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Abstract
We present a novel particle-based method for stable simulation of elasto-plastic materials. The main contribution
of our method is an implicit numerical integrator, using a physically-based model, for computing particles that
undergo both elastic and plastic deformations. The main advantage of our implicit integrator is that it allows the
use of large time steps while still preserving stable and physically plausible simulation results. As a key component
of our algorithm, at each time step we compute the particle positions and velocities based on a sparse linear
system, which we solve efficiently on the graphics hardware. Compared to existing techniques, our method allows
for a much wider range of stiffness and plasticity settings. In addition, our method can significantly reduce the
computation cost for certain range of material types. We demonstrate fast and stable simulations for a variety of
elasto-plastic materials, ranging from highly stiff elastic materials to highly plastic ones.

Categories and Subject Descriptors (according to ACM CCS): Computer Graphics [I.3.7]: Three-dimensional graph-
ics and Realism—Animation; Simulation and Modeling [I.3.7]: Types of Simulation—Animation;

1. Introduction
A fundamental challenge in computer animation is to pro-
duce fast, realistic, and reliable simulations of solids with
a variety of different material types. To achieve this goal,
particle-based approaches have become increasingly popu-
lar in computer graphics, due to their efficient computation
cost and the ability to simulate a wide range of materials
(e.g. from fluids to fractured solids) using the same mesh-
less representation.

Over the last years, particle-based methods have also been
applied to handle simulations of deformable solids with ma-
terial types ranging from elastic to plastic ones. However,
among existing particle-based methods for elasto-plastic
materials, an important limitation is that they require using
small time steps in order to maintain stable simulation re-
sults. This is because they calculate particle positions and ve-
locities by relying on explicit numerical integration. To keep
the simulation error bounded and to ensure numerical stabil-
ity, it is well-known that explicit integrators require small
time steps, especially when the solid material is stiff. Thus,
they are generally slow to compute and often unsuitable for
scenes containing a variety of different solid materials.

A solution to this problem is to enable implicit numeri-
cal integration for particle-based methods. In this paper, we
present a novel formulation of particle-based simulation for

elasto-plastic materials with implicit numerical integration.
The main advantage of implicit integration is that it allows
much larger time steps while still providing stable and phys-
ically plausible simulation results. A key component of our
algorithm is to formulate the deformation computation into a
sparse linear system, which is both efficient to represent and
can be solved quickly on the graphics hardware by exploit-
ing the particle-level parallelism. As a result, in addition to
preserving the stability, our method is memory-efficient and
greatly speeds up the computation time in several cases (par-
ticularly with highly plastic and/or stiff materials).

Another advantage is that our method can handle solids
with much wider range of material properties compared
to existing techniques. For example, the method presented
in [BIT09] can only handle elastic materials, while the
method presented in [GBB09] is unstable when the object
undergoes large elastic deformations. Using our method, we
demonstrate stable results for both very stiff and very soft
materials, and also for objects that undergo either large elas-
tic or large plastic deformations.

Contribution. To summarize, our main contribution is a
new mathematical formulation that enables implicit integra-
tion for particle-based simulation of elasto-plastic materi-
als based on a physically plausible model. Our method pre-
serves numerical stability even at large time steps. At each
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Figure 1: A scene with a bunny falling on the ground. From top to bottom, each row corresponds to a different set of parameters,
and shows selected frames of the resulting animation. We refer the readers to the paper video for the complete animations.

time step we compute the particle positions and velocities
based on a sparse linear system, which we solve efficiently
on the graphics hardware. In addition, our method can signif-
icantly reduce the computation cost for certain range of ma-
terial types. Experimental results show that our method can
handle a variety of solid materials, from highly stiff elastic
materials to highly plastic ones.

