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Abstract

Meshes representing real world objects, both artist-created and scanned, contain a high level of redundancy
due to (possibly approximate) planar reflection symmetries, either global or localized to different subregions. An
algorithm is presented for detecting such symmetries and segmenting the mesh into the symmetric and remaining
regions. The method, inspired by techniques in Computer Vision, has foundations in robust statistics and is resilient
to structured outliers which are present in the form of the non symmetric regions of the data. Also introduced is an
application of the method: the folding tree data structure. The structure encodes the non redundant regions of the
original mesh as well as the reflection planes and is created by the recursive application of the detection method.
This structure can then be unfolded to recover the original shape. Applications include mesh compression, repair,
skeletal extraction of objects of known symmetry as well as mesh processing acceleration by limiting computation
to non redundant regions and propagation of results.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object Model-
ing]: Geometric algorithms, languages, and systems. Curve, surface, solid, and object representations. Hierarchy
and geometric transformations.

1. Introduction

Symmetry plays a fundamental role in nature, manifested
both in the form and function of living organisms. Visu-
ally, symmetry is important to humans, as it influences our
perceptual understanding of objects in the world. Symmet-
ric patterns, not surprisingly, are an important design princi-
ple in guiding the aesthetic and construction of synthetic ob-
jects [Arn54, Gom69]. Neuroscience research goes so far as
to indicate that aspects of symmetry in humans may be hard-
wired into our visual processing system [NCP∗02]. Symme-
tries are ubiquitous in humans, our environment and our cre-
ations of art and architecture.

The classification, understanding and intelligent represen-
tation of shape is an active area of research in geometry pro-
cessing. Recognizing the common presence of symmetries
in many real world objects can greatly assist in solutions
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to various shape representation problems such as simplifi-
cation, repair, noise removal and skeletal extraction. Of the
various types of symmetries found, planar symmetry is per-
haps the most commonplace and is thus the focus of this pa-
per. While planar symmetries have been recognized to be an
important feature in shape understanding, there has been lit-
tle work in shape representations that are defined as a struc-
tured assembly of symmetric parts. In this paper we present
the concept of a folding tree (see figure 4), where an object
is defined as a hierarchical union of planar symmetric and
asymmetric parts. Each nested detection of a symmetric part
reduces the complexity of representation of said part by half,
greatly simplifying the overall representation complexity of
many objects.

For folding trees to be useful beyond an academic con-
cept, we must be able to automatically construct them from
geometric data such as meshes as well as regenerate the ob-
ject from its folding tree. Central to folding tree construction
is the problem of automatically finding a maximally sym-
metric part of the object. We observe that most organic ob-
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Figure 1: (a) Original dino mesh. (b) Detected global symmetry plane. (c) Remaining half dino mesh with a detected local
symmetry. Green indicates the region of symmetry and yellow indicates faces still in the support region but not included in the
symmetric region. (d) Remaining leaf geometry (the two leaves shaded a different color). (e) Dino reconstructed from the leaf
geometry and symmetry planes.

jects with planar symmetry are articulated figures with co-
herent symmetric parts that are connected at the joints of an
underlying skeletal structure. Most synthetic objects show
a construction history involving symmetric primitives, sym-
metry creating operations such as reflections, planar symme-
try preserving operations like revolves and coherent combi-
nations of various symmetric parts often with some asym-
metric refinement. Motivated by these observations we ad-
ditionally constrain our problem to finding a maximal sym-
metric part that is a single connected surface component of
the object. The constraint has several advantages, includ-
ing simplifying reconstruction. Multiple surface components
with the same planar symmetry are just as easily represented
as multiple symmetry nodes that have the same symmetry
plane.

Overview: Our approach to finding maximally symmetric
parts is based on robust M-estimation using an iteratively
reweighted least squares (IRLS) algorithm. We simultane-
ously solve for the reflection plane as well as the region
of surface that is symmetric with respect to it. Upon con-
vergence, the symmetric region found is separated from the
rest. The algorithm is then applied to the remaining regions
to find other local symmetries, as well as recursively to half
of the symmetric region to find nested symmetries. This pro-
cess leads to a hierarchical folding tree representation of the
object where geometry is only stored in tree leaves. The orig-
inal surface can then be reconstructed from its folding tree in
a bottom up fashion by reflecting symmetric geometry and
reconnecting segmentation boundaries.

