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Abstract

User generated 3D shapes in online repositories contain
rich information about surfaces, primitives, and their geo-
metric relations, often arranged in a hierarchy. We present
a framework for learning representations of 3D shapes that
reflect the information present in this meta data and show
that it leads to improved generalization for semantic seg-
mentation tasks. Our approach is a point embedding net-
work that generates a vectorial representation of the 3D
points such that it reflects the grouping hierarchy and tag
data. The main challenge is that the data is noisy and high-
ly variable. To this end, we present a tree-aware metric-
learning approach and demonstrate that such learned em-
beddings offer excellent transfer to semantic segmentation
tasks, especially when training data is limited. Our ap-
proach reduces the relative error by 10.2% with 8 train-
ing examples, by 11.72% with 120 training examples on the
ShapeNet semantic segmentation benchmark, in compari-
son to the network trained from scratch. By utilizing tag
data the relative error is reduced by 12.8% with 8 train-
ing examples, in comparison to the network trained from
scratch. These improvements come at no additional label-
ing cost as the meta data is freely available.

1. Introduction
The ability to decompose a 3D shape into semantic parts

can enable applications from shape retrieval in online repos-
itories, to robotic manipulation and shape generation. Yet,
automatic techniques for shape segmentation are limited by
the ability to collect labeled training data, which is often ex-
pensive or time consuming. Unlike images, online reposito-
ries of user-generated 3D shapes, such as the 3D Warehouse
repository [2], contain rich metadata associated with each
shape. These include information about geometric prim-
itives (e.g., polygons in 3D meshes) organized in groups,
often arranged in a hierarchy, as well as color, material and
tags assigned to them. This information reflects the model-
ing decisions of the designer are likely correlated with high-
level semantics.

Despite its abundance, the use of metadata for learning
shape representations has been relatively unexplored in the
literature. One barrier is the high degree of its variability.
These models were created by designers with a diverse set
of goals and with a wide range of expertise. As a result the
groups and hierarchies over parts of a shape that reflect the
modeling steps taken by the designer are highly variable:
two similar shapes can have significantly different number
of parts as well as the number of levels in the part hierarchy.
Moreover, the tags are rarely assigned to parts and are often
arbitrarily named. Figures 1 and 2 illustrate this variability.

Our work systematically addresses these challenges and
presents an approach to exploit the information present in
the metadata to improve the performance of a state-of-the-
art 3D semantic segmentation model. Our approach, illus-
trated in Figure 1, consists of a deep network that maps
each point in a 3D shape to a fixed dimensional embed-
ding. The network is trained in a way such that the em-
bedding reflects the user-provided hierarchy and tags. We
propose a robust tree-aware metric to supervise the point
embedding network that offers better generalization to se-
mantic segmentation tasks over a baseline scheme that is
tree-agnostic (only considers the leaf-level groupings). The
point embedding network trained on hierarchies also im-
proves over models trained on shape reconstruction tasks
that leverage the 3D shape geometry but not their metadata.
Finally, when tags are available we show that the embed-
dings can be fine-tuned leading to further improvements in
performance.

On the ShapeNet semantic segmentation dataset, an em-
bedding network pre-trained on hierarchy metadata outper-
forms a network trained from scratch by reducing relative
error by 10.2% across 16 categories, when trained on 8
shapes per category. Similarly, when only a small frac-
tion of points (20 points) per shape are labeled, the relative
reduction in error is 4.9%. Furthermore, on 5 categories
which have sufficient tags, using both the hierarchy and
tags reduces error further by 12.8% points relative to the
randomly initialized network, when trained on 8 shapes per
category. Our visualizations indicate that the trained net-
works implicitly learn correspondences across shapes.
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Figure 1: Overview of our approach. Shape collections in 3D shape repositories contain metadata such as polygon
groupings and tags assigned to parts. These parts and tags assigned to them are highly variable, even within the same
category. We use the shapes and metadata to train a point embedding network that maps each point into a fixed dimensional
vector (see Section 4 and Figure 3 for details.) The embeddings for a few shapes are visualized as color channels using t-SNE
mapping, where similar colors indicate correspondence across shapes. The learned parameters when used to initialize a point
segmentation network leads to improved performance when few training examples are available. (Please zoom in for details.)

2. Related Work
Our work builds on the advances in deep learning archi-

tectures for point-based, or local, shape representations and
metric learning approaches to guide representation learning.
We briefly review relevant work in these areas.

