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Why local shape descriptors? Keypoint detection/correspondences

(similar colors correspond to points with similar descriptors) 



Where do humans place their palms 
when they interact with these objects?

Why local shape descriptors? Affordance prediction



Classify points into labeled parts based on their descriptor

Why local shape descriptors? Shape segmentation & labeling
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Challenges

Noisy scan   3D model  Partial Scan

Low-level geometric cues not informative enough to yield semantic-aware descriptors

Large structural & geometric variability across objects, mainly man-made objects

Generalize to novel object categories not seen during training

Robustness to noise and missing data
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curvature shape contexts geodesic dist.

Related work

PCA
Our method:
Multi-view

network



Key Observations

+ noise, missing regions etc

3D scans capture the surface.



Key Observations

Parts do not touch!

(not easily noticeable to the viewer, 
yet  geometric implications on topology, connectedness...)

3D models are often designed for viewing. 



Key Observations
Shape renderings can be treated as photos of objects (without texture)

Shape renderings can be processed by powerful image-based architectures through 
transfer learning from massive image datasets.

Image-based
network

Chair!

Airplane!

(Su et al, ICCV 2015)
(Kalogerakis et al. CVPR 2017)



Deep architecture for processing rendered views of surface neighborhoods 
around points at multiple scales. View selection to handle self-occlusions.
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Deep architecture for processing rendered views of surface neighborhoods 
around points at multiple scales. View selection to handle self-occlusions.

Trained to embed semantically similar points close to each other in descriptor 
space.

Massive, synthetically generated training dataset: 977M corresponding point pairs

Key Ideas
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View Selection

Step 1: Uniformly sample
directions on the
viewing hemisphere 
of the input point



View Selection

Step 2: Find directions 
the point is 
visible from

Step 1: Uniformly sample
directions on the
viewing hemisphere 
of the input point



View Selection

Step 3: Prune redundant
views through   
clustering

Step 1: Uniformly sample
directions on the
viewing hemisphere 
of the input point

Step 2: Find directions 
the point is 
visible from



View Selection



Rendered views

Render shaded images 
(normal dot view vector).
Point is at the center of 
the rendered image.



Rendered views

Perform in-plane 
camera rotations for 
rotational invariance.



Rendered views

Use progressively zoomed 
out views to capture 
multi-scale context.
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Training?
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Contrastive loss:
(Hadsell et al, 2006)



Training

Point pairs
from two 

shapes
Local rendered 

views

…

…
“Siamese” LMVCNNs
processing each point

Loss
function

( )L w

Initialize filters from their pre-trained 
values on ImageNet!



[Yi et al. 2016]

ShapeNetSem: 16 categories, 5K shapes segmented into labeled parts

Training Dataset: Part Correspondences



Non-rigid alignment between 
parts with the same semantic label

=>  pick nearest point pairs
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977M 
corresponding

point pairs 

Training Dataset

(corresponding points have same color)

Non-rigid alignment between 
parts with the same semantic label

=>  pick nearest point pairs



Evaluation &
Applications
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Evaluation

“BHCP” dataset: 4 categories, 404 shapes, 
annotated with 6-12 corresponding feature points
+ applied a random 3D rotation to each shape

BHCP shapes not included in our training datasets.

Three conditions:
1. Train on one ShapeNet class /  test on 

corresponding BHCP class
2. Train on all ShapeNet classes / test on BHCP
3. Train on ShapeNet classes different from BHCP[Kim et al. 2013]
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Helicopters

LMVCNN yields an 
average +10% 
improvement in
correspondence 
accuracy

LMVCNN 3DMatch SCSIPCA SDF



2. Train on all ShapeNet classes / test on BHCP
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3. Train on ShapeNet classes different from BHCP
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Applications: partial scan-to-shape matching  
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Applications: predicting affordance regions
Pe

lv
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Fine-tuned on [Kim et al. ’14]’s contact point dataset
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Summary

• Point-based descriptor learning based on a convnet operating on 
multi-scale local surface view projections 

• Leverage two massive large sources of data to train our network 
(Imagenet & correspondences we generated from segmented ShapeNet)

• Can generalize to scans & classes not seen during training
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Limitations

• Surface information can be lost in projections  

• Redundancy in processing (same surface is visible from multiple views)

• Max view pooling might cause some information loss

• Combine view-based with 
3D-based nets, see SplatNet, 
Su et al., CVPR ‘18



Our project webpage with source code & dataset:

http://people.cs.umass.edu/~hbhuang/local_mvcnn/

Thank you!

http://people.cs.umass.edu/%7Ehbhuang/local_mvcnn/
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