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Direct shape optimization for strengthening 3D printable objects
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Figure 1: Two examples of optimized shapes using our algorithm. In each example, the user provides an input shape, the direction/region of the external
force, and geometry constraints (such as fixed boundary). Our algorithm generates an output that remains similar to the input but can withstand three times as
much force (as the maximum that the input shape can withstand). The silhouette images illustrate, from a cross section, how the shapes have changed (gray
corresponds to the input shape and purple corresponds to the optimized).

Abstract
Recently there has been an increasing demand for software that can help designers create functional 3D objects with required
physical strength. We introduce a generic and extensible method that directly optimizes a shape subject to physical and geomet-
ric constraints. Given an input shape, our method optimizes directly its input mesh representation until it can withstand specified
external forces, while remaining similar to the original shape. Our method performs physics simulation and shape optimization
together in a unified framework, where the physics simulator is an integral part of the optimizer. We employ geometric con-
straints to preserve surface details and shape symmetry, and adapt a second-order method with analytic gradients to improve
convergence and computation time. Our method provides several advantages over previous work, including the ability to handle
general shape deformations, preservation of surface details, and incorporation of user-defined constraints. We demonstrate the
effectiveness of our method on a variety of printable 3D objects through detailed simulations as well as physical validations.

1 Introduction
The growing interest in 3D printing has led to increasing demands
of algorithms that can optimize shapes to ensure functionality when
they are printed. A fundamental aspect of object functionality is
structural reliability. Ensuring that an object will not yield, or col-
lapse, during typical use scenarios is a central goal for designers.
It is particularly important when the object needs to withstand sig-
nificant external force, such as a table, chair, or bench. While there
has been a number of structural analysis techniques that identify
potentially vulnerable areas in objects [US13, ZPZ13], it is often
hard for artists and novice users to select the best possible cor-
rections in their designs that guarantee structural reliability, and
minimally affect surface appearance as well as the use of print-
ing material. Thus, an automatic method for computing optimal
shape corrections would be of great help to designers. Existing ap-
proaches are limited to perform heuristics-based local thickening
of parts [SVB∗12], in conjunction with other alternatives allowed
by the user and the particular printing method, such as introducing
hollowing or supporting structures [SVB∗12, WWY∗13, LSZ∗14,
VGB∗14] and changing printing directions [US13]. Local thick-
ening is the most straightforward solution to improve the object’s
structural strength, however, it can be suboptimal in terms of the in-
creased use of material and the impact to surface appearance (Fig-
ure 2). In addition, it is not always as effective as alternative shape
deformations to increase the object’s structural strength, such as
straightening, bending, stretching or other shape changes.

One approach to strengthen 3D shapes is to perform optimiza-
tion directly in the input shape representation to reduce mechanical
stress. This type of approach has so far been considered infeasible
in computer graphics for a variety of reasons [SVB∗12], including
the perceived need to run a physics simulation step whenever the
shape is changed, use of numerical gradients causing instabilities
and errors, and overall computational complexity. Similar obser-
vations have been made in the mechanical engineering literature.
Shape optimization techniques were mainly successful in the case
of parametric surface representations of mechanical components,
such as Bezier or B-spline patches [HM03, WMC08, BCC∗10]
with limited number of control points (e.g., tens or a few hun-
dreds), procedural models based on high-level design variables
[BR88, RG92, Tor93], or alternatively, level set representations
[AJT02, AJ08, DMLK13] in relatively low resolution grids (e.g.,
with a few thousands cells in total). Directly optimizing an input
mesh, which is by far the most common representation of shapes
in computer graphics pipelines, has been discouraged due to the
perceived inability to maintain surface smoothness, detail, and sat-
isfactory resolutions [BF84, WMC08].

In contrast to the common belief, our paper demonstrates that an
optimization approach operating directly on an input mesh to im-
prove structural reliability is totally feasible. It in fact offers a num-
ber of distinct advantages, including the ability to execute a mul-
titude of generic shape deformations, preservation of surface de-
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tails, and easy incorporation of user-defined design constraints. We
found a number of key ingredients necessary to enable such an op-
timization approach. First, we observe that performing the physics
simulation to solve for mechanical stresses is itself an optimization
problem, which can be solved as part of the whole shape optimiza-
tion process in a unified framework. Second, we employ geometric
constraints to maintain desired surface properties, including surface
details and symmetry. Third, instead of using first-order optimiza-
tion methods, such as steepest descent, we adapt a second-order
(Newton-based) method along with analytic gradients to improve
convergence and computational performance. In contrast to pre-
vious work in computer graphics that mainly focuses on improv-
ing the structural strength of objects under gravity, we apply our
method in various practical scenarios of significant external forces.
For example, our method optimizes chairs and tables with signif-
icant weight acting on them, where alternative optimization tech-
niques, such as hollowing, would be inadequate. We demonstrate
the effectiveness of our method through both detailed simulations
and physical validity tests (using a professional force gauge) in a
variety of 3D printable objects.

Contributions. We present a direct shape optimization method
to strengthen 3D printable objects. Our method operates directly
on the input mesh, and we introduce an optimizer integrated with
physics simulator to iteratively reduce stress under significant ex-
ternal force. In contrast to previous shape deformation techniques
that focus on local part thickening and rely on heuristics under par-
ticular input surface scenarios, our method is more general, allow-
ing shape deformations that are not constrained to particular types.
Our method is applicable to a wide variety of objects and external
force scenarios, and we verify results with physical validations.