Supervised learning of local shape descriptors. Sever-
al architectures have been proposed to output local repre-
sentations, or descriptors, for 3D shape points or patch-
es. The architectures can be broadly categorized accord-
ing to the type of raw 3D shape representation they con-
sume. Volumetric methods learn local patch representa-
tions by processing voxel neighborhoods either in unifor-
m [15] or adaptively subdivided grids [14, 20, 24, 25]. View
or multi-view approaches learning local image-based repre-
sentations by processing local 2D shape projections [9, 23],
which can be mapped back onto the 3D shape [12]. Fi-
nally, a large number of architectures have been recently
proposed for processing raw point clouds. PointNet and
PointNet++ are transforming individual point coordinates
and optionally normals through MLPs and then perform-
ing permutation-invariant pooling operations in local neigh-
borhhoods [18, 19].

All the above-mentioned deep architectures are trained
in a fully supervised manner using significant amound of la-
beled data. Although for some specific classes, like human
bodies, these annotations can be easily obtained through
template-based matching or synthetically generated shapes
[3–5], for the vast majorities of shapes in online reposito-
ries, gathering such annotations often requires laborious us-
er interaction [16, 30]. Active learning methods have also
been proposed to decrease the workload, but still rely on
expensive crowdsourcing [30].

Weak supervision for learning shape descriptors. A
few methods [17, 31] have been recently proposed to avoid

expensive point-based annotations. Muralikrishnan et al.
[17] extracts point-wise representations by training an ar-
chitecture designed to predict shape-level tags (e.g., arm-
rest chair) by first predicting intermediate shape segmen-
tations. Instead of using weak supervision in the form of
shape-level tags, we use unlabeled part hierarchies avail-
able in massive online repositories and tags for parts (not w-
hole shapes) when such are available. Yi et al. [29] embed-
s pre-segmented parts in descriptor space by jointly learn-
ing a metric for clustering parts, assigning tags to them,
and building a consistent part hierarchy. In our case, our
architecture learns point-wise descriptors and also relaxes
the requirement of inferring consistent hierarchies, which
might be hard to estimate for shape families with signifi-
cant structural variability. Non-rigid geometric alignmen-
t has been used as a form of weak and noisy supervision
by extracting approximate local shape correspondences be-
tween pairs of shapes of similar structure [11] or by deform-
ing part templates [10]. However, global shape alignment
can fail for shapes with different structure, while part-based
alignment requires corresponding parts or definition of part
templates in the first place. In a concurrent work, given a
collection of shapes from a single category, Chen et al. [6]
proposed a branched autoencoder that discovers coarse seg-
mentations of shapes by predicting implicit fields for each
part. Their network is trained with a few manually selected
labeled shapes in a few-shot semantic segmentation setting.
Our method instead utilizes part hierarchies and metadata as
weak supervisory signal. We also randomly select labeled
sets for our few-shot experiments. In general, our method
is complementary to all the above-mentioned weak super-
vision methods. Our weak signal in the form of unlabeled
part hierarchies and part tags can be used in conjunction
with geometric alignment, consistent hierarchies, or shape-
level tags, whenever such are possible to obtain.
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Figure 2: (Top row) Example shapes from our dataset. Our dataset consist of shapes segmented into parts without any
semantic information. Notice that shapes of same category can be segmented differently from each other. Here different
color represents different leaf node in the part-hierarchy. (Bottom left) Parts at different depths of the hierarchy for an
airplane and a car. Increasing the depth increases the number and granularity of parts. (Bottom right) A word cloud of raw
tags collected from our dataset. The font size is proportional to the square root of frequency of the dataset.

Triplet-based metric learning. Our approach learns a
metric embedding over points that reflects the hierarchies
in 3D shape collections. Metric learning has a rich litera-
ture with a diverse applications and techniques. A popu-
lar approach is to supervise the learning with “triplets” of
the form (a, b, c) to denote that “a is more similar to b
than c”. This can be written as d(a, b) ≤ d(a, c) where
the d(a, b) denotes the distance between a and b. The dis-
tance itself could be computed as the Euclidean distance
in some embedding space, i.e., d(a, b) = ||φ(a) − φ(b)||2,
possibly computed with a deep network. Within this frame-
work, techniques to sample triplets remains an active area of
research. These include techniques such as hard-negative
mining [7], semi-hard negative mining [21] and distance
weighted sampling [28] to bias the sampling of triplets.

