Learning Local Shape Descriptors from Part Correspondences with Multi-view Convolutional Networks

Haibin Huang¹

Evangelos Kalogerakis¹

Siddhartha Chaudhuri^{2,3}

Duygu Ceylan³ Vladimir G. Kim³

Ersin Yumer³

¹University of Massachusetts Amherst ²IIT Bombay ³Adobe Research

Goal: learn local shape descriptors

Goal: learn local shape descriptors

Goal: learn local shape descriptors

Why local shape descriptors? Keypoint detection/correspondences

(similar colors correspond to points with similar descriptors)

Why local shape descriptors? Affordance prediction

Where do humans place their palms when they interact with these objects?

Why local shape descriptors? Shape segmentation & labeling

Classify points into labeled parts based on their descriptor

Low-level geometric cues not informative enough to yield semantic-aware descriptors

e.g., mean curvature

Low-level geometric cues not informative enough to yield semantic-aware descriptors

e.g., mean curvature

Low-level geometric cues not informative enough to yield semantic-aware descriptors

Large structural & geometric variability across objects, mainly man-made objects

Low-level geometric cues not informative enough to yield semantic-aware descriptors

Large structural & geometric variability across objects, mainly man-made objects

Generalize to novel object categories not seen during training

e.g., train on airplanes

test descriptors on helicopters

Low-level geometric cues not informative enough to yield semantic-aware descriptors

Large structural & geometric variability across objects, mainly man-made objects

Generalize to novel object categories not seen during training

Robustness to noise and missing data

Related work

Hand-tuned geometric descriptors see Xu et al. EG STAR '16

Related work

Hand-tuned geometric descriptors see Xu et al. EG STAR '16

Approaches (concurrent / after our submission):

Volumetric / octree-based methods: Maturana et al. '15, Zeng et al. '17 (3DMatch), Riegler et al. '17 (OctNet), Wang et al. '17 (O-CNN), Klokov et al. '17 (kd-net) ...

Point-based networks: Qi et al. '17 (PointNet / PointNet++), Hua et al. '18 ...

Graph-based / spectral networks: Yi et al. '17 (SyncSpecCNN), Bronstein et al. '17 ...

Surface embedding networks: Maron et al. '17, Groueix et al. '18 ...

Related work

Hand-tuned geometric descriptors see Xu et al. EG STAR '16

network

Approaches (concurrent / after our submission):

Volumetric / octree-based methods: Maturana et al. '15, Zeng et al. '17 (3DMatch), Riegler et al. '17 (OctNet), Wang et al. '17 (O-CNN), Klokov et al. '17 (kd-net) ...

Point-based networks: Qi et al. '17 (PointNet / PointNet++), Hua et al. '18 ...

Graph-based / spectral networks: Yi et al. '17 (SyncSpecCNN), Bronstein et al. '17 ...

Surface embedding networks: Maron et al. '17, Groueix et al. '18 ...

Key Observations

3D scans capture the surface.

Key Observations

3D models are often designed for viewing.

(not easily noticeable to the viewer, yet geometric implications on topology, connectedness...)

Key Observations

Shape renderings can be treated as photos of objects (without texture)

Shape renderings can be processed by powerful image-based architectures through transfer learning from massive image datasets.

(Su et al, ICCV 2015) (Kalogerakis et al. CVPR 2017)

Key Ideas

Deep architecture for processing rendered views of surface neighborhoods around points at multiple scales. View selection to handle self-occlusions.

Key Ideas

Deep architecture for processing rendered views of surface neighborhoods around points at multiple scales. View selection to handle self-occlusions.

Trained to **embed semantically similar points close to each other** in descriptor space.

Key Ideas

Deep architecture for processing rendered views of surface neighborhoods around points at multiple scales. View selection to handle self-occlusions.

Trained to **embed semantically similar points close to each other** in descriptor space.

Massive, synthetically generated training dataset: 977M corresponding point pairs

Pipeline

Pipeline

Step 1: Uniformly sample directions on the viewing hemisphere of the input point

Step 1: Uniformly sample directions on the viewing hemisphere of the input point

Step 2: Find directions the point is visible from

Step 1: Uniformly sample directions on the viewing hemisphere of the input point

Step 2: Find directions the point is visible from

Step 3: Prune redundant views through clustering

Rendered views

Point is at the center of the rendered image.

Rendered views

Perform in-plane camera rotations for rotational invariance.

Pipeline

Network Architecture

Network Architecture

Network Architecture

36 views Network Architecture 4096-D each **CNN** branches View-based (shared parameters) representations

Point pairs from two shapes

from two shapes

views $L(w) = \sum_{a} D^2(X_a, X_b)$ similar point

pairs (a,b)

"Siamese" LMVCNNs processing each point

Contrastive loss: (Hadsell et al, 2006)

from two shapes

 $L(w) = \sum_{a} D^2(X_a, X_b) +$ similar point pairs (a,b)

Local rendered views

> dissimilar point pairs (a,c)

"Siamese" LMVCNNs processing each point

$$\max(\text{margin} - D(X_a, X_c), 0)^2$$

Initialize filters from their pre-trained values on ImageNet!