2. Related Work
Finite-element elasto-plastic simulation. Our work is re-
lated to previous methods that perform physically-based
simulation of elasto-plastic materials. In the pioneer work
of [TF88], Terzopoulos et al. introduced deformation mod-
els for viscoplastic materials to computer graphics. O’Brien
et al. [OBH02] incorporated a simple additive model of plas-
ticity into a finite element simulation that preserves vol-
ume more realistically. However, the method tends to be-
come unstable for substantial elastic and plastic deforma-
tions due to poorly conditioned and tangled elements. Irv-
ing et al. [ITF04] proposed a multiplicative model of plas-
ticity such that larger plastic deformations can be han-
dled. However, when the basis matrices of the elements are
ill-conditioned, the finite element simulation will still be-
come unstable. To avoid this problem, remeshing approaches
have been proposed to maintain well-shaped tetrahedral
elements [BWHT07, WT08, WTGT09]. Unfortunately, the
remeshing steps can introduce numerical errors due to re-
sampling and smoothing of the physical properties of the

material. A conservative local remeshing algorithm was sug-
gested in [WRK∗10] to limit the accumulative errors during
simulation.

Particle-based elasto-plastic simulation. The above meth-
ods all handle elasto-plastic materials by using finite-
element simulation. Our paper builds upon the same mul-
tiplicative plasticity and deformation gradient formulation
presented in [ITF04, BWHT07]. However, instead of using
finite elements, we use a particle-based method, which is
meshless and does not require any remeshing steps. Our ap-
proach is mostly related to prior work in particle-based simu-
lation of elasto-plastic materials. A complete survey of such
simulation methods can be found in [GP07].

Particle-based methods are particularly useful as a uni-
fied approach for solid simulations. Müller et al. [MKN∗04]
first proposed such unified particle-based approach to model
all of elastic, plastic, and melting behavior of objects. Their
approach uses the Moving Least Squares (MLS) to derive a
deformation field from particle positions between the resting
state and deformed state. Plastic deformations are handled
by updating a plastic strain measure based on a simple ad-
ditive model of plasticity. However, as discussed in [ITF04]
and [BWHT07], this model loses its physical meaning for
finite strains. Later, Keiser et al. [KAG∗05] incorporated
the Navier-Stokes equations into the same plastic deforma-
tion regime of Müller et al. to simulate fluids with vary-
ing viscosity and the transitions from elasto-plastic materi-
als to fluids and vice versa. Instead of using Moving Least
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Squares to approximate the deformation field, Solenthaler
et al. [SSP07] and Becker et al. [BIT09] use particles in
conjunction with Smoothed Particle Hydrodynamics-based
forces, which has the advantage of better handling coarsely
spaced particle configurations. In particular, Becker et al.’s
method also better handles rigid body rotations by using
the Singular Value Decomposition to factor out the rotation
component from the deformation gradient for each particle.
Gerszewski et al. [GBB09] uses a multiplicative model of
plasticity in the context of particle-based elasto-plastic sim-
ulation that is more physically plausible and accurate. It also
avoids storing the initial resting state of the object by storing
only the elastic part of the deformation, and then computing
deformation gradients from particle positions only between
successive timesteps. As a result, their method can handle
large plastic deformations. More recently, a few other meth-
ods for handling ill-conditioned co-planar or co-linear con-
figurations of particles have been suggested in the approach
of elastons [MKB∗10] and oriented particles [MC11].

Implicit integration in particle-based methods. All the
above methods use explicit numerical integration to simulate
the particle positions and velocities for elasto-plastic mate-
rials, with the exception of Müller et al. [MKN∗04] and
Martin et al. [MKB∗10]. Müller et al. included both an ex-
plicit and implicit integration scheme in their formulation,
while Martin et al. demonstrated elaston-based simulation
with a semi-implicit integration scheme. Both approaches
use a simple additive plasticity model to incorporate plastic
strains in their simulations.

