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Figure 1: Shading various scenes using only 48 coefficients at approximately 200 FPS.

Abstract

We present a method for creating a geometry-dependent basis for
precomputed radiance transfer. Unlike previous PRT bases, ours is
derived from principal component analysis of the sampled transport
functions at each vertex. It allows for efficient evaluation of shad-
ing, has low memory requirements and produces accurate results
with few coefficients. We are able to capture all-frequency effects
from both distant and near-field dynamic lighting in real-time and
present a simple rotation scheme. Reconstruction of the final shad-
ing becomes a low-order dot product and is performed on the GPU.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
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1 Introduction

Soft and hard shadows combine to give an observer subtle cues
regarding the relative position of objects as well as the lighting
surrounding them. Recent precomputed radiance transfer (PRT)
techniques allow for shadows to be reconstructed under dynamic,
distant, low [Sloan et al. 2002] and all-frequency [Ng et al. 2003]
realistic lighting environments. For diffuse materials, the shading
integrand can be split into the product of two functions: lighting
and cosine-weighted visibility, often called transport.

Projecting the spherical lighting and transport functions into an al-
ternative basis permits evaluation of the shading integral in real-
time by avoiding the prohibitively slow sampling of offline cuba-
ture techniques. Originally, the Spherical Harmonics (SH) basis
was chosen for its ability to capture low-frequency area lighting ef-
fects with few coefficients [Sloan et al. 2002; Kautz et al. 2002].
PRT SH reconstructions result in smooth and plausible renderings,

despite the blurring of the external lighting and transport functions.
Moreover, closed form rotation matrices allow SH projected light-
ing to be rotated without having to resample and project from the
original signal.

Ng et al. use the Haar wavelet basis to capture all-frequency light-
ing effects resulting in both soft and hard shadows [Ng et al. 2003].
They note that, in order to capture the all-frequency lighting con-
tent, SH would require approximately two-orders of magnitude
more coefficients than the Haar wavelet basis. Wang et al. de-
rive approximate rotation matrices for the Haar wavelet basis [Wang
et al. 2006].

We present a generalized mesh-dependent basis for all-frequency
relighting of scenes under distant and locally varying illumination.
Using significantly fewer coefficients than previous techniques, we
can shade a scene on the GPU that is nearly indistinguishable from
the ground truth rendering. Furthermore, we outline a simple al-
gorithm for lighting rotations that performs intelligent light resam-
pling in real-time. Figure 1 illustrates results using our technique.

Contributions We analyze transport function signals using a sta-
tistical approach. In particular, using eigenanalysis, we show that
high-dimensional all-frequency transport effects can be accurately
reconstructed in a lower-dimensional linear subspace. We show that
our mesh-dependent basis can capture all-frequency lighting effects
with fewer coefficients than previous techniques. Both distant (en-
vironment map) and local (approximate point source) lighting are
compatible with our technique and we use a simple, efficient algo-
rithm for rotating distant lights.

2 Previous Work

Many rendering techniques reduce the complexity of evaluating the
shading that, in its unconstrained form, requires evaluation of po-
tentially complicated functions at many spherical samples.

2.1 Basis Functions for PRT

Ramamoorthi and Hanrahan analyzed the irradiance of convex ob-
jects under distant illumination in the SH basis. They concluded
that unshadowed irradiance is inherently low-dimensional and can
be accurately captured with a low-order SH reconstruction [Ra-
mamoorthi and Hanrahan 2001]. Sloan et al. extend this ap-
proach to include low-frequency shadowing (and indirect illumi-



nation) [Sloan et al. 2002]. Ng et al. project the transport and
lighting into the orthonormal Haar basis defined over a cubemap
domain [Ng et al. 2003]. This basis can capture all-frequency light-
ing effects such as hard and soft shadows. They note that capturing
approximately the same frequency content using SH would require
two orders of magnitude more coefficients.

Lehtinen and Kautz start with an SH formulation for glossy PRT
rendering and perform a basis conversion for the final exit radi-
ance representation [Lehtinen and Kautz 2003]. They project the
low-frequency SH exit radiance function into a directional basis
for more efficient viewpoint querying. Gautron et al. present a
hemispherical basis function similar to SH for representing low-
frequency functions [Gautron et al. 2004].