Contribution: This paper presents two principal contribu-
tions. Firstly, we introduce a method capable of detecting
global as well as local approximate planar symmetries in
3D meshes. Our algorithm has solid foundations on sta-
tistical methods for robust M-estimation [HRRS86] which
has also been used in many recent computer vision applica-

tions [SAG95, BA96, Ste99]. Secondly, we exploit our sym-
metry detection approach for mesh folding: the elimination
of planar symmetry redundancy from the mesh data. Our al-
gorithm is orthogonal to other existing methods for mesh
compression [Hop96, GBTS99, KG00, IA02] which do not
explicitly take advantage of repeating symmetric areas in 3D
meshes. (For a recent survey, see [AG05].)

The rest of the paper is organized as follows: section
2 describes the related work on symmetry detection and
applications; section 3 describes our method for detecting
global and local symmetries on mesh data; section 4 intro-
duces folding trees and describes their construction; section
5 shows our results; and finally, section 6 presents our con-
clusions and future work.

2. Related Work

Although the computation of symmetries in shapes has been
an intriguing area of research in computer vision and com-
putational geometry literature for the last 30 years at least,
to our knowledge, there has been comparatively little re-
search on symmetry detection in 3D meshes mainly due to
the increased complexity of the existing algorithms when ex-
tended from the 2D to the 3D case. Our work differs from
most approaches for 3D symmetry detection in meshes in
that we aim at the robust detection of not only global but also
local reflection symmetries, i.e. those present only in parts
of a 3D mesh, and we exploit these symmetries in order to
achieve mesh compression by eliminating faces implied by
the discovered symmetries.

The detection of symmetries in 2D and 3D models has
mainly been applied in object classification, recognition
and reconstruction. Early approaches dealt with symmetries
of planar point sets by applying pattern recognition algo-
rithms that search for matches in circular strings represent-
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ing the graphs of polyhedral objects [Ata85,WWV85,Hig86,
JYB96].

Despite the optimality of these algorithms that could also
detect all the possible symmetries in a shape, they were
only able to recover perfect symmetries in 2D and 3D
shapes making them useless in the presence of small per-
turbations, imprecision and noise which is very common in
meshes. The problem of approximate symmetries was ad-
dressed in [AMWW88] that considered the problem of com-
puting generic geometric transformations between two point
sets. The paper gives a detailed theoretical analysis of the
developed algorithm for symmetry, however, it deals with
global symmetry and it is unclear if the given algorithm
could be extended to three dimensions. Such is also the case
of other methods for finding symmetries of symmetric or al-
most symmetric 2D planar images [Mar89, GK96, SICT99].

An interesting extension of that early work which intro-
duced the notion of symmetry distance, meaning how much
of a given symmetry an object possesses, was developed
in [ZPA95]. The approach can evaluate symmetries in the
presence of noise and also find locally symmetric regions
in 2D images and 3D range data. The reflection plane of the
image is determined by minimizing the symmetry value over
all possible reflection planes using a gradient descent algo-
rithm to locate the plane of maximal symmetry. More re-
cently, an approach also taking 3D range images as input was
presented in [TW05]. A probabilistic measurement model is
used to detect symmetries in order to reconstruct partially
occluded 3D shape models. Although both methods can find
local symmetries, they follow a greedy technique searching
in growing localized regions. In contrast, our method is top
down, leading to the gradual removal of asymmetric outliers
from the region for the robust detection of the maximal sym-
metric area using an M-estimator approach. In this regard,
our approach tends to find the largest areas of symmetry first,
avoiding over-segmentation.

