Direct shape optimization for strengthening 3D printable objects - Supplementary Material Yahan Zhou, Evangelos Kalogerakis, Rui Wang, Ian R. Grosse

A Analytic Gradient and Hessian of strain tensor ε

Similar to Equation 7 and Equation 8, we can express the partial derivatives of the strain tensor $\frac{\partial \boldsymbol{\varepsilon}(i, j)}{\partial x_{v, k}}$ wrt the coordinates of a vertex in the optimized shape (here r, s are matrix element indices):

$$
\begin{aligned}
& \frac{\partial \boldsymbol{\varepsilon}(i, j)}{\partial x_{v, k}}=\mathbf{U}^{T} \overline{\mathbf{P}} \frac{\partial \overline{\mathbf{X}}^{-1}}{\partial x_{v, k}} \mathbf{V} \\
& \frac{\partial \overline{\mathbf{X}}^{-1}(i, j)}{\partial \overline{\mathbf{X}}(r, s)}=-\overline{\mathbf{X}}^{-1}(i, r) \overline{\mathbf{X}}^{-1}(s, j) \\
& \frac{\partial \overline{\mathbf{X}}(i, j)}{\partial x_{v, k}}=\left\{\begin{aligned}
1 & \text { if } v=v_{i} \text { and } k=j \\
-1 & \text { if } v=v_{0} \text { and } u=j \\
0 & \text { otherwise }
\end{aligned}\right.
\end{aligned}
$$

The Hessian of $\boldsymbol{\varepsilon}$ contains three parts: $\frac{\partial^{2} \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{P}}^{2}}, \frac{\partial^{2} \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{P}} \partial \mathbf{X}}$ and $\frac{\partial^{2} \boldsymbol{\varepsilon}}{\partial \mathbf{X}^{2}}$, expressed as follows (here w refers to another vertex index, l is a coordinate index):

$$
\begin{aligned}
\frac{\partial^{2} \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{P}}^{2}} & =\mathbf{0} \\
\frac{\partial^{2} \boldsymbol{\varepsilon}}{\partial p_{v, k} \partial x_{w, l}} & =\mathbf{U}^{T} \frac{\partial \overline{\mathbf{P}}}{\partial p_{v, k}} \frac{\partial\left(\overline{\mathbf{X}}^{-1}\right)}{\partial x_{w, l}} \mathbf{V} \\
\frac{\partial^{2} \boldsymbol{\varepsilon}}{\partial x_{v, k} \partial x_{w, l}} & =\mathbf{U}^{T} \overline{\mathbf{P}} \frac{\partial^{2}\left(\overline{\mathbf{X}}^{-1}\right)}{\partial x_{v, k} \partial x_{w, l}} \mathbf{V}
\end{aligned}
$$

We also need to compute the second order derivatives of \mathbf{X}^{-1}. Let us denote $\mathbf{X}(i, *)$ as the $i^{\text {th }}$ row in matrix \mathbf{X}, and $\mathbf{X}(*, j)$ as the $j^{\text {th }}$ column. Then we will have:

$$
\begin{aligned}
\frac{\partial^{2}\left(\overline{\mathbf{X}}^{-1}\right)}{\partial \overline{\mathbf{X}}(r, s) \partial \overline{\mathbf{X}}(t, u)}= & \overline{\mathbf{X}}^{-1}(s, t) \cdot \overline{\mathbf{X}}^{-1}(*, r) \cdot \overline{\mathbf{X}}^{-1}(u, *) \\
& +\overline{\mathbf{X}}^{-1}(t, s) \cdot \overline{\mathbf{X}}^{-1}(*, u) \cdot \overline{\mathbf{X}}^{-1}(r, *)
\end{aligned}
$$

B Analytic Hessian of elastic energy U

The analytic Hessian of elastic energy U gives the gradient of the force, which is actually the Jacobian of the force equilibrium constraints. It can be computed as follows:

$$
\begin{aligned}
& \frac{\partial^{2} U(\overline{\mathbf{X}}, \overline{\mathbf{P}})}{\partial \overline{\mathbf{P}}}=\mathcal{V} \frac{\partial \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{P}}}: \mathbf{E} \frac{\partial \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{P}}} \\
& \frac{\partial^{2} U(\overline{\mathbf{X}}, \overline{\mathbf{P}})}{\partial \overline{\mathbf{X}} \partial \overline{\mathbf{P}}}=\mathcal{V} \frac{\partial \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{P}}}: E \frac{\partial \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{X}}}+\mathcal{V} \boldsymbol{\varepsilon}: E \frac{\partial^{2} \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{X}} \partial \overline{\mathbf{P}}}+\frac{\partial \mathcal{V}}{\partial \overline{\mathbf{X}}} \boldsymbol{\varepsilon}: E \frac{\partial \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{P}}}
\end{aligned}
$$

where : refers to double dot product between tensors, and the partial derivatives of the volume $\frac{\partial \mathcal{V}}{\partial \overline{\mathbf{X}}}$ can be computed as:

$$
\begin{aligned}
\frac{\partial \mathcal{V}}{\partial \overline{\mathbf{X}}(i, j)}= & \frac{1}{6}(\overline{\mathbf{X}}(i+1, j+1) * \overline{\mathbf{X}}(i+2, j+2) \\
& -\overline{\mathbf{X}}(i+1, j+2) * \overline{\mathbf{X}}(i+2, j+1))
\end{aligned}
$$

Here the indices of the matrix should wrap around when $i+2>3$ or $j+2>3$. Notice that $\frac{\partial^{2} U(\overline{\mathbf{X}}, \overline{\mathbf{P}})}{\partial^{2} \overline{\mathbf{X}}}$ is not needed when computing the Jacobian.