2 Related Work

We now discuss prior approaches in the context of mechanical
stress reduction and shape optimization.

Strengthening objects. Our work is related to research on improv-
ing the structural strength of 3D printable objects, which aims to
diminish the chances that objects will break during common use
scenarios. A number of approaches have been proposed towards
achieving this goal, including modifications to the interior struc-
ture of objects, such as hollowing [SVB∗12, LSZ∗14, VGB∗14]
or internal skin framing [WWY∗13], addition of supporting struts
[SVB∗12], change of printing directions [HBA13, US13], and
shape deformations [SVB∗12, US13].

The above approaches are complementary to each other. In other
words, to reduce stress in objects, a common practice is to use a
combination of these approaches. However, there are cases where
adding supporting structures or modifying the internal object struc-
ture are undesirable. For example, adding struts can be inappropri-
ate for artistic designs, since they alter the appearance and aesthet-
ics of the designed objects. Hollowing may increase mechanical
stress in the presence of large external forces, and sometimes re-
quires users to perform additional post-processing on the printed
object e.g., remove internal powder [WWY∗13]. Changing the
printing direction may also not always yield a decrease in mechan-
ical stress [HBA13]. Thus, applying shape deformations remains
one of the main options to reduce mechanical stress, and in some
cases, the most desirable one. Existing shape deformations for re-
ducing mechanical stress have been so far limited to uniform part
thickening. Stava et al. [SVB∗12] identifies thin, vulnerable, parts

(a) Original shape (b) Our method (c) Local Thickening

Figure 2: Given an input object of a utility hook (a), we apply our method
(b) to optimize the shape such that it can withstand a specified external force
load. We compare against local thickening (c) that can alternatively be used
to make the object withstand the same force load. The volume of our result
is 20% less than local thickening, making our method more cost-efficient
for 3D printing. Also, our result is better at preserving shape features.

in an object and applies a heuristic to increase their thickness as-
suming that these parts are thin tubes and acting forces cause bend-
ing. Vulnerable parts can be alternatively identified with worst-
case load analysis methods [ZPZ13]. Umetani and Schmidt [US13]
highlight vulnerable areas to users and allow them to interactively
thicken these areas. A downside of part thickening is that it in-
creases material use and can affect the appearance of the model in
an undesirable manner. In addition, Stava et al.’s heuristic applies
only to tubular surfaces, while interactive thickening can become
laborious for complex shapes.

In contrast to the above heuristics-based and interactive part
thickening approaches, our method automatically computes opti-
mal shape deformations to reduce mechanical stress. Our optimiza-
tion does not make any particular assumptions about the geometry
of vulnerable parts. It does not restrict deformations to a particu-
lar type. It lets the optimization to perform shape corrections under
the constraint that the user’s design should be as intact as possible.
While it is possible for users to interactively discover the optimal
shape that would meet certain physical constraints, manual shape
edits are often tedious, especially for casual modelers. Our method
is largely automatic and does not require human supervision.

Shape optimization. Shape optimization approaches have been
demonstrated for improving the balance [PWLSH13], spinnability
[BWBSH14], and aggregate mass properties of objects [MAB∗15],
as well as for particular fabrication scenarios, such as inverse elas-
tic shape design [CZXZ14], shape printing with microstructures
[PZM∗15, SBR∗15], and support material reduction [HJW15]. To
achieve their goal, some of these methods use cage-based defor-
mations [PWLSH13,BWBSH14] or displacements with offset sur-
faces [MAB∗15]. Our approach instead aims to reduce mechanical
stress of an input shape under a given force load. Reducing me-
chanical stress often requires localized changes, sparsely applied
throughout the input object, which cannot be captured well by the
above deformation techniques.

Thera is a large body of research in shape optimization ap-
proaches for stress reduction in the mechanical engineering liter-
ature. These approaches are often restricted to the case of para-
metric surfaces [HM03, WMC08, BCC∗10], such as B-splines or
Bezier patches, subdivision surfaces [BRC16], level set represen-
tations [AJT02, AJ08, DMLK13], specialized topology modifica-
tions [All12, BS13], or procedural models based on high-level de-
sign variables [BR88, RG92, Tor93]. Parametric surface represen-
tations impose limitations on the surface topology of input shapes,
while level set and subdivision methods tend to lose surface detail,
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since they are applied to low-resolution grids and coarse meshes.
Topology modifications may alter the appearance or aesthetics of
the users’ original designs in an undesirable manner. Procedu-
ral models handle only particular families or types of shapes i.e.,
those that can be created through given design parameters. Our
method instead directly optimizes mesh representations, which are
the most common representations in shape design. Mesh optimiza-
tion approaches have also been investigated in mechanical engi-
neering [MSS05,LBT11,HSB14], but require filtering (e.g., Lapla-
cian smoothing), or other forms of post-processing at each opti-
mization step to combat instabilities and surface noise. As a re-
sult, in these methods, surface detail and features are lost, or con-
vergence to a plausible solution is not guaranteed. In contrast to
the above mechanical engineering techniques, our method com-
bines physics simulation and feature-preserving shape deformation
into one optimization problem, which is efficiently solved through
Netwon-based techniques. Our method is also designed to preserve
surface features, which is highly desirable in shape design.