Another original approach that detects the dominant hy-
perplane of bilateral symmetry in range images of 3D objects
with a linear time algorithm is presented in [MO96]. The
hyperplane is uniquely defined by the centroid and eigen-
vectors of the covariance matrix of the object. This method
is limited to the detection of the plane of global symmetry
and is not robust to outliers or imprecision in the 3D ob-
ject. Sun et. al [SS97,SS99] address the symmetry detection
problem by, in the first case, searching for correlations in the
3D object’s gaussian image, and in the second, by using the
image’s orientation histogram in a similar fashion. More re-
cently, Martinet et al. [MSHS05] recover symmetries by ex-
amining the extrema and spherical harmonic coefficients of
the object’s generalized moments. These approaches, how-
ever, also focus strictly on global symmetry detection.

Symmetry shape descriptors are introduced in [KCD∗04,
KFR04] where a collection of spherical functions are used
to describe the measure of rotational and reflective sym-

Figure 2: GM estimator cost ρ (left) and associated weight
w (right) as a function of distance for scale parameter σ = 1
(red solid), σ = 2 (green dashed) and σ = 3 (blue dotted).

metry present in a mesh with respect to every axis passing
through its center of mass. The descriptors had several de-
sirable properties such as robustness and stability. However,
the approach aimed at using global symmetry information as
a shape descriptor and not at extracting local symmetries.

In parallel with our work, two very interesting symme-
try detection algorithms have been developed. In the first,
Podolak et al. propose the planar reflective symmetry trans-
form (PRST) [PSG∗06] as a shape descriptor. For any given
plane, the PRST indicates the degree of symmetry which
the object exhibits with respect to it. For efficiency of com-
putation, the authors propose a Monte Carlo framework, in
which pairs of randomly selected points vote for the plane
between them. These votes are accumulated in discrete bins
over polar parameters in a manner reminiscent of the Hough
transform, and local maxima are later refined. These lo-
cal maxima correspond to planes for which the object ex-
hibits a degree of local or global symmetry. In the sec-
ond, Mitra et al. [MGP06] also propose to consider pairs of
points and their determined symmetry. Rotational, and trans-
lational symmetries are also considered, as well as scaling.
Instead of a bin counting scheme, representative symme-
tries are extracted from the transform space through mean
shift clustering. Both proposed methods seem robust and ef-
ficient. On the other hand, our approach represents an easy-
to-implement alternative symmetry detection method which
is also based on robust statistics along with a hierarchical
simplification scheme that can be directly applied to mesh
compression and reconstruction, in both cases through our
folding tree structure.

3. Symmetric region detection

Given a mesh, we wish to find a connected region S of faces
that exhibit planar symmetry within a tolerance parameter
ε. In the case of global symmetry, this region should be the
entire mesh. We approach the problem as a model fitting sce-
nario, in which the model consists of the sought plane, and
the connected region of symmetry.

Distance metric: given a plane p, we denote the distance
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from a point rp
i , which is the reflection of vi with respect to

p, to a mesh M as dp
i = dist(rp

i ,M). For notational simplicity
we will avoid including the p superscript in the following.

We compute the distance function dist from a reflected
vertex to the mesh by taking the minimum point-to-triangle
distance from the point to the closest compatible face on
mesh M [RL01]. We consider a face to be compatible with a
given query vertex if the angle between the interpolated nor-
mal at the closest point on the face and the vertex’s reflected
normal is less than 45 degrees.

Given the presence of structured outliers in the form of
the non symmetric regions of the mesh, we interleave solv-
ing for the symmetric region S and the plane p based on an
iteratively reweighted least squares (IRLS) approach, using
the Geman-McClure (GM) robust M-estimator [HRRS86,
FP02]. In essence, the GM estimator maps error values to
an associated cost. This cost approaches constant (and the
associated weight approaches zero) as error values approach
infinity, thus mitigating the influence of outliers on the min-
imization process. The GM estimator exhibits excellent be-
havior in rejecting structured outliers with the appropriate
choice of the scale factor σ [SAG95]. This parameter essen-
tially controls the rate with which weight decreases as error
increases. (See figure 2.)