Our implicit integration formulation builds upon the mul-
tiplicative plasticity and deformation gradient model sug-
gested in [GBB09], which (compared to the additive model)
is more physically correct and can better handle large plas-
tic deformations. While [GBB09] uses an explicit numerical
integration scheme, it is well-known that explicit numerical
integration causes stability issues when the timesteps are not
sufficiently small. These stability issues can be avoided with
implicit numerical integration [BW98, DSB99, MDM∗02,
MKN∗04, MTG04]. As we demonstrate in our results (Sec-
tion 5), our method yields stable simulations even for large
time steps and is able to handle large elastic and plastic de-
formations very well. Furthermore, our method does not suf-
fer from drifting issues (for example, see Figure 5). Even if
there is more computation involved at each time step, our
method has comparable performance or is even much faster
(particularly with highly plastic and/or stiff materials - see
Table 1), since it enables much larger timesteps. At each
timestep our method solves a Laplacian linear system, which
is sparse (thus, also memory-efficient). In addition, the sys-
tem can be efficiently solved on graphics hardware, as we
explain in Section 4.

3. Algorithms
Overview. This section describes our algorithm details.
While implicit integration has the advantage in producing
stable simulation results even at large time step values, con-

ventionally it has been expensive to compute, due to the
nonlinear formulation of force computations in previous
particle-based solid simulators [MSJT08]. The key of our
algorithm is an elasto-plastic model which can be easily lin-
earized. As the result, we turn implicit integration into a
sparse linear system which can be efficiently solved, includ-
ing on the graphics hardware.

This section is organized as followed. Section 3.1 de-
scribes the background of elastic deformation models, in-
cluding the definition of the strain energy density and the
derivation of the elastic force. Section 3.2 describes how to
extend the method to handle plastic deformations. Then in
Section 3.3 we introduce our implicit integration method.

3.1. Elastic Deformation Model
This subsection describes the elastic deformation model
based on [GBB09]. To begin, we assume the geometry to
be animated is represented by a set of particles, and we use
F to denote an affine transformation matrix that represents
the deformation. For each particle i, we denote its transfor-
mation matrix as Fi, which is defined as:

Fi = argmin
F

∑
j∈N(i)

wi, j ‖ F(p j−pi)− (q j−qi) ‖, (1)

where p denotes a particle’s resting position (i.e., material
space coordinate, approximated from the previous timestep,
which will be explained in Section 3.2), q denotes its new
deformed position, i is the index of the current particle we
are computing, and j is the index of a particle in the neigh-
borhood N(i) of the particle i. The neighborhood size is
determined by a radius of a euclidean ball (i.e. particles
within a certain distance to i are considered neighbors of
i, see Section 4). The weight kernel wi, j = w(pi − p j) is
computed from the cosine-based weighting kernel described
in [SSP07]. Note that the weight kernel is defined over the
approximated particle’s resting position. For convenience we
define the following matrices:

Pi = [(p1−pi),(p2−pi), ...(pr−pi)] , (2)

Qi = [(q1−qi),(q2−qi), ...(qr−qi)] , (3)

Wi = Diag(wi,1,wi,2, ...wi,r). (4)

where r is the number of all neighboring particles of i. Then
following [GBB09], the transformation matrix Fi can be
solved as:

Fi = Qi Wi PT
i

(
Pi Wi PT

i

)−T
(5)

where T denotes matrix transpose.

Following [ITF04], to remove the rotation factors, we de-
compose Fi into UiF̂iVT

i using the Singular Value Decom-
position, where Ui and Vi are two rotation matrices, and F̂i
is a diagonal matrix. Then the linear Cauchy-Green strain
tensor can be computed as:

εi =
1
2
(F̂i + F̂T

i )− I = F̂i− I. (6)
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As described in [KAG∗05], the strain energy density is:

Ui =
1
2
(εi ·σi). (7)

where σi =Cεi following Hooke’s law, and C is the material
property which depends only on Young’s modulus (i.e., the
stiffness of the material) and Poisson’s Ratio for isotropic
materials (i.e., the amount of deformation in other dimen-
sions when the material is stretched in one dimension).