3. Mining Metadata from Shape Repositories
We first describe the source of our part hierarchy dataset

that we use for training our embedding network. Then we
describe the metadata (tags) present in the 3d models and
how we extract this information into a consistent dataset.

Part hierarchies. Several 3D modeling tools, such as S-
ketchUp, Maya, 3DS Max to name a few, allow users to
model shapes, and scenes, in general, as a collection of
geometric entities (e.g., polygons) organized into group-
s. The groups can be nested and organized in hierarchies.
In our part hierarchy dataset, we endeavor to extract these
hieararchies. The shapes in our dataset are a subset of
Shapenet Core dataset, where we focus on 16 categories

from Shapenet part-segmentation dataset [30] to allow sys-
tematic benchmarking and comparison with prior work.
Note that the 16 categories semantic segmentation dataset
contains 16.6k shapes, whereas 16 categories in Shapenet
Core dataset contains 28k shapes. We first retrieved the
original files for shapes in Shapenet Core dataset provided
by 3d warehouse, which are stored in the popular “COL-
LADA” format [26]. These files represent 3D models in a
hierarchical tree structure. Leaf nodes represent shape ge-
ometry, and internal nodes represent groups of geometric
primitives, or nested groups. Samples from our dataset are
visualized in the Figure 2. Number of parts in which a shape
is segmented depends on the part-hierarchy as visualized in
the Figure 2 (bottom left). Models with too few part seg-
mentation (less than 2) or too many (more than 500) are
discarded. This gives us a total of 20776 3D models hav-
ing part group information, with each model having at least
one level of part grouping. We further segment the dataset
into train (15625), validation (3113) and test (2038) split-
s. We ensure that the shapes in test split of semantic part-
segmentation dataset [30] are not included in the train split
of our part hierarchy dataset.

Tag extraction. Modeling tools allow users to explicitly
give tags to parts, which are stored in their corresponding
file format. Obviously, not all designers enter tags for their
designed parts. Out of all the models that include part group
information in our dataset, we observed that only 10.7% of
the shapes had meaningful tags for at least one part (i.e.,
tags are sparse). Usually, these tags are not consistent, e.g.,



Category Shapes with part tagged Avg points tagged
Motorcycle 110 11.3%

Airplane 806 5.0%
Table 392 45.7%
Chair 326 38.7%
Car 600 20.0%

Table 1: Dataset with tags. Number of shapes with at least
one tagged parts, and average percentage of points tagged
in these shapes in 5 categories.

a tag for a wheel part in a car can be “wheel mesh”. To
make things worse, few tags have high frequency e.g., one
may encounter wheel, chassis, windows (or synthetics of
those) frequently as tags, while most of them are rare, or
even be non-informative for part types e.g., “geometry123”.

To extract meaningful tags, we selected the 10 most fre-
quent tags encountered as strings, or sub-strings stored in
the nodes for each shape category. We also merge synonyms
into one tag to reduce number of tags in the final set. For ev-
ery tag, we find the corresponding geometry nodes and then
we label the points sampled from these nodes with the tag.
We found that only 5 out of 16 categories have a “sufficien-
t” number of tagged points (> 1% of the original surface
points). By “sufficient”, we mean that below this threshold,
tags are becoming so sparse in a category that result in neg-
ligible improvements. Table 1 shows the distribution of tags
in these 5 categories.

Geometric postprocessing. We finally aligned the shapes
using ICP so that their orientation agrees with the canoni-
cal orientation provided for the same shapes in ShapeNet.
To process the shapes through our point-based architecture,
we uniformly sampled 10K points on their surface. Further
details about these steps are provided in the supplementary
material.

4. Method

Our Point Embedding Network (PEN) takes as input a
shape in the form of a point cloud set, X = {xi}Ni=1, where
x represents the 3D coordinates of each point. Our network
learns to map each input shape point x to an embedding
φw(x) ∈ Rd based on learned network parameters w. The
architecture is illustrated in Figure 3. PEN first incorporates
a PointNet module [18]: the points in the input shape are
individually encoded into vectorial representations through
MLPs, then the resulting point-wise representations are ag-
gregated through max pooling to form a global shape repre-
sentation. The representation is invariant to the order of the
points in the input point set. At the next stage, the learned
point-wise representations are concatenated with the glob-
al shape representation, and are further transformed through

fully-connected layers and ReLUs. In this manner, the point
embeddings reflect both local and global shape information.