Kristensen et al. use a light-simplification procedure coupled with
a PCA basis to represent local lighting response for PRT geometry
relighting [Kristensen et al. 2005]. Direct illumination is calculated
with shadow maps and the PCA basis is used to reconstruct only the
indirect lighting contributions. Since indirect illumination is much
smoother than direct illumination, only a handful of coefficients are
required to reconstruct an approximate local lighting response.

Tsai and Shih use spherical radial basis functions (SRBFs) for all-
frequency geometry relighting [Tsai and Shih 2006]. Their datasets
are compressed using clustered tensor approximation and the SRBF
basis can be easily rotated. The precomputation procedure of fitting
SRBFs to the transport, factored BRDF and lighting can be very
time consuming and, typically, hundreds of SRBFs (each requiring
six values for storage) are required to capture all-frequency effects.
Green et al. use a hybrid technique for PRT rendering of glossy ma-
terials [Green et al. 2006]; SH is used to capture the low-frequency
effects, and view dependent glossy effects are represented using
Gaussian terms fit with non-linear optimization.

Xu et al. define piece-wise constant basis functions over the sphere
for reconstructing all-frequency PRT effects [Xu et al. 2007]. Ap-
proximating the multi-product shading integral as a product of
the individual component integrals and using summed-addition ta-
bles results in real-time rendering performance. The mathemati-
cal simplification allows the technique to be coupled with shadow
fields [Zhou et al. 2005] for rendering dynamic all-frequency glossy
scenes.

Ma et al. use a spherical wavelet basis to reconstruct the triple-
product shading integral for arbitrary BRDFs defined using a local
parameterization [Ma et al. 2006]. As with Haar wavelets defined
over cubemaps [Ng et al. 2003], a simple rotation algorithm for this
basis does not exist. A significant amount of storage is required
to capture all-frequency effects and results are illustrated using 80
and 320 coefficient reconstructions. Lessig proposes an orthogonal
spherical wavelet basis that can be rotated in closed form, but this
basis has not been used for PRT [Lessig 2007].

In general, our technique requires fewer coefficients to capture hard
and soft shadowing effects, final shading is a low-order dot prod-
uct calculated on the GPU, and no time consuming optimization is
necessary during precomputation. We instead rely on statistical al-
gorithms with known behavior: the singular value decomposition
of the original transport dataset yields the transformation used to
project the data onto a lower-dimensional linear subspace for effi-
cient reconstruction.

2.2 Dimensionality of Light Transport

The most relevant previous work is that of Mahajan et al. [2007].
Analyzing the dimensionality of light transport within blocks of
pixels or clusters of vertices, a relationship between the dimension-
ality and the block/cluster size is observed and formalized. Mahajan

et al. apply their theoretical framework to determine optimal cluster
sizes for CPCA geometry relighting and image relighting, whereas
we consider light transport at vertices of a scene and determine a
compact and efficient, global basis for reconstruction.

Sloan et al. [2003] perform clustered PCA, over vertex clusters,
on spherical harmonics projected relighting transfer matrices used
for low-frequency relighting of glossy materials. Liu et al. [2004]
perform an SVD factorization of factored glossy BRDF representa-
tions coupled with the clustered PCA projection of the Haar pro-
jection (as opposed to the CPCA over SH transfer matrices of
[Sloan et al. 2003]) of the non-diffuse transport function. These
approaches perform dimensionality reduction over pre-projected
transfer functions, whereas we analyze the dimensionality of the
original transport function. Our approach can be extended to clus-
ters over vertices, however our main contribution is an insight to the
dimensionality of cosine-weighted visibility over an entire mesh,
with an immediate application to high-fidelity, all-frequency diffuse
relighting. Our approach is easy to implement and can be readily
integrated into content generation pipelines used in games.

2.3 Rotating Projected Lighting

One of the advantages of SH PRT approaches is the ability to rotate
the environment lighting in real-time. Recently, a technique was
proposed for performing approximate lighting rotations for Haar
compressed lighting environments without requiring the expensive
light resampling procedure [Wang et al. 2006]. The representa-
tion used for the approximate Haar rotations is time consuming to
compute and requires significant storage and computation during
run-time evaluation, yielding only interactive relighting of arbitrary
BRDF scenes without shadowing effects.