The force fi on particle i is computed as the derivative
of the strain energy over qi, summed over all neighboring
particles j:

fi = −∑
j

∂U j

∂qi

= −∑
j

(
∂F̂ j

∂qi
C(F̂ j− I)

)
. (8)

Assuming that the rotation matrices U j and V j are constant

within each timestep, then ∂F̂ j
∂qi

can be computed as:

∂F̂ j

∂qi,d
=


wi, j UT

j ed (p j−pi)
T
(

P jW jPT
j

)−T
V j,

(if i 6= j)

−UT
i ed ∑k 6=i wi,k(pk−pi)

T
(

PiWiPT
i

)−T
Vi.

(if i = j)
(9)

Here d ∈ {1,2,3} refers to the x, y, z coordinates of qi, k
indexes a neighboring particle of i, ed is the d-th column of

the identity matrix. ∂F̂ j
∂qi,d

is a 3x3 matrix which can be en-
coded into a 9-element vector. In practice, however, because
of the stress model we use, we only need to store the sym-

metric matrix 1
2 (

∂F̂ j
∂qi,d

+
∂F̂T

j
∂qi,d

), which can be encoded into a
6-element vector.

If we used explicit integration, the update rule at time step
t would be:

µt+1
i = µt

i +
∆t
mi

(ft
i,ext + ft

i), (10)

qt+1
i = qt

i +∆t µt+1
i (11)

where µt
i and qt

i are the particle velocity and position at the
current time step t, ∆t is the time step value, mi is the par-
ticle mass, ft

i,ext is the external force (e.g. gravity), and ft
i is

the force computed from the current particle position qt
i as

described in Equation 8.

3.2. Plastic Deformation Model
In contrast to the elastic deformation, the plastic deformation
is non-linear with respect to the particle positions, therefore
directly formulating it will lead to nonlinear equations. In-
stead, we assume within each time step the model undergoes
only elastic deformations, and then at the end of the time step
we compute the plastic deformations. In practice, this as-

sumption provides plausible plastic deformation effects and
does not affect the stability or efficiency of the algorithm.

Following the work in [BWHT07], we consider the eigen-
value of deformation gradient as the multiplication of an
elastic deformation component and a plastic one:

F̂i = F̂e,i F̂p,i. (12)

where the plastic component F̂p,i is computed using the
method presented in [BWHT07]. Following their work, we
also define elastic deformation gradient Fe,i = UF̂e,iVT and
plastic deformation gradient Fp,i = VF̂p,iVT . This also im-
plies that:

Fi = Fe,i Fp,i. (13)

We consider the plastic deformation as the local deforma-
tion on the resting state of the previous timestep, and the
deformed resting state is Fp,i Pi. Because of the definition of
Fi in Equation 13 we have:

Qi ≈ Fi Pi = Fe,i Fp,i Pi. (14)

Thus we have:

Fp,i Pi ≈ F−1
e,i Qi. (15)

Here F−1
e,i is the pseudo-inverse of Fe,i if it is ill-conditioned.

The above equation implies that accommodating plastic de-
formations requires replacing Pi with (Ft

e,i)
−1 Qt

i where
(Ft

e,i)
−1 is the (pseudo) inverse of the elastic deformation of

the last time step. By doing so we are implicitly multiplying
plastic deformations of all time steps together.

3.3. Implicit Integration
The update rule of implicit integration is similar to equa-
tions 10 and 11, except that we use ft+1

i (i.e., the force at the
next time step) instead of ft

i . Since ft+1
i is unknown, the so-

lution requires solving an implicit equation. Specifically, by
substituting equation 10 into 11 and replacing ft

i with ft+1
i ,

we have the following equation:

qt+1
i = qt

i +∆t µt
i +

∆t2

mi
(ft+1

i,ext + ft+1
i ), (16)

or in vector form:

Qt+1 = Qt +∆t Mt +∆t2 m−1(ft+1
ext + ft+1). (17)

It turns out that this produces a linear system. To see so, first,
note that F̂i can be expressed in first-order approximation as:

