UMassAmherst

Direct Shape Optimization for Strengthening 3D Printable Objects

Yahan Zhou, Vangelis Kalogerakis, Rui Wang, Ian R. Grosse University of Massachusetts Amherst

Printable 3D objects that need to withstand significant external force.

Coffee Table

Wrench

Coat Hanger

Printable 3D objects that need to withstand significant external force.

• Given an input 3D shape,

 Given an input 3D shape, the direction and strength of external force,

 Given an input 3D shape, the direction and strength of external force, and the boundary,

The object will deform under such external force.
 The regions under high stress may break.

Stress Analysis

 Our goal is to optimize the shape, such that the resulting shape can successfully withstand the external force, and remain as similar as possible to the input shape.

Optimized

Stress Analysis

 Silhouette image showing the difference between the original (gray) and optimized (purple) shape.

Optimized

Original vs. Optimized

Related Work

- Strengthening Printable Objects
 - Hollowing [SVB*12, LSZ*14, VGB*14]
 - Internal skin framing [WWY*13]
 - Support struts [SVB*12]
 - Change printing directions [HBA13, US13]
 - Part thickening [SVB*12, US13]
 - Controllable shape design [MDLW15]

[SVB*12]

Related Work

- Shape Optimization in Computer Graphics
 - Balance [PWLSH13]
 - Spinnability [BWBSH14]
 - Aggregate mass [MAB*15]
 - Inverse elastic shape design [CZXZ14]
 - Microstructures [PZM*15, SBR*15]

Related Work

- Shape Optimization in Mechanical Engineering
 - Parametric surface [HM03, WMC08, BCC*10]
 - B-splines/Bezier, subdivision surfaces [BRC16]
 - Level-set [AJT02, AJ08, DMLK13]
 - Specialized topology modifications [All12, BS13]
 - Procedural models [BR88, RG92, Tor93]

Contributions

- A general, extensible method to optimize 3D shapes under physical and geometric constraints.
- Operates directly on the input mesh.
- Integrated physics simulation with optimizer.
 - Derivations of analytic gradient and Hessian

Formulation – Constrained Optimization

Solve for rest state *X* that minimize an objective function while satisfying the given constraints.

Objective: $argmin_X D(X, X^0)$

Constraints: $\forall v \in B: x_v = p_v, \forall v \notin B: f_v(X, P) = 0$ Simulation $\forall t: \hat{\sigma}_t^2(X, P) < C$ Stress $g(X, X^0) = 0$ Geometric

 X_0 Reference State

$$\forall v \in B: x_v = p_v, \forall v \notin B: f_v(X, P) = 0$$

Boundary Conditions

 X_0 Reference State

$$\forall v \in B: x_v = p_v, \forall v \notin B: f_v(X, P) = 0$$

Force Equilibrium

 X_0 Reference State

$$\forall v \in B: x_v = p_v, \forall v \notin B: f_v(X, P) = 0$$

Force Equilibrium

Elasticity Model

Elasticity Model

X Rest State **P** Deformed State

Elasticity Model

$$f_{t,v}(X, P) = \frac{\partial U_t(X, P)}{\partial p_v}$$

Strain Energy: $U_t(X, P) = \frac{V_t}{2} \varepsilon_t : E \varepsilon_t$

Strain tensor Material tensor

 X_0 Reference State

$$\forall v \in B: x_v = p_v, \forall v \notin B: f_v(X, P) = 0$$

Boundary Conditions Force Equilibrium

2. Stress Constraints

 $\forall t : \hat{\sigma}_t^2(\boldsymbol{X}, \boldsymbol{P}) < C$

von Mises Stress Material's Yield Strength

3. Geometric Constraints

- **Symmetry** Constraints: $S_m x_i = x_j$
- Interior Uniformity Constraints: x_i

$$= \frac{1}{|\mathbb{N}(i)|} \sum_{j \in \mathbb{N}(i)} \mathbf{x}_j$$

User-Defined Constraints

All in the form of linear, equality constraints:

$$g(\mathbf{X}, \mathbf{X}^0) = 0$$

Symmetry Constraints

(a) original shape

$$\mathbf{S}_m \mathbf{x}_i = \mathbf{x}_j$$

User-Defined Constraints

(a) original shape (b) w/o user constraints (c) with user constraints

Without User-Defined Constraints

With User-Defined Constraints

Objective Function

Constraints: $\forall v \in B: x_v = p_v, \forall v \notin B: f_v(X, P) = 0$ Simulation $\forall t: \partial_t^2(X, P) < C$ Stress $g(X, X^0) = 0$ Geometric