We used PointNet as a module to extract the initial point-
wise and global shape representation mainly due to its effi-
ciency. In general, other point-based modules, or even vol-
umetric [15, 20, 24] and view-based modules [9, 22] for lo-
cal and global shape processing could be adapted in a sim-
ilar manner within our architecture. Below we describe the
main focus of our work to learn the parameters of the archi-
tecture based on part hierarchies and tag data.

Learning from part hierarchies. Our training takes a s-
tandard metric learning approach where the parameters of
the PEN are optimized such that pairs originating from the
same part sampled from the hierarchy (positive pairs) have
distance smaller than pairs of points originating from differ-
ent parts (negative pairs) in the embedded space. Specifical-
ly, given a triplet of points (a, b, c), the loss of the network
over this triplet [8] is defined as:

`(a, b, c) =
[
d(a, b)− d(a, c) +m

]
+
, (1)

where d(a, b) = ‖φw(a)− φw(b)‖22, m is a scalar margin,
and [x]+ = max(0, x). To avoid degenerate solutions we
constrain the embeddings to lie on a unit hypersphere, i.e.,
‖φ(x)‖22 = 1, ∀x. Given a set of triplets Ts sampled from
each shape s from our dataset S, the triplet objective of the
PEN is to minimize the triplet loss:

Ltriplet =
∑
s∈S

1

|Ts|
∑

(a,b,c)∈Ts

`(a, b, c). (2)

Sampling triplets. One simple strategy to sample triplets
is to just access the parts at the finest level of segmentation,
then sample triplets by randomly taking fixed number of
similar pairs (a, b) from the same part and an equal number
of negative points c from another part. We call this strategy
“leaf” triplet sampling.

An alternative strategy is to consider the part hierarchy
tree for triplet sampling. Here, we sample negative point
pairs depending on the tree distance between the part groups
(tree nodes) they belong to. Given two nodes ni and nj ,
we use the sum of path lengths (number of tree edges) from
nodes ni and nj to their lowest common ancestor as the tree
distance δ(ni, nj) [27] . For example, if the two nodes are
siblings (i.e., two parts belonging to the same larger group),
then their lowest common ancestor is their parent and their
tree distance is equal to 2 (i.e., count two edges that connect
them to their parent). If two nodes are further away in the
hierarchy, then tree distance increases. In this manner, the
tree distance reflects how far two nodes (parts) are in the
hierarchy.

We compute the probability of selecting the positive pair
of points from node ni and the negative pair using the point
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Figure 3: Architecture of the Point Embedding Network (PEN). The network takes as input a point cloud and outputs
a fixed dimensional embedding for each point, visualized here using t-SNE. These embeddings are learned using metric
learning that utilizes part-hierarchy. Furthermore, embedding can be improved by supervising network using sparsely tagged
point cloud from a small subset of our dataset (refer Table 1). Tags are pointed by arrows.

from another node nj as follows:

P (ni, nj) ∝
1

δ(ni, nj)
(3)

Sampling points in this way yields more frequent triplets
that consist of negative pairs closer in the hierarchy. Parts
that are closer in the hierarchy tend to be spatially or geo-
metrically closer to each other, thus also harder to discrim-
inate. We call this sampling strategy as “hierarchy” triplet
sampling. We discuss the effect of these two strategies in
the experiments section.

Learning from noisy tag data. We can also utilize tag
data for segments collected from the COLLADA files, as
described in Section 3. To train the network using tags, we
add two pointwise fully-connected layers on top of the em-
bedding network (PEN). One way to train this network is to
define a categorical cross entropy over points whose parts
are tagged. However, as shown in Table 1, the total num-
ber of tagged points is small. We instead found that a better
strategy is to use a one-vs-rest binary cross entropy loss to
also make use of points in un-tagged parts. The reason is
that if a part is not tagged in a shape that has other parts
labeled with tags existing in the shape metadata, then most
likely, that part should not be labeled with any of the ex-
isting tags for that shape (e.g., if a car has tagged parts as
‘wheel’ and ‘window’, then other un-tagged parts should
most likely not be assigned with these tags).