F̂i = ∑
k

∂F̂i

∂qk
qk, (18)

Not surprisingly, from the definition in Equation 5, Fi (and
hence F̂i) is linear with respect to the q’s, therefore the first-
order approximation is exact (i.e. all second and higher order
terms are zero).
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To simplify the expression we can define:

L j,i =

[
∂F̂ j

∂qi,1
,

∂F̂ j

∂qi,2
,

∂F̂ j

∂qi,3

]
(19)

which is a 6x3 matrix that describes the gradient of defor-
mation matrix over all nearby particles. We write all L j,i’s
together into L, which is a n× n× 6× 3 tensor, where n is
the total number of particles. We can see that each n×n sub-
matrix of L is actually a Laplacian matrix because Equation
9 and 19 implies ∑i L j,i = 0. In our implementation, since L
is very sparse, we fit it into the GPU memory by storing it
in compressed sparse row format. In addition, note that L is
independent of all particle positions in the current timestep
under the assumption that the rotation matrices U and V are
constant within each timestep.

Equation 18 can now be rewritten as:

F̂i = ∑
k

∂F̂i

∂qk
qk = Li,∗Q. (20)

where Li,∗ is the ith row vector of the Laplacian tensor L
(in which each element is a 6x3 matrix, refer to Equation 19)
and Q stores all particle positions (each element of Q is a 3-
dimensional position vector). Given this, equation 8 can now
be rewritten in the form:

fi =−LT
∗,i CLQ+∑

j
LT

j,i CI, (21)

or in matrix form:

f =−LT CLQ+∑
j

LT
j,∗CI. (22)

In the above equation, C is the 6x6 material property matrix
and I encodes the identity matrices. By replacing Q with
Qt+1 and substituting equation 22 into equation 17 and rear-
ranging the term, we will have the following linear system:

AQt+1 = b, (23)

where:

A = ∆t2 m−1 LT CL+ I, (24)

b = Qt +∆tVt +∆t2m−1ft+1
ext

+∆t2m−1
∑

j
LT

j,∗WCI. (25)

By solving the linear system we can compute Qt+1. The ve-
locity Mt+1 will be computed from Qt+1 and Qt for later
use.

In practice, we do not explicitly compute A in order to
reduce memory cost and computation overhead. Instead, we
store the much sparser tensor L. When a vector is multiplied
by A, we compute the multiplication by expanding Equation
24.

4. Implementation
In this section we describe implementation details. Source
code and executable demos will all be published on our
project webpage. Starting from the initial state of the input
objects (which are represented as particles), the algorithm
performs the following steps:

1. Estimate the particle positions Qt+1
0 for the next timestep

by assuming the force is the same as the last timestep
(i.e., ft+1 = ft ), and performing one step of the simulation
using Equation 17.

2. Compute the rotation matrices Ui, Vi based on the esti-
mated Qt+1

0 using SVD.
3. Compute the Laplacian matrix L (Equation 19); also

compute b from Equations 25.
4. Solve the sparse linear system from Equation 23.
5. Update Qt+1. Calculate velocity as (Qt+1−Qt)/∆t
6. Separate elastic deformation from plastic deformation

(Equation 13). The elastic deformation Fe,i will be stored
for estimating Pi in the next timestep from Equation 15.

We have implemented the entire pipeline on the GPU to
parallelize the above steps as much as possible. We use one
GPU thread per particle. We make use of the open-source
fluid simulation package published by [KE12]. For step 2,
we have implemented a simple SVD algorithm for 3x3 ma-
trices which runs per-thread. Steps 3, 5, 6 are implemented
based on our provided equations. Step 4 requires a sparse lin-
ear system solver, for which we make use of the GPU-based
Conjugate Gradient solver from the CUSP library [Cus12] to
handle tensors. The main computational benefit of the GPU
solver is that it parallelizes the sparse matrix-vector multipli-
cations required in the main loop of the Conjugate Gradient
method [BG09]. To speed up the convergence, we use the
Qt+1

0 from step 1 as the initial guess in the Conjugate Gra-
dient solver. In our experiments, the relative tolerance of the
solver is set to 10−4.

