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Abstract

We present a robust framework for extracting lines of curvature from point clouds.
First, we show a novel approach to denoising the input point cloud using robust
statistical estimates of surface normal and curvature which automatically rejects
outliers and corrects points by energy minimization. Then the lines of curvature are
constructed on the point cloud with controllable density. Our approach is applicable
to surfaces of arbitrary genus, with or without boundaries, and is statistically robust
to noise and outliers while preserving sharp surface features. We show our approach
to be effective over a range of synthetic and real-world input datasets with varying
amounts of noise and outliers. The extraction of curvature information can benefit
many applications in CAD, computer vision and graphics for point cloud shape
analysis, recognition and segmentation. Here, we show the possibility of using the
lines of curvature for feature-preserving mesh construction directly from noisy point
clouds.

Key words: lines of curvature, robust curvature estimation, point cloud denoising,
outlier rejection, quad mesh construction

1 Introduction

Incorporating physical objects that have been scanned into a digital form
is an integral part of many engineering and entertainment applications. The
raw output of most shape acquisition methods is a point cloud sampling of
the scanned surface. Given the increasing popularity of point cloud based
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Fig. 1. Overview of the stages of our method. (a) Initial point cloud and normal
estimates. (b) Robust statical estimation of curvature (principal directions are visu-
alized here) (c) De-noising of normal estimates and point locations (d) Extraction
of lines of principal curvature over the point cloud (the result is visualized as a set
of faces created by the intersections of the lines).

techniques, the robust estimation and use of surface derivatives, such as cur-
vatures, for point cloud geometry processing is an active area of research.
Surface derivatives such as normal and curvature are as important as surface
position for the perception, understanding, interrogation of shape (30; 26),
registration (42), smoothing (27) and symmetry detection (34) to name a few
applications. Aggregates of these attributes are referred to in design as surface
features. Unfortunately, different shape acquisition processes produce a wide
range of characteristic point clouds that commonly exhibit artifacts of irreg-
ular sampling, noise and outliers, and make automatic and general purpose
differential surface attribute estimation a challenging problem.

In this article, we provide a robust statistical framework to compute surface
curvature in point clouds and we show how this framework can be exploited to
automatically reject outliers and denoise point clouds. This statistical frame-
work acquires maximum likelihood estimates of curvature through an Iter-
atively Reweighted Least Squares (IRLS) approach which refines the shape
and size of each neighborhood around every point by weighting samples ap-
propriately based on fitting error. The method automatically adapts to small
neighborhoods for well conditioned surfaces, and larger, possibly anisotropic
neighborhoods in the presence of noise, irregularities and feature boundaries.
The robustly estimated curvatures and the statistical weights are used to cor-
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rect the surface normals. Then, through a global energy minimization, the
point cloud shape is denoised. We follow with the extraction of lines of curva-
ture directly on the point cloud within our statistical framework to preserve
surface derivative discontinuities, e.g., near sharp edges. Our approach can be
applied to surfaces of arbitrary genus with or without boundaries.

As curvature is a fundamental descriptor for shape analysis (30), we believe
that our framework is useful for many applications in CAD, graphics and vision
and can also trigger interesting research directions in the field of point-based
processing techniques. In this article, we also show the possibility of using our
method for directly constructing quad-dominant meshes from point clouds.
The advantage of such curvature-aligned construction is the exploitation of
the theoretical argument that an optimal piecewise linear approximation of a
smooth surface can be built (at least in non-hyperbolic regions) if the mesh
edges are aligned with the lines of curvature (45; 5). Moreover, curvature-
aligned meshes mimic the flow-lines along which artists usually place geometric
elements to create 3D models (1) or hatch strokes for model illustration (16).

A schematic overview of our methodology is shown in Figure 1. The input to
our technique is a point cloud with oriented normals. Oriented normal vectors
can often be acquired as part of the scanning process or can be estimated
with existing algorithms (17; 35; 2). Then, our approach computes curvature
robustly in the presence of noise and outliers in both points and normals.
Our algorithm corrects noisy normals and the point locations by energy min-
imization, while also rejecting outliers. We then use a Voronoi space partition
to efficiently trace lines of principal curvature and their intersections with a
specified density directly over the surface implied by the corrected point cloud.