More specifically, for every tag in our tag set L for a
shape category, we define a binary cross entropy loss by
considering all points assigned with that tag as ‘positive’
(set P) while the rest of points assigned with other or no
tags as ‘negative’ (set N ). Given an output probability
prediction for assigning a point i with tag t, denoted as
P (yi,t = 1) produced by the last classification layer (sig-
moid layer) of our network, our loss function over tags is
defined as follows:

Ltag=−
∑
t∈T

(∑
i∈P

logP (yi,t=1)+
∑
i∈N

log(1−P (yi,t=1))

)
(4)

Training. We first train our network to minimize the
triplet loss Ltriplet based on our dataset of shapes that con-
tains part hierarchies. Training is done in a cross-category
manner on 16 categories1 of ShapenetCore dataset, as de-
scribed in Section 3. We use the Adam optimizer [13] with
initial learning rate of 0.01 decayed by the factor of 10
whenever the triplet loss stops decreasing over validation
set. The mini-batches consist of 32 shapes. For further ef-
ficiency, in each iteration we randomly sample a subset of
2.5k points (from the 10K original points) for each shape
during training. The total number of triplets sampled from
a shape is kept constant.

Then for the 5 categories that include tags, we further
fine-tune the learned embeddings by learning the two ad-
ditional pointwise fully-connected layer with a Sigmoid at
the end to minimize the tag loss Ltag . Since tags are distinct
for each category, fine-tuning is done in a category-specific
manner (i.e., we produce a different embedding specialized
for each of these 5 categories). Although the triplet and tag
loss could be combined, we choose a stage-wise training
approach since the shapes with part hierarchies are signifi-
cantly more numerous than the shapes that include tags as
shown in Table 1. In our experiments we discuss the effect
of training only with the triplet loss, and also the effect of
fine-tuning with the tag loss in each category.

For training networks on few-shot learning task, we do
hyper-parameters (batch size, epochs, regularization etc.)
search using validation set of only one category (‘airplane’)
and use the same hyper-parameters setting to train all mod-
els on all categories in the few-shot learning task.

Few-shot learning. Given our network pre-trained on our
shape datasets based on part hierarchies and/or tags, we can
further train it on other, much smaller, datasets of shapes
that include semantic part labels. To do this, once again
we add two point-wise fully-connected layers on top of the
embedding layer, and a softmax layer to produce seman-
tic part label probabilities. In our experiments, we observe

1These are the same 16 categories present in Shapenet semantic seg-
mentation dataset from Yi et al. [30]
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Figure 4: Visualization of the embeddings. (Left) T-SNE visualization of embedding shown as a color map. Embeddings
for similar semantic parts are consistently embedded close to each other as reflected by the similarity in their color. (Right)
Heat map visualization of tags predictions across a number of categories and tags. Redder values indicate a higher probability
of the tag. (Best seen magnified.)

that the part labeling performance is significantly increased
when compared to training our network from scratch using
semantic part labels only as supervision.

Implementation details. In our implementation, the en-
coder of our network extracts 1024-dimensional global
shape embedding. The decoder concatenates the global em-
bedding with 64d point features from encoder, and finally
transform it into a 64-dimensional point-wise embeddings.
Further details of the layers used in PEN are discussed in
the supplementary material. Our implementation is based
on PyTorch [1].

5. Results
We now discuss experiments performed to evaluate our

method and alternatives. First, we present qualitative anal-
ysis of learned embeddings, then we discuss a new bench-
mark we introduce for few-shot segmentation and evalua-
tion metrics, and finally we present results and comparisons
of our network with various baselines.

Visualization of the embeddings. We first present a qual-
itative analysis of the PEN embeddings. The embeddings
learnt using metric learning only (without the tag loss) are
visualized in Figure 4 (left). We use the t-SNE algorithm to
embed the 64-dimensional point embedding in 3D space.
Interestingly, the descriptors produced by PEN consistently
embed the points belonging to similar parts close to each
other without explicit semantic supervision. We also visu-
alize the embeddings predicted by PEN trained with met-
ric learning and fine-tuned with tag loss in Figure 4 (right).
The embeddings have better correspondence with the tags.
Interestingly, the network predicts correct embeddings for

points with tags that are not mutually exclusive e.g. ‘cush-
ion’ and ‘back’ of the chair.

Few-shot Segmentation Benchmark. We anticipate that
learning from metadata can improve semantic shape seg-
mentation tasks, especially in the few-shot learning sce-
nario. To this end we have created a new benchmark
on ShapeNet segmentation dataset [30], in which we ran-
domly select x fully labeled examples from the com-
plete training set for training the network, where x ∈
{4, 8, 12, 20, 40, 60, 120}. In this manner, we can test the
behaviour of methods with increasing training number of
shapes, starting with the few-shot scenario where only a
handful of shapes (i.e., 4 or 8) is labeled. The performance
is measured as the mean intersection over union (mIOU)
across all part labels and shapes in the test splits. We
exclude the shapes existing in our part hierarchy and tag
datasets used for pre-training PEN from the test splits.

