in 3D Point
Clouds”. arXiv (Mar. 2019). eprint: 1904.00230 2, 7.

[TGB13] THIERY, JEAN-MARC, GUY, EMILIE, and BOUBEKEUR,
TAMY. “Sphere-Meshes: Shape Approximation using Spherical Quadric
Error Metrics”. ACM Transaction on Graphics (Proc. SIGGRAPH Asia
2013) 32.6 (2013), Art. No. 178 2.

[TSG*17] TULSIANI, SHUBHAM, SU, HAO, GUIBAS, LEONIDAS J., et al.
“Learning Shape Abstractions by Assembling Volumetric Primitives”.
Computer Vision and Pattern Regognition (CVPR). 2017 3.

[vdMaa14] Van der MAATEN, LAURENS. “Accelerating t-SNE using
Tree-Based Algorithms”. Journal of Machine Learning Research 15.93
(2014) 9.

[WLF20] WANG, LINGJING, LI, XIANG, and FANG, YI. “Few-Shot
Learning of Part-Specific Probability Space for 3D Shape Segmenta-
tion”. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020 3, 7.

[WSL*19] WANG, YUE, SUN, YONGBIN, LIU, ZIWEI, et al. “Dynamic
Graph CNN for Learning on Point Clouds”. ACM Transactions on
Graphics (TOG) 38.5 (2019) 1, 4.

[XGG*20] XIE, SAINING, GU, JIATAO, GUO, DEMI, et al. “PointContrast:
Unsupervised Pre-training for 3D Point Cloud Understanding”. ECCV.
2020 2.

[XLG12] XIAN, CHUHUA, LIN, HONGWEI, and GAO, SHUMING. “Auto-
matic cage generation by improved OBBs for mesh deformation”. The
Visual Computer 28.1 (2012) 2.

[YC21] YANG, KAIZHI and CHEN, XUEJIN. “Unsupervised Learning for
Cuboid Shape Abstraction via Joint Segmentation from Point Clouds”.
ACM Trans. Graph. 40.4 (July 2021) 2.

[YFST18] YANG, YAOQING, FENG, CHEN, SHEN, YIRU, and TIAN,
DONG. “Foldingnet: Point cloud auto-encoder via deep grid deforma-
tion”. Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. 2018 2.

[YHH*19] YANG, GUANDAO, HUANG, XUN, HAO, ZEKUN, et al. “Point-
flow: 3d point cloud generation with continuous normalizing flows”.
Proceedings of the IEEE International Conference on Computer Vision.
2019 2.

[ZBDT19] ZHAO, YONGHENG, BIRDAL, TOLGA, DENG, HAOWEN, and
TOMBARI, FEDERICO. “3D point capsule networks”. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2019 2,
7.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

arXiv:1811.08988
https://www.iquilezles.org/www/articles/ellipsoids/ellipsoids.htm
https://www.iquilezles.org/www/articles/ellipsoids/ellipsoids.htm
1904.00230

G. Sharma et al. / PRIFIT: Learning to Fit Primitives Improves Few Shot Point Cloud Segmentation

[ZYH*15] ZHOU, YANG, YIN, KANGXUE, HUANG, HUI, et al. “General-
ized Cylinder Decomposition”. ACM Trans. Graph. 34.6 (2015) 2.

Appendix A: Supplementary Material

Additional training details For few-shot experiments on
Shapenet dataset, we train PointNet++ architecture on 4 Nvidia
1080Ti GPUs. We use batch size of 24 for all methods. The K-
shot baseline is trained for approximately K ×200 iterations while
PRIFIT is always trained with approximately K × 1000 iterations.
The average time to predict primitives for a single shape is 98 ms
on a single Nvidia 1080Ti GPU.

Points

MVE

PriFit

Outlier

Figure 7: Robustness to outliers. An example of outlier-robust fit-
ting with our method in contrast to MVE (minimum volume ellip-
soid) that is sensitive to outliers. Our fitting result shown in green
closely fits the input points (red) while ignoring the outlier, whereas
MVE approach (blue) is sensitive to the outlier.

Robustness of ellipsoid fitting. Fig. 7 shows the robustness of our
approach to outliers in comparison to minimum volume ellipsoid
(MVE) [FP93]. Our approach takes into account the membership of
the point to a cluster. For this example, we use a simple membership
function 1/r

1
4 , where r is the distance of point from the center of

the cluster and incorporates these per-point weights to estimate the
parameters of ellipsoid in a closed form using SVD.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

	Introduction
	Related Work
	Method
	Point embedding module
	Primitive fitting module
	Loss functions
	Training details

	Experiments
	Datasets
	Few-shot part segmentation on ShapeNet
	Few-shot segmantic segmentation on PartNet

	Conclusion
	Acknowledgements
	Supplementary Material