Perhaps most similar to our approach is the recent method by
Martinez et al. [MDLW15]. Their method optimizes the geometry
of an object given an exemplar shape capturing its target appear-
ance, and desired structural properties including mechanical stress.
Similarly to level-set based mechanical engineering approaches,
their method represents shapes with binary 2D grids of elements
(i..e, elements can be “void” or “solid”) to execute the optimiza-
tion. Their method can only produce 3D shapes made of planar
sections, each represented by its own grid. Our method instead per-
forms optimization directly on an input 3D mesh without posing
particular constraints on the shape of an object.

3 Overview

Our goal is to optimize the shape of a 3D object so that it can with-
stand forces in common use scenarios. For example, given an input
chair or table (Figure 1) along with its material properties (e.g.,
thermoplastic), boundary conditions (e.g., standing on the floor),
and external forces exerting on specified regions of the surface, we
optimize the shape to ensure that it will not yield under that load.
An object yields when the mechanical stress induced by the load-
ing exceeds its capacity to resist the load. Thus, we aim to reduce
the mechanical stress of the object so that it is lower than the yield
strength of its material. Given the force load, the mechanical stress
is a function of the material properties of the object and its shape.
We assume the material properties are pre-specified and determined
by the printing material. In addition, we assume the input shape
is represented by a volumetric mesh. If the input shape is a sur-
face mesh, we tetrahedralize it to obtain its volumetric version. We
tetrahedralize the shape as uniformly as possible, and the resulting
surface is naturally resampled as part of the tetrahedralization.

A naive solution to this problem would be to exhaustively try
different perturbations of the input mesh, and for each perturbed
shape, use physics simulation to compute the shape deformation
and stresses caused by the load. Then gradient descent with numer-
ical gradients over the mesh points could be used to reduce stress
at points exceeding the material’s yield strength. Such approach
would be prohibitively slow, extremely prone to numerical insta-
bilities, and lead to rather unpredictable results.

Instead, we integrate the physics simulation into the shape op-
timization, which enables the computation of analytic gradients.

To begin, given an input volumetric mesh X0 with vertex coordi-

nates {x0
1,x

0
2, ...,x

0
M}, our optimization method solves for: (i) ver-

tex coordinates of the optimized shape X = {x1,x2, ...,xM} (called
material coordinates or rest state in the context of physics sim-
ulation), and (ii) vertex coordinates of the deformed shape P =
{p1,p2, ...,pM} caused by the load (called world coordinates or de-
formed state). To ensure that the object will not yield, we introduce
inequality constraints in formulation, expressing that the stress at
each tetrahedron t of the volumetric mesh should be lower than
the yield strength C of the material. Specifically, we use the von
Mises stress σ̂t per element, which is a widely employed measure
of stress in computer graphics and mechanical engineering [Mis13]
for checking whether an object yields under a given load. The stress
depends on the deformation of the object under the load, thus, as
part of our optimization problem, we need to solve for the deformed
state (world coordinates) of the object when it reaches a force equi-
librium. We use equality constraints to express that the deformed
state must reach the force equilibrium under boundary conditions.
Boundary conditions involve boundary vertices v ∈ B that remain
fixed during deformation (e.g., vertices at the bottom of table legs
touching the floor). For these boundary vertices, we use equality
constraints to express that they should remain fixed. For all other
vertices v �∈ B, we use equality constraints to express that the sum
of both internal and external forces fv should be zero.

In addition to the above simulation constraints, we include addi-
tional equality constraints to preserve important geometric proper-
ties related to the aesthetics and functionality of the input shape, as
well as to ensure numerical stability during the optimization. These
are called geometric constraints, which include: (i) symmetry con-
straints to ensure that the optimized shape will preserve local and
global symmetries found in the original shape (e.g. reflective and
rotational symmetries); (ii) interior uniformity constraints to ensure
that the finite elements (tetrahedra) remain well-formed and all in-
terior mesh vertices remain uniformly spaced during the optimiza-
tion, a necessary condition for numerical stability and accuracy;
(iii) user-defined constraints that practically ensure that the object
meet the design constraints (e.g. the height of the table should be
fixed) after optimization. These user-defined geometric constraints
are optionally given as part of the input to our algorithm, and de-
pend on the user’s preferences on how the object will be used. Fi-
nally, we use an objective function to penalize geometric deviation
of the optimized shape from the original shape. Ideally, the surface
of the optimized shape should remain as similar as possible to the
original shape. Thus, our objective function is designed to mini-
mize changes to the original surface, preserve its original details
and smoothness. Our optimization problem is defined as follows:

argmin
X

D(X,X0) (Objective function)

subject to:

∀v ∈ B: xv = pv, ∀v �∈ B: fv(X,P) = 0 (Simulation constraints)

∀t: σ̂2
t (X,P)<C (Stress constraints)

g(X,X0) = 0 (Geometric constraints)

where v is a mesh vertex, t is a tetrahedron, D(X,X0) is our ob-
jective function expressing the geometric dissimilarity between the

optimized shape X and original shape X0, σ̂t is the von Mises stress
at a tetrahedron t (expressed as a function of the optimized shape
and its deformed state P), fv is the sum of internal and external
forces on a vertex v, and g(X,X0) is a function encoding the geo-
metric relationships of points in the original and optimized shape.
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4 Shape Optimization

We now discuss how the functions in the above optimization prob-
lem are computed, and how our algorithm solves the optimization.