We also introduce one more evaluation setting, where for
each shape category, the training shapes have smaller frac-
tions of their original points labeled (20, 40 . . .500) labeled
points compared to the original 2.5K points) The case of
∼ 20-40 labeled point simulates the scenario where seman-
tic annotations are collected through sparse user input (e.g.,
click few points on shapes and label them).

Baselines. Since we utilize a vast number of unlabeled
data from the same domain it is important to compare with
baselines. Our first baseline simply trains PEN from scratch
on the training splits of our few-shot segmentation bench-
mark using only semantic label supervision (without using
metadata). Second, we also compare with another base-
line, where we train an autoencoder network that leverages
only geometry as an alternative to produce point-wise em-
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Figure 5: Benifits of pretraining PEN using metric learning. Left: mIoU evaluation for varying number of training shapes.
Right: mIoU evaluation for varying number of labeled points and fixing the number of training shapes to 8. We compare
different baselines and variants of PEN, including training from scratch, autoencoder for pre-training, as well as PEN trained
with metric learning triplets sampled from the leaf of the tree (Leaf) or based on the hierarchy (Hierarchy). PEN outperforms
both baselines with the hierarchy-based sampling offering a slight advantage over the leaf-based one.
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Figure 6: Benefit of training with tag supervision. The mIoU evaluation when tags are available (5 categories: motorcycle,
airplane, table, chair, car). We include the same baselines and PEN variants as Figure 5, including two more PEN variants:
one trained with tags only (Tags) and another trained both on hierarchy and tags (Hierarchy + Tags). Left: Shows the
performance in the few-shot setting. Right: Shows the performance in the few-point setting. In both cases the tag data
(Hierarchy + Tags) provides additional benefits over the PEN models trained with the hierarchy supervision (Hierarchy). Tag
data alone is not as effective as the autoencoder since the supervision is highly sparse.

beddings. This network first encodes the input point cloud
to point-wise embeddings producing a 1024-dimensional
point-wise representations exactly as in PEN, then a de-
coder uses upconvolution to reconstruct the original point
cloud. The Chamfer distance between generated points and
input points is used as a loss function to train this network.
We first pre-train the autoencoder on the shapes included in
our part hierarchy dataset. After this pre-training step, we
retain the encoder and replace the geometry decoder with
PEN’s decoder and add two pointwise fully connected lay-
ers and a classification layer to produce semantic part la-
bel probabilities. The resulting network is then trained in

stages, first the decoder and then the entire network at s-
maller learning rate, on the training splits of our few-shot
segmentation benchmark.

Finally, we also evaluate the two strategies to pretrain the
embedding network using different triplet sampling tech-
niques i.e. leaf-level shape parts (“leaf” triplet sampling)
and based on using the hierarchy tree (“hierarchy” triplet
sampling) as described in (Section 4).

Next, we compare the performance of our method with
the baselines and different sampling strategies under the
scenario of using only the triplet loss and cross-category
training. Then, we discuss the performance in the case



where we additionally use the tag loss.

Few-shot Segmentation Evaluation. In Figure 5 (left),
we plot the mIOU of the baselines along with our method.
The plotted mIOU is obtained by taking the average of the
mIOU on our test splits over all categories and repeating
each experiment 5 times. The network trained from scratch
(without any pre-training) has the worst performance. The
network based on the pre-trained autoencoder shows some
improvement since its point-wise representations reflect lo-
cal and global geometric structure for the point cloud recon-
struction, which can be also relevant to the segmentation
task. Our method consistently outperforms the baselines.
In particular, the “hierarchy” triplet sampling that uses the
part hierarchy trees to choose triplets for training our net-
work performs the best on average. A 3.5% mIOU improve-
ment (10.2% drop in relative error) is observed compared to
training from scratch at 8 training examples - interestingly,
the improvement is retained even for 120 training exam-
ples. The “hierarchy” triplet sampling also improves over
the “leaf” triplet sampling until 20 training examples, then
their difference gap between these two strategies is closed.