Closed form SH rotations require n2×n2 matrices for an nth order
SH expansion. Some work has been recently proposed to approxi-
mate SH rotation matrices for higher-order expansions [Křivánek
et al. 2006], however this technique requires almost the same
amount of calculation and storage as the full rotation formulation.
Ma et al. did not propose a rotation scheme for their spherical Haar
basis [Ma et al. 2006], although Lessig does for his basis [Lessig
2007].

Our rotation scheme does not require the explicit resampling of the
lighting and, for common sampling patterns (latitude/longitude or
cubemap), a simple and efficient algorithm is proposed.

3 Transport Dimensionality Reduction

Our work explicitly investigates the dimensionality of transport as
a function of geometry. For a given scene, we perform per-vertex
ray-tracing in order to sample the transport function

T (x̄, ω) = V (x̄, ω) max(0,nx̄ · ω), ω ∈ Ωnx̄ (1)

where x̄ is a vertex in the scene, nx̄ is the normal at the vertex,
V is the binary visibility function, and ω is the sampling direc-
tion in a set of spherical sampling directions, Ωnx̄ . The choice
of sampling scheme determines this set and can affect the final
shading reconstruction as well as the ability to easily perform ro-
tations. Our analysis, however, is robust to this choice. We have
carried all experiments out using low-discrepancy Halton, uniform
latitude/longitude and cubemap sampling schemes (see section 5.)
The initial dataset is composed of v s-dimensional vectors, where
v is the number of vertices and s is the number of samples used.

Performing eigenanalysis on this dataset, we observe that a large
proportion of the variance can be captured using a small fraction
of the eigenvectors. This subset of d eigenvectors, which we call



the eigentransports, form an orthonormal basis that will be used for
shading. Figure 2 illustrates how transport can be well represented
in a lower-dimensional linear subspace; the first 100 eigenvalues
out of tens of thousands are shown.
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Figure 2: Captured variance: 90% (red) and 95% (blue) of the
variance is typically captured using few coefficients. The first 100
eigenvalues (inset) of the eigentransports for the Teapot (left) and
Lucy (right) meshes.

We perform principal component analysis (PCA) on the set of sam-
pled per-vertex transport functions, keeping only the number of
eigentransports required, d, for our desired shading quality. The
PCA decomposition yields

T︸︷︷︸
[v×s]

≈ TL︸︷︷︸
[v×d]

· B︸︷︷︸
[d×s]

+ T̃︸︷︷︸
[v×s]

(2)

where T is the full-dimensional matrix of the per-vertex sampled
cosine-weighted visibility functions, TL is the matrix of per-vertex
projected transport coefficients, B is the matrix of eigentransport
basis functions and T̃ is a matrix containing the mean transport
function, T̃ , repeated v times.

T̃ must be subtracted from the original dataset in order to perform
PCA, and is added back during reconstruction. When d = s, T is
perfectly reconstructed. Section 4.3 discusses the evaluation of the
shading integral completely in the projected space, without having
to explicitly add the full-dimensional mean transport function or
sample any of the s spherical samples per-vertex.

4 Projection and Reconstruction

Both the per-vertex transport and lighting functions must be pro-
jected into our mesh-dependent basis before being used to evaluate
the shading integral at each vertex. We will illustrate our basis’
ability to efficiently capture and reconstruct transport and lighting
functions using few coefficients.

4.1 Transport Function

The eigentransport basis functions define an orthonormal basis for
modeling the transport functions. One of the main benefits of a
customized basis over previous PRT bases is the ability to recon-
struct the relevant components of the shading integral more effi-
ciently. The eigentransports are designed to capture the variance
of the transport functions for a given scene and are able to recon-
struct transport with greater accuracy per-coefficient than the most
common PRT bases: SH and Haar wavelets defined over cube faces.
Figure 3 compares the reconstruction of the hemispherical transport
functions using our basis, with the reconstructions using SH and
Haar. Using fewer coefficients, eigentransports reconstruct trans-
port with significantly reduced numerical and visual error than SH
and Haar.