Solving for the plane: Given the current distances di, the
GM cost estimator ρi and associated weight wi for each ver-
tex are given by

ρi =
d2

i

σ2 +d2
i

wi =
1
di

∂ρi

∂di
=

2σ
2

(σ2 +d2
i )2

In addition, in order to be robust in the presence of
tessellations with varying face sizes, we multiply the
obtained weights by their associated vertex areas, i.e.
wi← wi

1
3 ∑

k
j=1 area( f j), where f1, ..., fk are the faces inci-

dent on vertex vi.

For a body which exhibits planar symmetry it is known
that its plane of symmetry is perpendicular to a principal axis
and contains the object’s center of mass [MIK92]. This lets
us solve for the current plane of maximum symmetry in a
closed form manner by considering the center of mass m and
weighted covariance matrix C relative to the weights wi.

m =
1
s

n

∑
i=1

wivi C =
1
s

n

∑
i=1

wi(vi−m)(vi−m)T

where s = ∑i wi.

We compute the eigenvectors of C and consider the three
planes determined by these vectors and m. For each of these
planes we compute the distances di and associated costs ρi
retaining the one of minimum sum cost. This now lets us
solve for the support region.

Support region: Given the current ρ values and a candidate
face f = (v1,v2,v3) we consider it to be a support face if
it holds that ∀i∈{1,2,3}di ≤ 2σ [HRRS86]. We then find the

Figure 3: Illustration of algorithm convergence. The plot
shows the objective function ∑i ρi for support vertices vi. The
placement of the estimate of the symmetry plane along with
support region (yellow) and symmetric region (green) are
shown for the horse model. Left to right, iterations 1, 5 and
10 respectively, using the precise distance metric.

largest connected region of support faces, taking this as our
new estimate of the support region and set the weights for all
vertices outside this region to be 0, thus controlling leverage.

The estimation and region finding steps are iterated until
convergence.

Initialization and details: Initially we simply define wi to
be the mesh area associated with vertex vi as defined above,
and the initial support region contains all faces.

In order to accelerate and improve convergence we ini-
tially use a discrete approximation of the above distance
function. For a given vertex vi and face f j this distance
function distdiscrete(vi, f j) is defined as the Euclidean dis-
tance from the reflected vertex ri to the face plane of
f j if the angle between the reflected normal and f j is
less than 90 degrees, and infinite otherwise. The distance
distdiscrete(vi,M) is defined as the distance to the f j whose
centroid is closest to vi. During these initial iterations we
set σ = 1.4826 ·median(di), which is a popular estimate of
scale [FP02], not letting it fall below 2ε to avoid instability.

This discrete distance function is first used until conver-
gence, after which the more precise distance function dist
is used. At this point we set σ = 2ε. This setting allows for
near-symmetric vertices to be included in the support region
albeit with lower weight.

Upon convergence, the symmetric region S is extracted as
the largest connected region of faces whose vertex distance
values are all below ε. We detect convergence by comparing
the current plane estimate with that of the previous iteration
checking for a sufficiently small difference.

Convergence: In our experiments both distance functions
exhibit very good convergence behavior (to their respective
minima). Figure 3 illustrates an example of the convergence
properties of our approach.
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4. Folding trees

4.1. Definitions

We consider a region R of a mesh M to be a connected subset
of the faces of M.

A segmentation {R1,R2, ...,Rn} of a mesh M is a set of
mutually exclusive regions whose union results in M.

A folding tree T representing a mesh M is inductively de-
fined as one of the following:

• a leaf node, which contains mesh data for M.
• a folding node, with one subtree S, and a plane of symme-

try p.
• a segmentation node, with n subtrees T1,T2, ...,Tn, where

Ti is a folding tree for region Ri such that regions
R1,R2, ...,Rn are a segmentation of the mesh represented
by T .

The unfold operation can now be defined on a folding tree
T as follows.

• The mesh data M if T is a leaf.
• unfold(S) ∪ reflect(unfold(S), p), where S is the unique

subtree of T , p is the reflection plane,
• ∪n

i=1unfold(Ti) where T1,T2, ...,Tn are the subtrees of T .

Here, reflect indicates the mesh resulting from planar re-
flection of the argument mesh’s vertices with respect to the
argument plane.