4.1 Elasticity Model

The forces per vertex consist of external and internal forces. The
external forces are part of the input – they include gravity and force
exerted on surface areas according to a typical use scenario for the
object. The external forces are always applied on a fixed set of ver-
tices defined by the user and are constant (during optimization, the
force area may change due to shape deformations, but the total ex-
ternal force remains the same). The internal forces are elastic forces
resulting from the deformation of the object – they are a function
of the vertex coordinates of the undeformed shape X (material co-
ordinates) and its deformed version P (world coordinates). Since
the input shape is discretized into finite elements (tetrahedra), the
deformation is measured per tetrahedron t. Consequently, the total
force per vertex v can be expressed as:

fv(X,P) = ∑
∀t,v∈t

ft,v(X,P)+ fext
v (1)

where fext
v are the external forces per vertex, and ft,v(X,P) ex-

presses the internal elastic forces per vertex of each tetrahedron
t as a function of the optimized and deformed shape. As commonly
done in structural analysis methods, we assume linear elasticity to
model the elastic forces in our object. The elastic forces are mod-
eled as the partial derivatives of the strain energy per tetrahedron
with respect to its deformed vertex coordinates [RH08]:

ft,v(X,P) = ∂Ut(X,P)
∂pv

(2)

The strain energy per tetrahedron t is in turn a function of its vol-
ume Vt , its deformation expressed through its strain tensor εεεt (sym-
metric rank-two tensor i.e., 3x3 matrix), and the material properties
E of the object (rank four tensor), which are given as part of the
input. In all our experiments, we assume isotropic material. In this
case, the material properties tensor depends only on the Young’s
modulus, which measures the object’s stiffness, and Poisson’s ra-
tio, which measures the object’s contraction when it is stretched.
The strain energy is expressed as follows [RH08]:

Ut(X,P) = Vt

2
εεεt : Eεεεt (3)

where : denotes double tensor contraction, which corresponds here
to the double inner product between tensors. The strain tensor is
a function of the deformed and undeformed shape, while the vol-
ume of the tetrahedron is a function of the vertex coordinates of the
optimized shape. Specifically, if v0,v1,v2,v3 are the four vertices
of a tetrahedron and X̄t represents its edge vectors stored in a 3x3
matrix X̄t = [xv1 −xv0 ,xv2 −xv0 ,xv3 −xv0 ], the volume is simply

determined as: Vt(X) = 1
6 |X̄t |, where | · | refers to the determinant

of the matrix. The strain can be computed from the per-tetrahedron
deformation gradient, which describes its scaling and rotation due
to the compression or elongation of the object’s material. By rep-
resenting the edge vectors for each deformed tetrahedron in a 3x3
matrix P̄t = [pv1 −pv0 ,pv2 −pv0 ,pv3 −pv0 ], the deformation gradi-
ent is computed as:

Ft(X,P) = P̄t X̄−1
t (4)

We follow the invertible finite element methods [ITF04] to ex-
tract the scaling from the deformation gradient using SVD: Ft =

UtΣΣΣtVT
t . During each iteration of the optimization, we assume that

each tetrahedron undergoes an infinitely small rotation. This as-
sumption works well in practice. Since the rotation matrices U and
V are constant during each optimization step, only the scaling ma-
trix is a function of the optimized and deformed shape. We use the
Cauchy strain tensor to express the strain based on the scaling per
tetrahedron: εεεt = ΣΣΣt − I, where I is the identity matrix. Based on
the SVD of the deformation gradient and Equation 4, we can ex-
press the strain tensor as a function of the optimized and deformed
shape:

εεεt(X,P) = UT
t P̄t X̄−1

t Vt − I (5)

Replacing the strain tensor function in Equation 2, the force
function can be rewritten as:

ft,v(X,P) = ∂Ut(X,P)
∂pv

= Vt

(
UT

t P̄t X̄−1
t Vt − I

)
: E ∂εεεt

∂pv
(6)

where the derivative of the strain tensor εεεt for a tetrahedron with
respect to each of the three coordinates of a deformed vertex pv at
that tetrahedron are the following:

∂εεεt

∂pv,k
= UT

t
∂P̄t

∂pv,k
X̄−1

t Vt (7)

Here k is an index for the x,y or z coordinate in the vertex pv. The
partial derivative of each element (i, j) in the matrix P̄t storing the
deformed edges are the following:

∂P̄t(i, j)
∂pv,k

=

⎧⎨
⎩

1 if v = v j and k = i
−1 if v = v0 and k = i

0 otherwise
(8)

To solve our optimization problem, we also need analytic gradi-
ents of the force function. We refer the reader to the supplementary
material that includes the analytic gradients.

4.2 Stress Function

As described in Section 3, during the optimization, we set inequal-
ity constraints to ensure that the von Mises stress in the object will
not exceed the material’s yield strength. The von Mises stress is ex-
tracted from the stress tensor that characterizes the state of stress at
each tetrahedron. The stress tensor is a symmetric 3x3 matrix:

σσσt =

⎡
⎣σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤
⎦ (9)

Given the strain tensor εεεt of a tetrahedron t, the stress tensor
is expressed as σσσt = Eεεεt . Since the strain tensor is a function of
the undeformed shape and its deformed version (Equation 5), the
stress tensor elements are also functions of their vertex coordinates.
The von Mises stress is computed from the stress tensor as follows
[Mis13]:

σ̂2
t (X,P) =0.5[(σ11 −σ22)

2 +(σ22 −σ33)
2 +(σ33 −σ11)

2

+6(σ2
23 +σ2

31 +σ2
12)] (10)

Our optimization procedure requires the analytic gradient and Hes-
sian of the above function, which we also provide in the supple-
mentary material.
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4.3 Geometric Constraints

We now describe the geometric constraints that we use to preserve
important geometric properties of the input shape related to its aes-
thetics, functionality and numerical stability during optimization.