Steps 2 and 3 above involve searching all particles within
the neighborhood size. To speed up the neighborhood search
step, we build a uniform grid structure for all particles.
At any point in space, when looking for neighboring par-
ticles, we enumerate all particles in the neighboring grids
and test if they are inside the neighborhood implied by the
weighting kernel [SSP07]. We process all particles within
this neighborhood, which is more accurate than the method
of [GBB09] where they only pick the k-nearest neighbors.
In our experiments, we use a fix kernel size of 2.5 times the
minimum particle distance in the resting state. We noticed
that choosing a smaller neighborhood size, such as 1.5 times
the minimum particle distance in the resting state, caused
instabilities in places with thin features.

In our experiments, we chose a time step of 2ms. In the-
ory, our method could use a larger time step as long as the
rotation and plastic deformations do not significantly change
within each time step. In practice, a larger timestep would
slow down the convergence of the linear solver (thus, in-
creasing total simulation time).
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In all experiments, we assume the mass of each particle is
equal and remains constant. Also, we aim to demonstrate our
system on materials with only solid properties, thus we do
not include any fluid properties such as SPH pressure forces
and viscosity in our experiments. This is different from the
method of [GBB09], which relies on adding SPH pressure
forces and viscosity terms to improve stability. Topology
changes are handled implicitly when the neighborhood of
particles changes.

Finally, to render the animation results, we reconstruct
a smooth surface from the particles at each timestep. The
surface reconstruction is achieved by running the level-set
method described in [BGB11] as a post-process. The timing
results in the next section do not include the surface recon-
struction and rendering time.

5. Results
Our method can simulate solid objects with a wide range
of material properties. Figure 1 and 3 show examples with
different stiffness parameters on the bunny model and ar-
madillo model respectively. For each parameter setting we
show selected frames from the animation result. Refer to the
paper video for the complete set of frames. As the figures
show, our model handles a range of materials starting from
very low stiffness value to very high stiffness value.

We also demonstrate examples of materials with different
elastic and plastic properties in Figure 2. Here the scene is a
cube falling on the ground. From the left to right, we show
materials that are purely elastic, medium plastic, and highly
plastic. Note the differences in the deformations, and how
the deformation is permanent on plastic materials.

Figure 2: Simulation of different elastic and plastic mate-
rials. Left: purely elastic. Middle: medium plastic. Right:
highly plastic.

Qualitative comparisons with [GBB09]. Experimen-
tal results show that our method is generally more stable
than [GBB09] in several aspects. First of all, as discussed
in their paper, the method of [GBB09] becomes unstable
when a solid object (without any added fluid force) under-
goes large elastic deformation. In contrast, our method can
successfully compute a stable solution for such cases with-
out any added fluid force. Figure 4 demonstrates an example
of a falling armadillo where our method successfully simu-
lates the large elastic deformation of soft objects while the
method of [GBB09] suffers from poor stability. When us-
ing the explicit integration method by [GBB09], the par-
ticles quickly diverge as the animation proceeds, resulting
in non-reconstructable surfaces. In the supplementary video,
one of the Armadillo hands flickers during freefall with the

explicit integration method. This is the result of instability
caused by numerical error accumulation. It could be solved
by clamping the stress to 0, when it has very small values
e.g., below 1e− 5. On the other hand, our method does not
suffer from any of these stability issues and does not need
such ad-hoc corrections. In addition, experiments show that
our model suffers much less from drifting issues when sim-
ulating stiff objects, as shown in Figure 5. Here the scene is
a cube falling on the ground. After the cube bounces from
the ground, our method preserves the correct rotation an-
gles of the cube, while the method by [GBB09] results in
drifting and incorrect rotations of the cube as the animation
proceeds.