Evaluating with limited labeled points per shape. In
the previous section we observed the performance of our
method and baselines by changing the number of training
shapes. Here we also examine the performance in the few-
shot setting where we keep the number of training shapes
fixed and vary the number of labeled points per training
shape. We retrain the above baselines (train from scratch,
autoencoder) and triplet sampling strategies (“leaf” and “hi-
erarchy”) with 8 training examples, and vary the number
of labeled points as shown in the Figure 5 (right). Again
our network using the “hierarchy” triplet sampling performs
better than the baselines. It offers 1.7% better mIOU (4.9%
drop in relative error) compared to training from the scratch
using 20 labeled points.

Are tags useful? Here we repeat the two few-shot semen-
tation tasks on 5 shape categories (motorcycle, airplane,
table, chair, car) that include some tagged parts in their
shape metadata. Here, we examine two more PEN vari-
ants: (a) PEN pre-trained using the tag loss only (no triplet
loss), then fine-tuned on the training splits of our seman-
tic segmentation benchmark (this baseline is simply called
“tags” network), 2) our network pre-trained using triplet-
s loss based on the “hierarchy” sampling, then fine-tuned
with the tag loss, and finally further fine-tuned on the train-
ing splits of our semantic segmentation benchmark (this
baseline is called “Hierarchy+Tags” network). The two
PEN variants are trained per each category of the 5 cate-
gories. The results are shown in Figure 6.

When using 8 training examples, the Hierarchy+Tags
network offers 4.8% better mIOU (12.8% drop in rela-
tive error) on average compared to training from scratch

in these 5 categories (refer Figure 6 (left)). An improve-
ment of 2.8% mIOU (8.3% drop in relative error) is main-
tained for 16 training examples. Similarly, when using 20
labeled points per shape, Hierarchy+Tags performs 4.9%
mIOU better (11.47% drop in relative error) than training
from scratch (refer Figure 6 (right)). In general, the Hi-
erarchy+Tags PEN variant outperforms all other baselines
(training from scratch, autoencoder) and also the variant
pre-trained using tags only (“Tags” network) on both eval-
uation settings with limited number of training shapes and
limited number of training points. This shows that the com-
bination of pre-training through metric learning on part hi-
erarchies and fine-tuning using tags results in a better, warm
starting model for semantic segmentation task.

6. Conclusion
We presented a method to exploit existing part hierar-

chies and tag metadata associated with 3D shapes found in
online repositories to pre-train deep networks for shape seg-
mentation. The trained network can be used to “warm start”
a model for semantic shape segmentation, improving per-
formance in the few-shot setting. Future directions include
investigating alternative architectures and combining other
types of metadata, such as geometric alignment or material
information.
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1. Dataset

Our dataset is a subset of ShapeNetCore where we focus
on 16 categories from ShapeNet part segmentation dataset.
Note that the semantic segmentation dataset contains 16.6k
shapes of these categories compared to 28k in the ShapeNet
core. We first start by downloading collada file for shapes
in ShapenetCore dataset from the 3D Warehouse website,
but constraining to 16 categories mentioned above. Sam-
ples from the dataset are shown in the Figure 2 (left). The
Collada format stores the meshes in hierarchical structure,
starting from the root node, recursively applying transfor-
mation until the leaf nodes that correspond to different parts
of the 3D shape.

Note that we only use a small number of the segmen-
tation labels provided in the ShapeNet segmentation bench-
mark for training in our few-shot segmentation experiments.
We also make sure that the there is no overlap between any
of our training set (embedding training, tag training, seman-
tic segmentation training) and the evaluation set.

Generating segments from meshes. The number of seg-
ments in meshes from Collada files can vary from 1-4000.
These range from ones where all the parts are grouped to-
gether to others where parts are vastly over segmented. A
possible way to control the number of segments is to select
the depth of the tree that gives reasonable number of seg-
ments. Lower level in the hierarchy gives smaller number
of segments as shown in Figure-3 (main paper). We select
the depth of the tree such that the number of segments are
at least k, where k is the number of semantic parts present
in the semantic part-segmentation dataset for that catego-
ry. This is done to avoid favoring cases where semantical-
ly different parts are merged. We further, select the depth
of the tree such that maximum number of segments is less
than 500 to avoid large over-segmentation of shape and to
keep high ratio of number of points vs number of segments.
Figure 1 shows the distribution of segments in our pruned
dataset.