2 Related work

Our work is related to lines of curvature generation on discretized surfaces.
To the best of our knowledge, there has not been any attempt to trace lines of
curvature directly on point clouds. There are a number of papers that discuss
lines of curvature for shape representations, like polygon meshes or B-spline
surfaces. Martin (32) was the first to introduce the idea of principal patches
whose sides are lines of curvature for use in Computer Aided Geometric Design.
Dupin’s cyclide patches, whose lines of curvature are all circular arcs, are
used for blending surfaces (39; 10). Maekawa et al. (30) discuss the use of
lines of curvature and umbilics for shape recognition and feature extraction.
Alliez et al. (1) propose explicit remeshing on an existing polygonal object
representation so that lines of minimum and maximum curvatures are used to
determine the edges for the remeshed version in anisotropic regions. In order
to track the lines of curvature, the initial mesh is globally parameterized, while
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Fig. 2. Visualization of principal curvature values obtained by our method for a
scanned point cloud model of a hand and a tooth. The visualization is based on
the color scheme suggested in (41). Normals are estimated by locally fitting planes
(17). Renderings are created with PointShop3D.

the curvature tensor field also needs to be pre-smoothed. Marinov and Kobbelt
(31) instead provide a more efficient framework that does not rely on a global
parametrization for anisotropic remeshing. Lai et al. (25) apply an iterative
relaxation scheme which incrementally aligns the mesh edges to the principal
directions without the use of global parametrization of meshes.

Regular remeshing can be achieved in terms of globally parameterizing the
mesh where the parameter lines can also be guided by a given frame field, for
example by principal curvature frames (40; 20). Liu et al. (29) use principal
directions to create conical meshes. Other remeshing techniques have also been
proposed using smooth harmonic scalar fields (9) or Laplacian eigenfunctions
(8; 50).

In our case, we deal with the much more difficult and challenging problem
of handling noisy point clouds surfaces of arbitrary topology with outliers as
well as fine and sharp features. In our case, we make no demands regarding
pre-meshing or globally parameterizing the point cloud surface. The curvature
information can be directly exploited by other point cloud based techniques
e.g., for registration (41), smoothing (27), and shape recognition and segmen-
tation (18) which do not depend on intermediate reconstruction techniques
and need to work directly on point clouds surfaces. In this paper, we also
show how to use the extracted curvature information for feature-preserving
mesh construction.

Our framework relies heavily on the robust estimation of curvature on point
clouds. There is a considerable number of papers in the computer graphics, vi-
sion and engineering literature concerning differential operators on discretized
surfaces, especially polygon meshes (see (12) for a recent survey). Briefly, cur-
vature estimation methods can be categorized as follows: a) curve and patch
fitting methods where low-order curves or patches are fitted locally at each
point of the surface, typically as height functions e.g., (14; 13; 37), b) discrete
differential geometry methods where discrete versions of differential geometry
theorems are developed and applied to one-ring, two-ring or N -ring neigh-
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Fig. 3. Visualization of principal curvature values obtained by our method for
analytic examples of torus point clouds using the same color scheme as in Figure 2.
From left to right: Non-noisy torus, torus with random gaussian noise of variance
0.5% of the bounding box diagonal, torus with random gaussian noise of variance
1% of the bounding box diagonal.

borhoods around each vertex of a polygon mesh e.g., (47; 33; 4) and c) Per
triangle curvature tensor estimation where the second fundamental form is
fitted per each surface element (41). Kalogerakis et al. presented a method to
estimate principal curvature values and directions over polygon meshes and
point clouds using a robust statistical framework (22). In contrast to previ-
ous approaches, this approach adapts to noise, irregularities and non-uniform
sampling and provides maximum likelihood estimates per surface point. This
method has been shown to have an order of magnitude less error than other
state-of-the-art approaches.

In this paper, we will overview and update this method and we will extend it
in order to remove outlier points and denoise point positions in a principled
fashion. Based on these estimates and statistical weights, we will robustly
extract the lines of curvature directly from point clouds.

3 Statistical estimation of curvature

In (22), it was shown that an IRLS process, in the context of robust M-
estimation, can be used to achieve a highly accurate estimation of curvature,
minimizing the effects of noise for discretized surfaces. M-estimation (15; 46)
consists of robustly fitting a model by minimizing a cost function of the resid-
uals of the samples efficiently with an IRLS scheme. Here, we show an updated
version of this method for point clouds and in the following subsections we
introduce our method to (respectively) remove surface outliers from the input
point set (subsection 4.1) and denoise point positions (subsection 4.2) using
the results from the M-estimation process.

The first step of the algorithm is to determine a minimum neighborhood for
each point pi in the initial dataset (see Figure 4a). As in (19), this minimum
neighborhood is determined by finding the closest points after projecting them
into the local tangent plane of pi, considering one closest point for each of six
60 ◦slices around pi on this plane. If there are no nearest points in two or
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Fig. 4. (a) Boundary point definition and conditions. (b) Normal variation sample
for curvature estimation.

more contiguous slices around pi within a given threshold (which can easily
be changed interactively in our application), the point is marked as a bound-
ary point. If pi is not a boundary point, we consider all pairs of points and
their associated normals inside their minimum neighborhood. Each such pair
yields a positional variation ~∆p and normal variation ~∆n which constrain the
curvature tensor as follows:

∇~u
~N · ~u ∇~v

~N · ~u

∇~u
~N · ~v ∇~v

~N · ~v

∇~u
~N · ~w ∇~v

~N · ~w


︸ ︷︷ ︸

unknowns

·

 ~∆p · ~u
~∆p · ~v

 =


~∆n · ~u
~∆n · ~v
~∆n · ~w



where ~N is the input normal vector field, and ~u, ~v and ~w form a local or-
thonormal coordinate frame obtained from the tangent plane (see Figure 4b).