Symmetry constraints. Symmetry is an important factor in the
aesthetics of man-made objects. Ignoring symmetry can cause a
shape to become asymmetric during optimization, which is unde-
sirable (Figure 3). To incorporate symmetry, we first detect dom-
inant planar reflective and rotational symmetries in the original
shape [MGP06]. We aim to preserve these symmetries in the op-
timized shape. A planar reflective symmetry constraint can be de-
fined through a reflection matrix Sm. For each pair of symmetric
points xi and x j in the optimized shape, we set Sm xi = x j. A rota-
tional symmetry is similarly defined through a rotation matrix Sr.
For a set of k ordered points {x1,x2...xk} related through a rota-
tional symmetry, we set Sr xi = xi+1(1 ≤ i < k) and Sr xk = x1.
Other types of symmetry can also be supported.

(a) original shape (b) w/o symmetry (c) with symmetry

Figure 3: Without symmetry constraints, the resulting shape (b) becomes
asymmetric, which is undesirable.

Interior uniformity constraints. During optimization, a key fac-
tor for numerical stability and convergence is to promote well-
shaped elements, free of self-intersections, and all interior (non-
surface) vertices are uniformly spaced. Leaving the interior vertices
float freely during optimization would also cause inaccuracy in the
stress calculations and analytic gradients. We account for this by
forcing all interior vertices of the optimized volumetric mesh to be
positioned exactly at the centroid of their neighbors. Mathemati-
cally, for each interior vertex, we set its position to be:

xi =
1

|N (i)| ∑
j∈N (i)

x j (11)

where N (i) is the set of neighboring vertices. The above expression
can be also thought of as forcing the graph laplacian of the interior
vertices to be zero. This constraint is also guaranteed during initial-
ization where we tetrahedralize the input shape.

User-defined constraints. Our method allows the user to specify
additional geometric constraints for aesthetics or functionality pur-
poses. The most common constraint is to force certain edges to be
straight, or certain vertices to remain fixed during optimization. An
example is shown in Figure 4: without user-defined constraints, the
top of the shape is deformed. To keep it flat and the edges straight,
the top surface is explicitly marked as fixed. The result of opti-
mization is shown in Figure 4c. These user-defined constraints can

be achieved by setting xi = x0
i for all vertices that need to remain

fixed, where x0
i is the position of the vertex on the original shape.

Summary. In general, we represent all the above geometric con-
straints in our formulation as equality constraints, in the form of

g(X,X0) = 0. Each g is a linear function of the vertices on the in-
put and optimized shapes.

(a) original shape (b) w/o user constraints (c) with user constraints

Figure 4: Without user-defined constraints, the top surface of the resulting
shape (b) is deformed / curved, which is undesirable.

(a) original shape (b) intrinsic only (c) extrinsic only (d) both

Figure 5: Without extrinsic distance, the result (b) deviates significantly
from the original; without intrinsic distance, the result (c) contains bumpy
surface/jaggy edges and lose surface details. Including both measures is
important to ensure the result is geometrically similar to the original.

4.4 Objective function

Our objective function aims to penalize surface dissimilarity be-
tween the original and the optimized shape. The goal is to keep the
optimized shape as similar as possible to the original. We measure
surface distance using an extrinsic distance as well as an intrin-
sic distance. The extrinsic distance directly computes the distance
between surface vertices of the two shapes – it prevents the opti-
mized surface to deviate significantly away from the original sur-
face in Euclidean space. The intrinsic distance computes the dis-
tance of differential surface properties – it preserves surface details
and smoothness, and prevents the resulting surface from becom-
ing bumpy/jaggy. An example is shown in Figure 5. In practice we
found that both measures are important for producing an optimized
shape that is geometrically similar to the original shape.

Extrinsic distance. Our extrinsic distance considers the squared

Euclidean distance between the vertices of the original surface X0

and the optimized surface X:

Dextrinsic(X,X0) = ∑
i∈S

‖ x0
i −xi ‖2

(12)

where S is the set of surface vertices. We do not consider the inte-
rior vertices as they are not related to shape appearance. Note that
during optimization the number of surface vertices does not change,
and we have an explicit correspondence between the original and
optimized surface vertices, thus this distance is easy to compute.

Intrinsic distance. Our intrinsic distance compares the differential
surface properties in terms of surface Laplacians. Surface Lapla-
cians have been extensively used in detail-preserving shape defor-
mations due to their ability to capture information about the local
shape of the surface, and in particular the size and orientation of
local surface details [SCOL∗04,Sor05]. The Laplacian of a surface
vertex can be computed as follows:

L(xi) = ∑
j∈N (i)

ωi, j(xi −x j) (13)

where N (i) here represents the neighboring vertices on the surface
(we exclude any interior vertices from the calculation of surface
Laplacians), and ωi, j are weights controlling the desired properties
for the Laplacian [WMKG07]. We experimented with both uniform
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Figure 6: Block diagram of our optimization approach.

weights (ωi, j = 1/|N (i)|) and the cotangent scheme [MDSB03]
and in practice did not observe any significant differences of the
two, due to the relatively uniform tesselations of our input meshes.
Thus for simplicity, we use uniform coefficients.