These meshes have inconsistent orientation, thus we pre-

10
0

10
1

10
2

number of segments (log scale)

0

500

1000

1500

2000

2500

nu
m

be
r o

f s
ha

pe
s

Figure 1: Distribution of number of segments.

process these meshes to align in a canonical orientation of
the Shapenent core dataset. The alignment is done by first
sampling points from source and target meshes, then rotat-
ing the source point cloud along all the three-axis by from
0 to 180 degrees at the interval of 30 degrees and finally
by selecting the orientation which gives least Chamfer dis-
tance between the source and the target shape points. The
coarse search is sufficient to align most models. We prepro-
cess the meshes by uniformly sampling 10k points from the
surface using stratified sampling where sampling is weight-
ed by the area of the segment, i.e. we sample more points
from the segments with larger surface area in comparison to
segments with smaller surface area.

2. Network Architectures
The details about our point embedding network used for

various experiments are shown in Table 1. The PEN is a
variant of PointNet that produces a per-point embedding.
For classification tasks (segmentation, tag prediction) we
add two addtional layers to predict labels.

3. Visualization of Semantic Segmentation
Figure 3 compares the segmentation models pretrained

with Hierarchy meta data, trained from scratch, and autoen-
coder pretrained for training size 4 and 8.

1



Figure 2: Visualization of the meta data. (Left) Parts of various objects shown in different colors. Notice that segmentations
vary in their number and granularity across instances. (Right) A word cloud of the raw tags collected from the dataset. The
font size is proportional to the square root of frequency in the dataset.

(a) PEN Hierarcy (b) PEN Segmentation (c) PEN Tags

Layers Output
1 Input shape 3×N
2 Relu(FC(1, 64)) 64×N
3 Relu(FC(64, 128)) 128×N
4 Relu(FC(128, 512)) 512×N
5 Relu(FC(512, 1024)) 1024×N
6 Max-pool(1xN) 1024× 1
7 Concat(2, 6) 1088×N
8 Relu(FC(1088, 512)) 512×N
9 Relu(FC(512, 256)) 256×N

10 Relu(FC(256, 128)) 128×N
11 FC(128, 64) 64×N

Layers Output
1 Input shape 3×N
2 Relu(FC(1, 64)) 64×N
3 Relu(FC(64, 128)) 128×N
4 Relu(FC(128, 512)) 512×N
5 Relu(FC(512, 1024)) 1024×N
6 Max-pool(1xN) 1024× 1
7 Concat(2, 6) 1088×N
8 Relu(FC(1088, 512)) 512×N
9 Relu(FC(512, 256)) 256×N

10 Relu(FC(256, 128)) 128×N
11 Relu(FC(128, 64)) 64×N
12 Relu(FC(64, 64)) 64×N
13 Softmax(FC(64, C)) C ×N

Layers Output
1 Input shape 3×N
2 Relu(FC(1, 64)) 64×N
3 Relu(FC(64, 128)) 128×N
4 Relu(FC(128, 512)) 512×N
5 Relu(FC(512, 1024)) 1024×N
6 Max-pool(1xN) 1024× 1
7 Concat(2, 6) 1088×N
8 Relu(FC(1088, 512)) 512×N
9 Relu(FC(512, 256)) 256×N

10 Relu(FC(256, 128)) 128×N
11 Relu(FC(128, 64)) 64×N
12 Relu(FC(64, 64)) 64×N
13 Sigmoid(FC(64, T)) T ×N

Table 1: Architecture details. Network architecture for (a) point embeddings trained with hierachy data, (b) semantic
segmentation, and (c) tag prediction. The difference between (b) and (c) is that the latter is trained on noisy tag data, which
we do not know to be mutually exclusive and sparse. This motivates training using per-tag binary classification (sigmoid
vs. softmax for the semantic segmentation task on ShapeNet). For transfer learning of Hierarchy in (b), first 11 layers
are initialized using (a). Tag training in (c) can be done either with no initialization for Tags or with initializing first 11
layers using (a) for Hierarchy+Tags. For transfer learning in case of Tags or Hierarchy+Tags to predict semantic labels,
pre-trained network with tag supervision in (c) is used where the last layer of (c) is replaced by Softmax(FC(64, C)). ReLU
denotes max(0, x), FC: Fully Connected layer, Max-pool computes dimensionwise maximum across all points, Concat(i,j)
concatenates the ouputs of layer i and j, C: number of semantic classes and T: number of tags.
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Figure 3: Segmentation results. Visualization of segmentations produced by various models (scratch, autoencoder, hierar-
chy) when the number of training shapes is 4 (Left) and 8 (Right). The boundaries between parts are better delinated (as seen
in the ground truth) by the models trained on hierarchy meta data.