4.2. Folding tree construction and unfolding

Given a mesh M, a folding tree T that represents it can be
constructed in preorder through repeated application of the
segmentation method of section 3. First, we apply the seg-
mentation algorithm to M to find a subregion of planar sym-
metry, S, also obtaining the plane of symmetry p. We remove
S from M and consider the set of remaining connected com-
ponents {R1,R2, ...,Rn}. Note that in the case of a global
symmetry, this set will be empty. We now construct a fold-
ing tree T with n + 1 children T0,T1, ...,Tn, each represent-
ing S,R1,R2, ...,Rn respectively. We know S to be symmetric
with respect to plane p, so we can now fold S, retaining half
of its surface S′. In particular, T0 will be a folding node, la-
beled with p, and its child T ′

0 will represent S′. The resulting
structure is illustrated in figure 4. The subtrees T ′

0 ,T1, ...,Tn
can now be created recursively with regions S′,R1, ...,Rn re-
spectively as inputs.

When discarding half of the faces of a particular region,
it must be decided which half to keep, which to discard, and
which to modify, if any. Because of varying tessellation and
the provided tolerance, both sides need not be identical. In
our implementation we keep the side with the most faces in
order to preserve detail. Alternatively, we could keep the half
with the least faces in order to minimize storage. Faces with
all vertices on the discarded side of the plane are removed. In
addition, faces that straddle the symmetry plane are clipped.

Figure 4: Left: Folding tree construction structure when
a local symmetry is detected. Right: Example of a complete
folding tree for the dino mesh decomposition of figure 1. Cir-
cles represent folding nodes, squares segmentation nodes,
small triangles are leaf geometry and large triangles repre-
sent (recursive) folding trees.

Figure 5: (a) Original horse model. (b) Resulting tree
leaves after folding and symmetry planes. Note that the lo-
cal symmetries of the body and the articulated head were
detected. (c) and (d) The reconstructed horse model.

The recursive construction of the tree may be stopped,
triggering the creation of a leaf node, by using one or more
criteria: when the number of faces in the mesh is below a
given threshold, when the area of the mesh is below a certain
percentage of that of the original mesh, or when the number
of recursive folds exceeds a given maximum. Our implemen-
tation allows for any or all three.

The procedure for unfolding a tree consists of a postorder
traversal according to the definition of subsection 4.1. Upon
reconstruction, because of the tolerance parameter of the
region-finding algorithm, as well as differences in tessel-
lation, the resulting mesh may have vertex misalignments.
These can be corrected automatically using known tech-
niques [GTLH98, TL94, Ju04] or software. The unfolding
drives this repair, the union of the definition of subsection
4.1 between unfolded parts indicating that these should be
processed in this manner. Figures 1, 4 and 5 illustrate the
concepts.
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Figure 6: 1st column: original mesh data. 2nd column: All folding planes present in the constructed tree. 3rd column: model
resulting from unfolding of folding-tree representation. 4th column: Folding tree. Circles represent folding nodes, squares
segmentation nodes, and triangles are leaf geometry. Leaf nodes corresponding to asymmetric regions are not shown for clarity.
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Mesh # Orig. f’s #Nonred. f’s Mesh bytes Tree bytes Comp. Tree height Rec. error Time
Dino 6638 3142 265864 130916 50.76% 3 0.0358% 152 sec
Horse 3306 2672 120312 93932 21.93% 3 0.0004% 24 sec
Chair 5736 2460 229880 104352 54.61% 4 0.1600% 58 sec

Hammer 4360 677 174712 53120 69.60% 7 0.1764% 174 sec
Triceratops 5660 2447 226712 123696 45.44% 7 0.0147% 202 sec

Eagle 33072 15808 160440 96516 39.84% 5 0.0067% 936 sec
Queen 3360 600 134712 31952 76.28% 4 0.0001% 120 sec

Table 1: Results for seven characteristic meshes. Columns from left to right: mesh name, number of faces in the original mesh,
number of non redundant faces stored in folding tree leaves, original mesh storage in bytes, tree storage in bytes, compression
achieved according to one minus the ratio of the previous two columns, height of the folding tree, reconstruction error as a
percentage of the bounding box diagonal and running time, as reported by our Matlab 7 implementation.