Following [SCOL∗04], our intrinsic distance computes differ-
ences between transformed Laplacians of the original surface ver-
tices and Laplacians of the corresponding surface vertices in the
optimized shape:

Dintrinsic(X,X0) = ∑
i∈S

‖ TiL(x0
i )−L(xi) ‖2

(14)

where Ti is a transformation matrix that optimally translates,
rotates, and scales the original surface Laplacian of each vertex
i before comparing it to its surface Laplacian on the optimized
surface. The reason for transforming the surface Laplacian is that
we want to allow local surface rotations and scaling since they
can both contribute to reducing the mechanical stress of the ob-
ject without significantly affecting its surface apperanace. Follow-
ing [SCOL∗04], the transformations can be computed by aligning
each surface neighborhood in the original shape with the one on the
optimized shape in least-squares sense:

Ti = argmin
T

(
‖ Tx0

i −xi ‖2 + ∑
j∈N (i)

‖ Tx0
j −x j ‖2

)
(15)

The transformation matrices are internal variables in our algo-
rithm and are solved simultaneously with the optimized shape X.
We experimented with transformations restricted to rotation, trans-
lation and uniform scaling (as in [SCOL∗04]), but also with affine
transformations. In the case of affine transformations, we com-
pute them using the 2-ring surface vertex neighborhoods in the
above expression to ensure enough number of constraints for the
least-squares solution. In the case of planar neighborhoods on the
original surface, the least-squares solution can still be ill-defined.
For these neighborhoods we compute transformations that preserve
their planarity (see also supplementary material).

One consequence of allowing affine transformations is that under
significant deformation it can lead to shearing distortions [FAT07].
However, in our case, due to the extrinsic distance and overall opti-
mization, surface changes are generally moderate. In addition, non-
uniform local stretching can be particularly effective for reducing
mechanical stress in man-made objects without significant impact
on the surface appearance. Therefore we adopt affine transforma-
tions by default and use those in our experiments. If needed, users
can easily override this option and execute the shape optimization
by restricting the transformations to rotations and uniform scaling
only, as in [SCOL∗04].

Objective function. Our objective function is defined as a
weighted sum of the intrinsic and extrinsic distances:

D(X,X0) = w1 Dintrinsic(X,X0)+w2 Dextrinsic(X,X0) (16)

where w1 and w2 are the weights. By default, we set w1 = 105 and
w2 = 1, which worked well in our tests. Reducing w1 causes loss
of surface details and smoothness, while reducing w2 causes the
optimized surface to deviate significantly from the original. Both
intrinsic and extrinsic terms are quadratic forms in the surface ver-
tices, thus their gradients and Hessians are straightforward to com-
pute. We note that our objective function is scale-invariant, and the
intrinsic and extrinsic distances have the same unit.

4.5 Optimization approach

We now describe the procedure to solve our optimization problem.
Although our objective function has the desirable property to be a
quadratic (i.e., convex) function on the shape X we wish to opti-
mize, the force and von Mises stress functions involved in the con-
straints are non-linear and non-convex over both the shape X and its
deformed version P. In particular, any small change in X or P can
easily cause a large violation of the force equilibrium constraints.
An additional challenge is that for shapes of reasonably high reso-
lution, the number of unknown variables is on the order of tens of
thousands at least. The number of unknown variables is equal to the
number of vertices of the optimized shape, multiplied by a factor
of 6, since their deformed state is included in the unknowns, and
we deal with 3D coordinates. Thus, to solve our problem, we need
a non-linear, large-scale optimization method. An important fact
that we can leverage is that all functions are twice differentiable,
and we are able to derive both analytic gradients and Hessians. We
experimented with various solvers including Sequential Quadratic
Programming, interior-point, and penalty methods [NW06]. None
of the techniques worked out of the box. We implemented our own
variant of the penalty method [McC71] which we describe below.

The original penalty method reformulates a constrained opti-
mization problem as a sequence of unconstrained problems. It
has the advantage of fast local convergence guarantees under rela-
tively weak assumptions [BM08]. The unconstrained problems are
formed by adding a term for each equality and inequality constraint,
called penalty function, to the objective function. Each penalty
function consists of a penalty coefficient multiplied by a measure of
violation of each constraint. The violation measure is non-zero in
regions where the constraint is violated and is zero where the con-
straint is met. By iteratively increasing the penalty coefficients, the
solver converges to a solution where hard constraints are eventually
satisfied i.e., the maximum stress constraints will not be violated.

Our approach is inspired by the penalty method. Our optimiza-
tion procedure is demonstrated with the schematic diagram of Fig-
ure 6. Given an input mesh, our algorithm iteratively updates the
shape along with its deformation due to the external forces and
boundary conditions. Specifically, a linear system is used to update
the shape to satisfy all the geometric and simulation equality con-
straints under our objective function. The system has the form of a
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KKT system - in the optimization literature, KKT denotes the first-
order necessary Karush-Kuhn-Tucker conditions that are necessary
to satisfy for the solution to be optimal. For each shape update, its
deformation is also computed from the KKT system such that the
deformed state reaches the force equilibrium. After each solution
of the KKT system, we check if the inequality constraints are sat-
isfied i.e., if the stress at each vertex is below the material’s yield
strength. If the inequality constraints are not satisfied, we increase a
penalty term used in our objective function to handle the inequality
constraints for the stress (inspired by the penalty methods used in
optimization [McC71]). The KKT system is re-solved under the up-
dated objective function. We repeat the procedure until our method
converges to an output shape where the stress at each point is below
the required threshold, thus all constraints are satisfied.