4.2 Lighting Function

Although spherical external lighting environments are not a part
of the dataset used to generate a basis, we project them into our
basis in order to reconstruct the shading integral. The projection, in
essence, only captures the important components of the lighting for
a specific scene. This eliminates the storage of unnecessary lighting
since only the relevant regions of the lighting (from the transport’s
perspective) are retained. A projection of the environment lighting,
Lenv , into our basis yields the projected lighting coefficients, Lc

env

Lc
env = (Lenv − T̃ ) · B−1 = (Lenv − T̃ ) · BT (3)

This is a strictly different idea than the general basis projection of
lighting used in previous PRT approaches. The projection of a light-
ing environment is tailored to the geometry of the scene, and thus,
its reconstruction is not meant to match the original lighting but
rather to capture the regions of lighting that are most relevant for
a particular scene. For example, Figure 4 illustrates a scene with
very few vertices sampling the bottom hemisphere (in 4(f) white is
high sampling rate, black is no sampling.) Our customized basis is
tailored to reconstruct the part of the signal that matters most: in
this case, the upper-hemisphere.

(a) Scene (top) (b) Scene (bottom) (c) Shaded Result

(d) Lighting (e) d = 48 (f) Sample Density

Figure 4: Scene geometry biasing: the basis reconstructs detail in
the more visible regions of the sphere.

Many of our meshes have added ground plane geometry that biases
the sampling density. This additional geometry biasing actually de-
creases the effectiveness of our basis; however, we choose to in-
clude it in most of our scenes for illustrative purposes. All ground
planes are coarsely sampled, sometimes introducing shadow inter-
polation artifacts across vertices. Figure 5 illustrates the sampling
bias.

Figure 6 illustrates our basis’ ability to tailor the lighting to a par-
ticular scene. The sampling densities in Figure 5 match the recon-
struction patterns in Figures 6(i) to 6(p).

4.2.1 Local Lighting Approximation

Since the full dimensional dataset we use to derive our mesh-
dependent basis is based on a sub-sampling of the spherical domain,
we can determine local lighting projections into our basis in a very
straightforward manner.

Near-field lighting, unlike distant environmental lighting environ-
ments, depends on vertex location. To determine the projection of
a local light with position Lp at a vertex x̄, we determine the k-
nearest directions from Ωnx̄ to ‖Lp − x̄‖ (which can be done in
closed form for cubemap sampling.) For most scenes k = 1 is



(a) Ground Truth (b) d = 64 L2 = 0.17 (c) SH(100) L2 = 0.54 (d) H(96) L2 = 0.23

(e) Ground Truth (f) d = 72 L2 = 0.11 (g) SH(100) L2 = 0.49 (h) H(96) L2 = 0.18

(i) Ground Truth (j) d = 48 L2 = 0.27 (k) SH(100) L2 = 0.54 (l) H(96) L2 = 0.32

Figure 3: Transport function comparison with ground truth (3(a),3(e),3(i)). Our basis with varying number of coefficients (3(b),3(f),3(j));
SH (3(c),3(g), 3(k)) and Haar (3(d),3(h),3(l)) reconstructions.

(a) Original (b) SH (36) (c) Haar (48) (d) Haar (96) (e) Original (f) Density (g) SH (36) (h) Haar (96)

(i) Dragon (48) (j) Buddha (48) (k) Lucy (48) (l) Teapot (48) (m) Teapot (16) (n) Teapot (36) (o) Teapot (96) (p) Teapot (192)

Figure 6: Original environment maps (6(a),6(e)), SH (6(b),6(g)), Haar (6(c), 6(d),6(h)) and our basis reconstructions (6(i) to 6(p)), and
sampling density of the teapot scene (6(f)). Number of coefficients are in parentheses and our bases are named according to their associated
geometry.

sufficient. A per-vertex full-dimensional lighting vector, LFD , can
be composed, after finding the k-nearest directions, by setting the
appropriate direction indices in the vector to a constant value de-
pendent on the original sampling, α (see equation 10). This vector
is sparse (often only a single non-zero element) and the evalua-
tion of equation 3 would then result in a simple scaling of rows in
the inverse eigentransport matrix (after the projection of the full-
dimensional mean transport function):

Lc = (LFD − T̃ ) · BT = α

k∑
i=1

BT (i, :)− T̃ · BT︸ ︷︷ ︸
T̃p

(4)

where T̃ is the row of T̃ belonging to the current vertex, and T̃p is
the projection of the mean transport function into the basis. Figure
7 illustrates our basis’ support for local lighting. As with all the
shading results generated with our system, this scene was rendered
at approximately 200 FPS.