5. Results

The implementation of the symmetry detection algorithm
and the folding tree representation of meshes, as described
in sections 3 and 4, has been developed in Matlab 7. The user
defines the tolerance parameter of the algorithm and the cri-
teria for stopping the hierarchical segmentation of the mesh.
The default tolerance value is 2% of the bounding box diag-
onal of the mesh. The default criterium for terminating the
recursion is that the area of the current region is less than 5%
of the total mesh area.

We present characteristic results, concerning mesh com-
pression, the depth of the hierarchical segmentation, average
reconstruction error as a percentage of the bounding box di-
agonal, as well as running times in table 1. Figure 6 shows
initial and reconstructed meshes, complementing the results
of figures 1 and 5, as well as illustrating all folding plane po-
sitions and the folding trees. In the chair model, we find the
vertical plane of global symmetry then each cushion, which
was a separate connected component, was folded through
three perpendicular planes. The hammer is firstly folded in
half through a vertical global plane of symmetry. Then, the
handle is divided twice more. The cylindrical portion of the
head is also subdivided twice more recursively. In the case
of the triceratops and eagle models we find a global plane
of symmetry and then local symmetries in the legs, tail and
body for the triceratops model, and in the wings and upper
legs of the eagle. Finally, in the case of the octagonal queen
chess piece, all planar symmetries are recursively discovered
resulting in one eighth of the original surface being stored.

Figure 7 further illustrates the symmetry detection ap-
proach. In the woman, we firstly find the dominant partial
symmetry that includes her body and legs. Searching for
nested symmetry, the algorithm detects the symmetry of the
leg. Proceeding to the remaining regions, we find the lo-
cal symmetries of the head and arms. Analogously, in the
dragon, we find the symmetry of its body and then legs,
head and arms. In the bull, we detect the local symmetry of
its body including the back left leg, then symmetries in the
other three legs and the head and finally another weak nested

symmetry found in the middle of its body. We detect sym-
metries on the body, and separately in head and the ears of
the bunny and also find two other weak nested symmetries
in its body. Lastly, in the octopus, its head is found to be
symmetric, also containing a nested symmetry, and multiple
local symmetries are found in different parts of its tentacles.
We would like to note that all meshes with the exception of
the chair are originally a single connected component.

Our tests were run on an Intel Pentium M 2.13GHz pro-
cessor under Matlab 7.

6. Conclusions and future work

We have proposed a novel approach for finding global planar
symmetries in 3D meshes based on robust M-estimation. In
addition, we have presented a new compact representation
of meshes, called folding trees, which represent the original
mesh by only encoding the non redundant regions as well
as the planes of symmetry and can be used to recover the
original object through unfolding.

Given the fact that real objects, both organic and synthetic,
often exhibit this type of data redundancy and human per-
ception is strongly related to the notion of symmetry, a sig-
nificant number of applications based on our methodology
can further be developed. The elimination of faces which are
repeated in redundant areas of global and local symmetries
leads to new mesh compression schemes that can be used
for mesh storage, processing, and transmission. Automatic
segmentation, reconstruction and repairing of the meshes,
driven by the extracted symmetries, is also another inter-
esting field of application of our method. The folding tree
representation could also facilitate skeleton extraction and
advanced editing operations which preserve symmetries.

Our future research will be focused on both the develop-
ment of such applications as well as the exploitation of other
types of symmetries in 3D meshes that can open up new im-
plementations and extensions of our proposed methodology.

In cases where there is no strong symmetry in the neigh-
borhood of the principal axes, our approach may fail to find
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Figure 7: Local symmetry planes identified by the method.

existing local symmetries in small regions (for example, in
the hands of the dino mesh of figure 1). In cases such as these
in which our initial guess does not provide a large enough
support, an alternative initialization can be sought through
random sampling or perhaps through a voting scheme like
the ones described by Mitra et al. [MGP06] or Podolak et
al. [PSG∗06].
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