C Analytic Gradient and Hessian of $\hat{\sigma}$

If we rewrite $\boldsymbol{\sigma}$ in vector form:

$$
\boldsymbol{\sigma}=\left[\begin{array}{l}
\sigma_{11} \tag{18}\\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{23} \\
\sigma_{31}
\end{array}\right]
$$

One might easily notice that Equation 10 can be written in the form:

$$
\begin{equation*}
\hat{\boldsymbol{\sigma}}^{2}=\frac{1}{2} \boldsymbol{\sigma}^{T} \mathbf{M} \boldsymbol{\sigma} \tag{19}
\end{equation*}
$$

Where \mathbf{M} is a constant matrix:

$$
\mathbf{M}=\left[\begin{array}{cccccc}
2 & -1 & -1 & 0 & 0 & 0 \tag{20}\\
-1 & 2 & -1 & 0 & 0 & 0 \\
-1 & -1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 6 & 0 & 0 \\
0 & 0 & 0 & 0 & 6 & 0 \\
0 & 0 & 0 & 0 & 0 & 6
\end{array}\right]
$$

Thus, Equation 10 can be further rewritten into the form:

$$
\begin{equation*}
\hat{\boldsymbol{\sigma}}^{2}=\frac{1}{2} \boldsymbol{\varepsilon}_{t}: \mathbf{E M E} \boldsymbol{\varepsilon}_{t} \tag{21}
\end{equation*}
$$

Which is very similar to Equation 3. Thus its analytic gradient also has a similar form:

$$
\begin{aligned}
& \frac{\partial \hat{\sigma}^{2}(\overline{\mathbf{X}}, \overline{\mathbf{P}})}{\partial \overline{\mathbf{P}}}=\left(\mathbf{U}^{T} \overline{\mathbf{P}} \overline{\mathbf{X}}^{-1} \mathbf{V}-\mathbf{I}\right): \mathbf{E M E} \frac{\partial \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{P}}} \\
& \frac{\partial \hat{\sigma}^{2}(\overline{\mathbf{X}}, \overline{\mathbf{P}})}{\partial \overline{\mathbf{X}}}=\left(\mathbf{U}^{T} \overline{\mathbf{P}} \overline{\mathbf{X}}^{-1} \mathbf{V}-\mathbf{I}\right): \mathbf{E M E} \frac{\partial \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{X}}}
\end{aligned}
$$

The Hessian is expressed as follows:

$$
\begin{aligned}
& \frac{\partial^{2} \hat{\boldsymbol{\sigma}}(\overline{\mathbf{X}}, \overline{\mathbf{P}})}{\partial \overline{\mathbf{P}}^{2}}=\frac{\partial \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{P}}}: \mathbf{E M E} \frac{\partial \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{P}}} \\
& \frac{\partial^{2} \hat{\boldsymbol{\sigma}}(\overline{\mathbf{X}}, \overline{\mathbf{P}})}{\partial \overline{\mathbf{X}} \partial \overline{\mathbf{P}}}=\frac{\partial \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{P}}}: \mathbf{E M E} \frac{\partial \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{X}}}+\boldsymbol{\varepsilon}: \mathbf{E M E} \frac{\partial^{2} \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{X}} \partial \overline{\mathbf{P}}} \\
& \frac{\partial^{2} \hat{\boldsymbol{\sigma}}(\overline{\mathbf{X}}, \overline{\mathbf{P}})}{\partial \overline{\mathbf{X}}^{2}}=\frac{\partial \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{X}}}: \mathbf{E M E} \frac{\partial \boldsymbol{\varepsilon}}{\partial \overline{\mathbf{X}}}+\boldsymbol{\varepsilon}: \mathbf{E M E} \frac{\partial^{2} \boldsymbol{\varepsilon}}{\partial^{2} \overline{\mathbf{X}}}
\end{aligned}
$$

D Singularity in Affine Transformation Computation

Computing Equation 14 involves calculating a transformation matrix from \mathbf{X}^{0} to \mathbf{X} within a neighborhood $\mathcal{N}(i)$. Such transformation requires a matrix inverse in the form of $\left(\mathbf{A}_{i}^{T} \mathbf{A}_{i}\right)^{-1}$, where \mathbf{A}_{i} contains the position of the neighbor vertices [SCOL*04]. In our problem, $\mathbf{A}_{i}^{T} \mathbf{A}_{i}$ will become singular when neighbor vertices are coplanar in the original shape. To compute its pseudo-inverse, we perform SVD on $\mathbf{A}_{i}^{T} \mathbf{A}_{i}$. The near-zero singular value corresponds to the surface normal direction. To better preserve its coplanarity, we set the near-zero singular value to be a very small positive value (10^{-8} in our implementation), then compute its inverse matrix. This forces vertex \mathbf{x}_{i} to stay at the center of its neighbors in its normal direction, thus it will remain coplanar with its neighbors.

