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A Analytic Gradient and Hessian of strain tensor εεε

Similar to Equation 7 and Equation 8, we can express the partial
derivatives of the strain tensor ∂εεε(i, j)

∂xv,k
wrt the coordinates of a vertex

in the optimized shape (here r, s are matrix element indices):

∂εεε(i, j)
∂xv,k

= UT P̄ ∂X̄−1

∂xv,k
V

∂X̄−1(i, j)
∂X̄(r,s)

=−X̄−1(i,r)X̄−1(s, j)

∂X̄(i, j)
∂xv,k

=

 1 if v = vi and k = j
−1 if v = v0 and u = j

0 otherwise

The Hessian of εεε contains three parts: ∂
2εεε

∂P̄2 , ∂
2εεε

∂P̄∂X and ∂
2εεε

∂X2 , ex-
pressed as follows (here w refers to another vertex index, l is a
coordinate index):
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We also need to compute the second order derivatives of X−1.
Let us denote X(i,∗) as the ith row in matrix X, and X(∗, j) as the
jth column. Then we will have:

∂
2(X̄−1)

∂X̄(r,s)∂X̄(t,u)
=X̄−1(s, t) · X̄−1(∗,r) · X̄−1(u,∗)

+ X̄−1(t,s) · X̄−1(∗,u) · X̄−1(r,∗)

B Analytic Hessian of elastic energy U

The analytic Hessian of elastic energy U gives the gradient of the
force, which is actually the Jacobian of the force equilibrium con-
straints. It can be computed as follows:
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where : refers to double dot product between tensors, and the partial
derivatives of the volume ∂V

∂X̄ can be computed as:

∂V
∂X̄(i, j)

=
1
6
(
X̄(i+1, j+1)∗ X̄(i+2, j+2)

−X̄(i+1, j+2)∗ X̄(i+2, j+1)
)

Here the indices of the matrix should wrap around when i+2> 3

or j + 2 > 3. Notice that ∂
2U(X̄,P̄)

∂2X̄ is not needed when computing
the Jacobian.

C Analytic Gradient and Hessian of σ̂

If we rewrite σσσ in vector form:

σσσ =


σ11
σ22
σ33
σ12
σ23
σ31

 (18)

One might easily notice that Equation 10 can be written in the form:

σ̂
2 =

1
2

σσσ
T Mσσσ (19)

Where M is a constant matrix:

M =


2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 2 0 0 0
0 0 0 6 0 0
0 0 0 0 6 0
0 0 0 0 0 6

 (20)

Thus, Equation 10 can be further rewritten into the form:

σ̂
2 =

1
2

εεεt : EMEεεεt (21)

Which is very similar to Equation 3. Thus its analytic gradient
also has a similar form:
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The Hessian is expressed as follows:

∂
2
σ̂(X̄, P̄)
∂P̄2 =

∂εεε

∂P̄
: EME ∂εεε

∂P̄
∂

2
σ̂(X̄, P̄)
∂X̄∂P̄

=
∂εεε

∂P̄
: EME ∂εεε

∂X̄
+ εεε : EME ∂

2
εεε

∂X̄∂P̄
∂

2
σ̂(X̄, P̄)
∂X̄2 =

∂εεε

∂X̄
: EME ∂εεε

∂X̄
+ εεε : EME ∂

2
εεε

∂2X̄

D Singularity in Affine Transformation Computation

Computing Equation 14 involves calculating a transformation ma-
trix from X0 to X within a neighborhood N (i). Such transforma-
tion requires a matrix inverse in the form of (AT

i Ai)
−1, where Ai

contains the position of the neighbor vertices [SCOL∗04]. In our
problem, AT

i Ai will become singular when neighbor vertices are
coplanar in the original shape. To compute its pseudo-inverse, we
perform SVD on AT

i Ai. The near-zero singular value corresponds
to the surface normal direction. To better preserve its coplanarity,
we set the near-zero singular value to be a very small positive value
(10−8 in our implementation), then compute its inverse matrix.
This forces vertex xi to stay at the center of its neighbors in its
normal direction, thus it will remain coplanar with its neighbors.