Objective Function

Objective: $argmin_X D(X, X^0)$

$$D(\mathbf{X}, \mathbf{X}^{\mathbf{0}}) = w_1 D_{intrinsic}(\mathbf{X}, \mathbf{X}^{\mathbf{0}}) + w_2 D_{extrinsic}(\mathbf{X}, \mathbf{X}^{\mathbf{0}})$$

- **Extrinsic**: L2 distance between vertices
 - Preserves overall shape
- Intrinsic: transformed surface Laplacians
 - Preserves surface details and smoothness
 - [Sorkine et al. 2004]

Objective Function

(a) original shape

Solving the Optimization

Objective: $argmin_X D(X, X^0)$

Constraints: $\forall v \in B: x_v = p_v, \forall v \notin B: f_v(X, P) = 0$ Simulation $\forall t: \hat{\sigma}_t^2(X, P) < C$ Stress $g(X, X^0) = 0$ Geometric

Stress Constraints are Inequality constraints:

Use the penalty method.

The Penalty Method

 $h(\cdot) = \min(0, \cdot)^2$

- Objective: $argmin_X D(X, X^0) + \delta \cdot \sum_t h(C \hat{\sigma}_t^2(X, P))$ Constraints: $\forall v \in B : x_v = p_v, \forall v \notin B : f_v(X, P) = 0$ $g(X, X^0) = 0$
 - h is a penalty function
 - δ is the penalty weight
 - We start from a small weight and progressively increase it across iterations.

KKT System and Newton's Method

Objective: $\operatorname{argmin}_{X} D(X, X^{0}) + \delta \cdot \sum_{t} h(C - \hat{\sigma}_{t}^{2}(X, P))$

Constraints: $\forall v \in B : x_v = p_v, \forall v \notin B : f_v(X, P) = 0$

$$\mathbf{g}(\mathbf{X}, \mathbf{X}^{0}) = \mathbf{0}$$

$$\begin{bmatrix} H & J^{T} \\ J & 0 \end{bmatrix} \begin{bmatrix} \Delta \mathbf{x} \\ \mathbf{w} \end{bmatrix} = -\begin{bmatrix} \mathbf{g} \\ \mathbf{b} \end{bmatrix}$$

- **g**, *H*: gradient and Hessian of the objective
- **b**, *J*: function value and Jacobian of constraints

Algorithm Diagram

 Source code, data, and supplemental materials available for download from our paper website.

• Coat Hanger Example:

Endure 50% more force

• Coat Hanger Example:

100% more

• Coat Hanger Example:

200% more

• Coat Hanger Example:

Comparison with Local Thickening

(a) Original shape

(b) Our method
20% less material
Better at preserving surface features

Gallery of Results – Force and Boundary

Gallery of Results – 50% More Force

Gallery of Results – 100% More Force

Gallery of Results – 200% More Force

- Optimized shapes withstand 100% more force.
- PLA material, 100% infill, 100 micron resolution
- Equalize volume for fair comparisons.

Conclusion

- An algorithm to directly optimize a 3D mesh to make it withstand specified external force.
- Integrates optimization and physics simulation in a unified framework.
- Derivations of analytic gradient and Hessian of the objective function.
- Applications to printable object design.

Limitations and Future Work

- Performance, convergence speed
- Tetrahedralization quality
- Incorporating higher-order Laplacians [BS08]
- Applications to other design goals, such as improving aerodynamic properties of shapes.

Acknowledgement

- PG reviewers
- NSF grants CHS-1422441, CHS-1617333, and IIS-1423082.

Direct Shape Optimization for Strengthening 3D Printable Objects