Mathematically, our method reformulates the equality- and
inequality- constrained optimization problem, presented in Section
3, as a sequence of equality-constrained problems as follows:

argmin
X

D(X,X0)+δ ·∑
t

h(C− σ̂t(X,P)) (New objective function)

subject to:
∀v ∈ B: xv = pv, ∀v �∈ B: fv(X,P) = 0 (Simulation constraints)

g(X,X0) = 0 (Geometric constraints)

where h(·) = min(0, ·)2 is the penalty function that measures the
degree of violation in the inequality constraints, and δ is a penalty
coefficient. Starting from a small value (δ = 0.01), we solve the
above optimization problem and check whether our inequality con-
straints are satisfied. If they are not satisfied, the penalty coefficient
is increased by a factor of 2, and we solve the problem again start-
ing with the solution found in the previous iteration. Solutions of
the successive optimization problems will eventually converge to
the solution of the original problem. Practically, in our experiments,
this happens when δ reaches the value of 100 at most.

In each iteration, we still need to still solve the equality-
constrained optimization problem. Although we could use a penalty
function (e.g. a quadratic function) again for those, thus convert the
problem to a completely unconstrained one (as done in the origi-
nal penalty method), this approach did not work. The reason was
that the force equilibrium constraints could not be satisfied with-
out causing the optimization to become ill-conditioned due to ex-
tremely large penalty coefficients. An augmented Lagrangian ap-
proach [BM08] could deal with this problem, but at a higher com-
putational cost. We instead resort to a simpler approach, by solving
the equality-constrained optimization problem using the Newton’s
approach [Goo85]. Mathematically, it is represented as (this is also
known as the KKT system):[

H JT

J 0

][ {ΔX,ΔP}
w

]
=−

[
g
b

]
(17)

where H and g are the Hessian and gradient of the new objective
function respectively, J is the Jacobian of the equality constraints,
and b represents the function values of the constraints. We solve the
above system for multiple iterations until convergence: at each it-
eration, the shape X is updated by tΔX, and similarly its deformed
version is also updated by tΔP, where t is a step size determined
by a bisection line search. In practice, to ensure that the deformed
state of an optimized shape reaches the force equilibrium (i.e., sat-
isfy the simulation constraints), for each update in the shape X, we
perform several more updates to its deformed state P until the force
equilibrium is reached (sum of internal and external forces per ver-
tex is practically zero). Note that the system is sparse since each

vertex is only affected by its local neighbors. To this end, we ap-
ply the sparse LU decomposition algorithm available in the Eigen
library [Eig10]. We also refer the reader to our source code for our
implementation.

5 Results

To understand how our algorithm works, we begin by using a sim-
ple rectangular board as the testing shape, as shown in Fig. 7. Here
the two ends of the board are fixed at the bottom (indicated by blue
color), and hence they are set as fixed boundaries to the algorithm.
We note that setting boundaries as hard constraints in this example
will cause a singularity, since in theory the stress on fixed points
becomes unbounded. To avoid this singularity, we relax the bound-
ary constraints to soft constraints. Whenever the boundary vertices
deviate from their rest states, a spring force will pull them back.

Figure 7: A simple test shape

The external force is applied
in the middle region (indicated
by red color). Under these set-
tings, we ran our algorithm and
the results are shown in Fig. 8.
Fig. 8a shows the shape before
optimization, and Fig. 8b shows
the optimized shape. Fig. 8c and
8d visualize the von Mises stress
distribution before and after optimization. Red color corresponds to
high stress and blue corresponds to low stress. Our algorithm auto-
matically strengthens the input shape in areas with high von Mises
stress, and the result has significantly reduced stress. Quantitatively,
the optimized shape can withstand twice as much (i.e. 100% more)
force/weight as the original shape.

(a) Original (b) Our optimized result

(c) von Mises Stress of (a) (d) von Mises Stress of (b) (e)

Figure 8: Results of the test shape. Right: color coding of von Mises stress.

Fig. 9 shows a gallery of experimental results including furni-
ture and utility tools (see also accompanying video). For each input
shape we show the region and direction of the external force, and
the surface/boundary that’s fixed. We find the maximum force each
shape can withstand (i.e. when the von Mises stress reaches the ma-
terial limit). We then increase that force by 50%, 100%, and 200%
respectively, and apply our algorithm to optimize the shape until
it can withstand that much additional force. For each optimized
shape, we show a rendering of the shape, a silhouette image that
compares the difference between the optimized shape with the orig-
inal shape, and two color-coded images indicating the displacement
of vertices after optimization (i.e. how far each vertex has moved
before and after optimization), and the von Mises stress distribu-
tion. Observe that as we increase the external force, the optimized
shape changes more significantly, although remaining similar to the
original shape.