4.3 Shading Reconstruction

Our goal is to evaluate the diffuse shading integral at each vertex
without having to explicitly reconstruct the transport or lighting



(a) Asian Dragon (b) Teapot w/ Plane (c) Teapot

(d) Lucy (e) Buddha (f) Heptoroid

Figure 5: Meshes with (5(a),5(b),5(d),5(e)) and without (5(c),5(f))
added ground planes.

Figure 7: Approximated local lighting.

functions from their projected forms. The shading integral is

B(x̄) =
ρ

π

∫
Ωnx̄

L(x̄, ω) T (x̄, ω) dω , (5)

where B(x̄) is the shade at x̄, ρ is the diffuse reflectivity of the
surface and L may be independent of x̄ in the case of distant-only
lighting. Individually, the transport and lighting functions can be
reconstructed from their projection coefficients and the mean trans-
port function

L(x̄, ω) ≈ Lc · B + T̃ or L(ω) ≈ Lc
env · B + T̃ (6)

T (x̄, ω) ≈ T c
x̄ · B + T̃ (7)

and we eliminate the addition of the full-dimensional mean trans-
port vector by projecting it into the basis, leaving us with the follow-
ing mean-compensated lighting and transport coefficients required
for relighting:

Lc′
x̄ = (Lc + T̃p) or Lc′

= (Lc
env + T̃p) (8)

T c′
x̄ = (T c

x̄ + T̃p) . (9)

For shading, T c′
x̄ is stored at each vertex and the global lighting

coefficients, Lc′
, are computed and stored once. For local lighting,

Lc′
x̄ is computed using equations 4 and 8 and stored at each vertex.

Since eigentransport forms an orthonormal basis, reconstructing the

shading integral does not require explicit evaluation or storage of
the basis

B(x̄) ≈ ρ

π

∫
Ωnx̄

(
Lc

env · B + T̃
)(

T c
x̄ · B + T̃

)
dω

≈ ρ

π

∫
Ωnx̄

(
Lc′

env · B
)(

T c′
x̄ · B

)
dω

=
ρ

π

(
Lc′

env · T c′
x̄

)∫
Ωnx̄

(B · B) dω

=
4ρ

s︸︷︷︸
1
α

(
Lc′

env · T c′
x̄

)
(10)

assuming environmental lighting. Replace Lc
env with Lc and Lc′

with Lc′
x̄ for the local-lighting case. The evaluation of equation 10

is performed on the GPU using a simple shader. Figure 8 illustrates
how our method can produce shading results that are nearly indis-
tinguishable from ground truth renderings using few coefficients;
the captured variance is included in parentheses.

(a) Ground Truth (b) d = 192 (97.7%) (c) d = 96 (96.1%)

(d) d = 36 (92.9%) (e) d = 12 (86.32%) (f) SH 36 Coefficients

Figure 8: Fewer than 200 coefficients (8(b)) almost perfectly re-
constructs the ground truth (8(a)). At 36 coefficients (8(d)) our
technique captures significantly more detail than an equivalent SH
reconstruction (8(f)).

5 Handling Lighting Rotation

To rotate the lighting (or scene) normally involves rotation of the
original lighting dataset (cubemap) and reprojecting into our basis.
The brute-force resampling of the cubemap data is the computa-
tional bottleneck of this operation, since projecting into our basis
is a simple matrix vector multiplication. Depending on the original
number of samples used during precomputation, the brute-force re-
sampling and projection can take anywhere between 0.02 seconds
(for approximately 1000 samples) to 2 seconds (for approximately
30000 samples.)

We present a simple algorithm that uses the original sampled light-
ing (in canonical orientation), Lenv , to determine the rotated full-
dimensional lighting, LR

env . Equation 3 is applied to LR
env to obtain

the coefficients used for shading.