Training Dataset: Part Correspondences

ShapeNetSem: 16 categories, 5K shapes segmented into labeled parts

Training Dataset

Non-rigid alignment between parts with the same semantic label

=> pick nearest point pairs

(corresponding points have same color)

Training Dataset

Non-rigid alignment between

parts with the same semantic label

=> pick nearest point pairs

(corresponding points have same color)_

ShapeNetCore Category	# shapes used	# aligned shape pairs	# corresponding point pairs
Airplane	500	9699	97.0M
Bag	76	1510	15.1M
Cap	55	1048	10.5M
Car	500	10000	100.0M
Chair	500	9997	100.0M
Earphone	69	1380	13.8M
Guitar	500	9962	99.6M
Knife	392	7821	78.2M
Lamp	500	9930	99.3M
Laptop	445	8880	88.8M
Motorbike	202	4040	40.4M
Mug	184	3680	36.8M
Pistol	275	5500	55.0M
Rocket	66	1320	13.2M
Skateboard	152	3032	30.3M
Table	500	9952	99.5M

Training Dataset

Non-rigid alignment between parts with the same semantic label

=> pick nearest point pairs

(corresponding points have same color)

	ShapeNetCore	# shapes	# aligned	# corresponding	
	Category	used	shape pairs	point pairs	
	Airplane	500	9699	97.0M	
	Bag	76	1510	15.1M	
	Cap	55	1048	10.5M	
	Car	=00	10000	1^^.0M	
	Chair	977M			
	Earpho		, , , , ,	8M	
	Guita	orros	pondi	ing 6M	
	Knife	Ull E3	pondi	2M	
	Lamp		+ i	3M	
	Lapto	poir	nt pair	S 8M	
	Motorbike	202	4040	40.4M	
	Mug	184	3680	36.8M	
	Pistol	275	5500	55.0M	
·) _	Rocket	66	1320	13.2M	
	Skateboard	152	3032	30.3M	
	Table	500	9952	99.5M	

Evaluation & Applications

"BHCP" dataset: 4 categories, 404 shapes, annotated with 6-12 corresponding feature points

"BHCP" dataset: 4 categories, 404 shapes, annotated with 6-12 corresponding feature points

+ applied a random 3D rotation to each shape

"BHCP" dataset: 4 categories, 404 shapes, annotated with 6-12 corresponding feature points

+ applied a random 3D rotation to each shape

BHCP shapes **not** included in our training datasets.

"BHCP" dataset: 4 categories, 404 shapes, annotated with 6-12 corresponding feature points

+ applied a random 3D rotation to each shape

BHCP shapes **not** included in our training datasets.

Three conditions:

Train on one ShapeNet class / test on corresponding BHCP class

"BHCP" dataset: 4 categories, 404 shapes, annotated with 6-12 corresponding feature points

+ applied a random 3D rotation to each shape

BHCP shapes **not** included in our training datasets.

Three conditions:

- Train on one ShapeNet class / test on corresponding BHCP class
- 2. Train on all ShapeNet classes / test on BHCP

[Kim et al. 2013]

"BHCP" dataset: 4 categories, 404 shapes, annotated with 6-12 corresponding feature points

+ applied a random 3D rotation to each shape

BHCP shapes **not** included in our training datasets.

Three conditions:

- Train on one ShapeNet class / test on corresponding BHCP class
- 2. Train on all ShapeNet classes / test on BHCP
- 3. Train on ShapeNet classes different from BHCP

1. Train on one ShapeNet class / test on corresponding BHCP class

2. Train on all ShapeNet classes / test on BHCP

2. Train on all ShapeNet classes / test on BHCP

3. Train on ShapeNet classes different from BHCP

Applications: partial scan-to-shape matching

Trained on ShapeNet models => test on scans

(similar colors correspond to points with similar descriptors)

Note: point clouds are rendered using a sphere per point

Applications: partial scan-to-shape matching

Trained on ShapeNet models => test on scans

(similar colors correspond to points with similar descriptors)

Note: point clouds are rendered using a sphere per point

Applications: predicting affordance regions

Fine-tuned on [Kim et al. '14]'s contact point dataset

Summary

 Point-based descriptor learning based on a convnet operating on multi-scale local surface view projections

Summary

- Point-based descriptor learning based on a convnet operating on multi-scale local surface view projections
- Leverage two massive large sources of data to train our network
 (Imagenet & correspondences we generated from segmented ShapeNet)

Summary

- Point-based descriptor learning based on a convnet operating on multi-scale local surface view projections
- Leverage two massive large sources of data to train our network
 (Imagenet & correspondences we generated from segmented ShapeNet)
- Can generalize to scans & classes not seen during training

• Surface information can be lost in projections

- Surface information can be lost in projections
- Redundancy in processing (same surface is visible from multiple views)

- Surface information can be lost in projections
- Redundancy in processing (same surface is visible from multiple views)
- Max view pooling might cause some information loss

- Surface information can be lost in projections
- Redundancy in processing (same surface is visible from multiple views)
- Max view pooling might cause some information loss
- Combine view-based with 3D-based nets, see SplatNet, Su et al., CVPR '18

Thank you!

Our project webpage with source code & dataset:

Adobe

http://people.cs.umass.edu/~hbhuang/local mvcnn/