We note that alternative methods such as adding struts or rib-like
structures, smoothing creases, thickening corners, changing topol-
ogy, can potentially also remedy the weak spots for some of the
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Figure 9: A gallery of experimental results. The first row shows the original shapes and region/direction that external forces are applied. We find the
maximum force each original shape can withstand, and apply our algorithm to optimize the shape until it can withstand 50%, 100%, and 200% additional
force respectively. The results are shown in the next three rows. Each result contains a rendered image of the optimized shape, a silhouette image overlaying
the optimized shape on the input to show the deformation, and the color encoding of the vertex displacement (i.e. how far the vertex has moved before and
after optimization) as well as von Mises stress distribution over the surface.
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Figure 10: Photographs showing the Instron Universal Testing machine,
which applies increasing axial force on the shape until it breaks.

Figure 11: Physics validation results for the twist-leg table and the four-leg
stool models. In each graph, the x-axis is the head extension in millimeter
(i.e. the distance that the load cell has moved); the y-axis is the measured
force in kilonewton. The original shape is plotted in gray, and optimized
shape plotted in purple. The point where the curve reaches the bottom is
where it breaks under the corresponding force.

presented shapes. However, such solutions would tend to alter the
aesthetics of the original designs. In general, preserving geomet-
ric features, symmetry, sharp edges and local surface details are all
major requirements in shape modeling. Our method preserves such
geometric features as well as meet the physical requirements by
incorporating terms and constraints that satisfy both. For example,
in the case of the z-table and the wrench, our solution successfully
preserves their sharp edges due to Laplacian similarity constraints.
In other examples, such as the utility hook and the d-shaped chair,
our method discovers more global deformations, which cannot be
achieved through local thickening.

Physical validation. We perform physical validations by using a
professional force gauge (Instron Universal Testing machine, Fig-
ure 10), which applies increasing axial force on the shape until it
breaks. We have printed each original shape and the optimized re-
sult using a 3D printer (CraftBot) with PLA material, 100% infill,
and 100 micron resolution.

Figure 11 shows our test results for two sets of models: the twist-
leg table, and the four-leg stool. We use our algorithm to compute
an optimized shape that can withstand twice (100% more) force
than the maximum force allowed on the original shape. For each
example we plot the force measured on the original shape (gray
curve) and that on the optimized shape (purple curve). The point
where each curve reaches the bottom is where the model breaks.

From the measured data, for the four-leg stool model, the orig-
inal shape breaks at 523N and the optimized shape breaks at
1605N. Thus, the optimized shape can withstand 207% more force.
This is considerably better than simulation, which predicts 100%
more force. For the twist-leg table, the original shape breaks at
282N, while the optimized shape breaks at 425N. Thus, the op-
timized shape can withstand 50.7% more force than the original
shape, which is worse than simulation. The mismatch between ac-

tual validation and simulation exists due to a variety of reasons,
such as normalization of volume (which increases the maximum
force that the original shape can withstand), printing quality, the-
oretical vs. practical material parameters. For example, our the-
ory assumes isotropic material, but in practice we used extrusion-
based 3D printer which leads to anisotropic prints. We believe this
way the results are more representative for consumer prints since
extrusion-based printers are widely available. In addition, plastic
deformations are not considered by our formulation. Note that the
curves in the plot indicate some amount of plastic deformations,
yet they have predominant linear regions and the breaking points
are well under 2-3mm head extension while the models are gener-
ally 100mm in height. Thus, we believe the deformations are domi-
nated by the linear elastic model. Despite the mismatches, the phys-
ical validation shows that our optimization is still effective, since it
manages to significantly strengthen the input shapes in both cases.

Timings. The running time for shape optimization in typical force
scenarios ranges from 2 hours for our model with fewest num-
ber of vertices (1K vertices) to 6 hours for our largest model (3K
vertices). The complexity scales linearly w.r.t. the number of non-
zeros, which in turn depend linearly on the number of tetrahedra
vertices. Our implementation is currently far from optimal, and we
believe that the running times can be significantly improved with a
GPU-based implementation to solve the KKT system.

Implementation and source code. Our method is implemented
in C++. For uniform tetrahedralization, we used the Trelis soft-
ware [tre]. Material parameters are included in the configuration
files provided with our source code in the supplementary material.

6 Limitations and Future Work
In this paper we introduced an algorithm to directly optimize a
3D shape with the purpose of making it withstand larger exter-
nal forces. The algorithm incorporates physics simulation and ge-
ometric constraints within a unified optimization framework. Ex-
periments demonstrate that our algorithm can produce optimized
shapes able to withstand larger forces, while they remain perceptu-
ally similar to the original shapes.

Our method based on its current implementation is slow, but we
believe that there is significant room for improving its performance.
The main bottleneck of our system is solving the KKT system
through a sparse linear system solver. A GPU-based sparse solver
and a multi-resolution approach would significantly improve the
running times of our method. Investigating other numerical opti-
mization strategies would also be useful to improve convergence
and stability. Another limitation of our method is that tetrahedra
might become inverted in non-convex and highly thin shape parts
during the optimization. In our experiments we rarely encountered
this problem because our objective function tends to prevent ag-
gressive shape changes in these areas. During optimization, some
finite elements can become highly stretched, which will in turn
cause the computation of stresses to become inaccurate. In the case
of symmetric shapes, our method requires that their input meshing
is also symmetric, otherwise the symmetry constraints will not be
enforced. We believe that a remeshing strategy along with mesh
symmetrization would deal with the above problems. Another fu-
ture extension of our method could be to use higher-order Lapla-
cians [BS08] in the intrinsic distance term to further promote sur-
face feature preservation. Finally, it would be interesting to extend
our algorithm to other domains, which involves other design goals,
such as improving the aerodynamics properties of printable shapes.
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