Performance comparisons with [GBB09]. For a fair
comparison of performance, we implemented both our
method and [GBB09] on the GPU, and optimized the perfor-
mance of each as best as we can. To make [GBB09] suitable
for the GPU, when performing neighbor search, we search
all particles in a uniform grid structure. This is slightly dif-
ferent from the original implementation in [GBB09] (which
uses kd-tree), but this change does not result in any notice-
able difference in accuracy throughout our experiments. In
addition, we set this technique to use the maximum possible
time step ensuring stable simulation. The performance re-
sults are shown in Table 1. The results are obtained on a Intel
i7 3.40GHz CPU and NVIDIA GeForce GTX 480 GPU. In
some experiments the method of [GBB09] is unstable when
the neighborhood size is small, thus we increase the neigh-
borhood size to make it stable (see rows marked with *, **
in the table). Our GPU method is faster than the GPU imple-
mentation of [GBB09] in several cases, while it is more than
an order of magnitude faster than their original CPU-based
implementation.

6. Discussion
In this paper we have presented a new method for particle-
based simulation of elasto-plastic materials based on implicit
numerical integration. Our method is more stable than pre-
vious techniques and in many cases faster. It can also han-
dle solid objects with a wide range of material properties,
ranging from very soft to very stiff materials without hav-
ing the artifacts that previous techniques suffer from. It can
also handle objects undergoing highly elastic deformation
and highly plastic deformation in a unified manner.

Limitations. One drawback of our algorithm lies in
cases where neighboring particles are co-planar or co-
linear. In this case the deformation matrix will become ill-
conditioned, resulting in poor stability. We expect that com-
bining our formulation with the GMLS technique of elas-
tons [MKB∗10] or oriented particles [MC11] can potentially
solve this problem. Another drawback of our algorithm is
that it keeps the rotation matrices U and V constant within
each timestep. The formulations in [CPSS10, MZS∗11] are
useful to tackle this problem. Also, our model is limited to
linear stress-strain relationships with co-rotated strain.
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Figure 3: Comparison of materials with different stiffness settings applied to the Armadillo model falling on the floor. Each
row corresponds to a different parameter setting, and shows selected frames of the resulting animation. Our algorithm is able
to successfully simulate objects with materials ranging from very soft, liquid-like ones (top row) to medium stiff (middle row),
and to very stiff, nearly rigid ones (bottom row).

Our implicit method Our explicit method [GBB09]
Scene Number of

particles
Time step (s) Total

Time (s)
(GPU)

Time step (s) Total
Time (s)
(GPU)

Time step (s) Total
Time (s)
(GPU)

Total
Time (s)
(CPU)

Armadillo (top)** 19866 0.002 59 0.00005 467 0.0001 623 20280
Armadillo (middle)* 19866 0.002 94 0.00005 496 0.0006 74 2448
Armadillo (bottom)* 19866 0.002 149 0.00002 1244 0.0001 443 14526

Cube (Fig.5) 2744 0.002 52 0.0001 90 0.0002 29 1075
Angry Birds (see video) * 12974 0.002 158 0.00005 1153 0.00005 629 -

Table 1: Performance comparison between our algorithm and [GBB09]. In the rows marked with *, the algorithm of [GBB09]
uses a larger neighborhood size (with radius equal to 4.5 times the minimum particle distance in the resting state) and in
the CPU version a larger number of neighboring particles (from 30 to 200) to avoid instabilities. In the row marked with **
(Armadillo top example), we use even larger neighborhood size (5.5 times the minimum particle distance) for that method again
to avoid instabilities. The timesteps chosen for [GBB09] are the largest possible we found after exhaustive search before the
simulation becomes unstable in each example.

Finally, we believe that pre-conditioning techniques de-
veloped in the context of finite element simulation (e.g.
[HLSO12]) or other pre-conditioning techniques proposed
recently (e.g. [KFS13]) can be used in conjunction with
our Laplacian linear system formulation, potentially offer-
ing even larger performance gains in future implementations
of our method.
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