Given a desired rotation for the environment lighting, we apply the
inverse rotation to the s points of the sampling lattice. Now, instead
of resampling the environment based on the directions given by the



new point locations, we compute the sampling coordinates of the
new point positions and bilinearly interpolate the lighting based on
the previously sampled values, yielding the rotated full-dimensional
lighting, LR

env . This recomputation and interpolation can be per-
formed efficiently in real-time if a uniform lattitude/longitude or
(as in our case) cubemap parametrization is used.

Figure 9 compares a brute-force rotated and sampled lighting envi-
ronment to the lighting obtained using our algorithm. After projec-
tion into our basis, the differences become even smaller.

(a) Brute-force (b) Our method (c) Brute-force (d) Our method

Figure 9: Brute-force resampled lighting (9(a),9(c)) and the light-
ing obtained with our algorithm (9(b),9(d)).

6 Error Analysis

We measure numerical error using the L2 norm over the recon-
structed transport functions. Figure 10 illustrates how our basis
reconstructs transport with lower error than Haar and SH. Haar co-
efficients are chosen to minimize the L2 error, which means that for
an n coefficient Haar reconstruction, potentially many more than n
coefficients must be stored. For scenes with biasing geometry, Haar
typically outperforms our technique only after a few hundred coef-
ficients.
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Figure 10: Error for transport reconstruction.

Our basis, especially for the first 100 coefficient reconstructions,
outperforms Haar and SH. For interactive applications like games,
low-order reconstructions are preferred since they require less run-
time computation to shade. Furthermore, GPU constraints limit the
number of constant variables that can be used in a shader.

7 Results

Figure 11 compares our rendering results to ground truth render-
ings. All-frequency shadows are captured under dynamic lighting
with real-time performance and low error.

7.1 Memory Requirements

If the lighting is pre-projected (in its canonical orientation) for
use with our rotation algorithm, then only the per-vertex coeffi-
cients and global lighting coefficients need to be stored for the
run-time. This cost, in bytes, is 4d(v + 1) for single precision
floating point values. The Asian Dragon (39372 vertices), Happy
Buddha (18978 vertices) and Lucy (41293 vertices) meshes require
7.2MB, 3.4MB and 7.5MB respectively for a 48 coefficient eigen-
transport reconstruction. Local lighting and brute-force lighting
rotation/reprojection both require storage of the projection matrix,
adding 4ds bytes to the previous requirements.

8 Limitations and Future Work

Since eigentransports are derived from the scene geometry, sam-
pling biasing due to added geometry can negatively affect the ef-
fectiveness of the basis. In our experiments, the scenes without
added ground planes required significantly fewer reconstruction co-
efficients to capture more of the transport variance.

All approximated local lights are only accurate outside the convex
hull of the scene since the self-occlusions used to calculate transport
are with respect to global visibility.

As it stands, assuming diffuse surfaces simplifies our experiments
and allows us to analyze the dimensionality of transport without
considering the potentially non-linear effects of arbitrary BRDFs.
Performing a similar investigation of dimensionality reduction
while including the effects of arbitrary BRDFs is an interesting area
of future work we plan on exploring. Furthermore, our precompu-
tation system can be extended, in a manner similar to that presented
in [Sloan et al. 2002], to include indirect illumination effects at no
extra run-time cost and without any changes to the mathematical
analysis we presented.

Our mesh-dependent basis can be extended to vertex-cluster depen-
dent bases over a mesh. The dimensionality of transport within
clusters of vertices on a mesh is bounded by the global dimension-
ality and is likely to be much smaller. Investigating the trade-offs of
cluster-size and required reconstruction dimensionality, in a similar
fashion as Mahajan et al. [2007], is left to future work.

9 Conclusion

We present a novel, scene-dependent basis for geometry relighting
under dynamic global and local lighting. We use PCA to minimize
the least-squares error of per-vertex transport over a mesh. The
resulting PCA transformation is used to project lighting into our
basis.

We achieve lower numerical error than SH and Haar bases and re-
quire fewer basis functions to shade scenes with near ground-truth
detail. The storage requirements of our basis are modest and pre-
computation times are low.
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Figure 11: Top: Ground truth. Bottom: Our results (48 coefficients).
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