Given enough variation pairs, we obtain an over-constrained system which
lets us solve for the curvature tensor values in a least squares fashion. This
estimation serves as an initial guess to the IRLS process. Then, all normal
variations inside an initial operating region (see below) are sampled and as-
signed a geometric weighting scheme according to the inverse of their average
squared Euclidean distance to the center point pi. This geometric weighting
captures the prior confidence regarding the relative spatial relevance of the
samples. This weighting will be multiplied with the M-estimation weights (see
below) that represent the confidence in the noisiness of the sample. These
confidence weights are necessary to ensure stable curvature tensor fittings,
otherwise the samples would be assumed to be of equal quality and, therefore,
to have constant variance, which is not true. Normally, it is expected that the
further the sample is located from the point of interest, the less geometric
weight it should be assigned. The statistics literature (3) suggests that for
weighted least squares regression, the weights of the samples should be chosen
according to the inverse of the variances of the residuals. As we do not know
the variance of the residuals of the samples a priori, we need to model this
variance with a function of some geometric feature of the sample. In our ex-

6



(a) (b) (c)

Fig. 5. (a) Variance of the residuals of the normal variation samples around each
point versus their average Euclidean distance to the neighborhood center on a
cylindrical surface (blue) and the approximating quadratic curve (red). (b) The
Geman-McLure (GM) cost as a function of the normalized residual. (c) The GM
weights as a function of the normalized residual.

periments, we noticed that the variances of the residuals of the samples tend
to increase with the average Euclidean distance of the points and this increase
can be adequately modeled with a quadratic function (see Figure 5a).

The initial operating region captures the scale where the curvature estima-
tion will be performed robustly. In our experiments, we heuristically defined
the scale to be locally density-dependent similarly to point cloud modeling
techniques (38). The heuristic for the operating region we used is the region
covered by the Euclidean ball centered at pi with radius 3.0 multiplied by
the average distance of pi from its closest neighbors in its minimum neigh-
borhood. Other techniques that optimize the radius of the curvature operator
globally can also be used (49) but with increased computational cost. The
M-estimation algorithm will reweight the samples accordingly (thus, reshape
this initial region) in order to converge to an anisotropic support area during
the IRLS process (22).

After the initial guess of the curvature tensor, the sampling and geometric
weighting definition in the operating region, the IRLS process begins. Accord-
ing to the M-estimation literature, the goal is to minimize the sum cost of
residuals:

min
x

∑
si∈S

ρ(ri,x/σ) (1)

where x is the model with the unknown parameters containing the curvature
tensor, si is the ith variation sample, S is the sample set, ri,x is the absolute
residual of sample si with respect to model x, σ is a scale factor that is
automatically estimated (see below) and ρ is a robust cost function. In simple
least squares the cost function is quadratic. However, such a cost function is
very sensitive to outliers. For a robust estimation, we use the Geman-McLure
cost function (GM), which is a proven choice in computer vision (11) and

7



Fig. 6. Robust statistical estimation of curvature applied to analytic point clouds
compared to cubic patch fitting on k-nearest neighbors versus increasing noise vari-
ance (percentage of median distance of points inside their defined minimum neigh-
borhood as also reported in (22)). Normals are estimated by locally fitting planes
(17). Here, we show mean curvature error.

geometry processing (44) as it exhibits very good behavior in quickly rejecting
structured outliers.

The IRLS approach assigns statistical weights to the normal variation samples
for each iteration given their observed residual ri,x from the currently fitted
linear model x. These statistical weights represent the confidence of how good
or bad the sample is according to its current residual (see Figure 5). The cost
and weight for each sample are defined as:

ρ(ri,x/σ) =
(ri,x/σ)2

1 + (ri,x/σ)2
w(ri,x/σ) =

2

(1 + (ri,x/σ)2)2

where σ = 1.4826 ·median(ri,x). This is derived from the fact that the median
absolute value of a large enough sample of unit variance normally-distributed
1D values is 1/1.4826 = 0.6745. This scale estimation causes the estimator to
tolerate almost 50% of outliers (43).

At each iteration, the operating region is refined by considering the normal
variation samples whose residuals are less than 2σ. The samples which have
larger residuals are considered outliers for the curvature estimation of pi and
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Fig. 7. Robust statistical estimation of curvature applied to analytic point clouds
compared to cubic patch fitting on k-nearest neighbors versus increasing noise vari-
ance. Here, we show RMS error for principal curvature values and mean error (in
radians) for principal curvature directions in cylinder and torus point clouds.

are ignored, as in (43). These statistical weights are chosen so that a cost
function of the residuals of the samples is minimized and this corresponds to
the maximum likelihood estimates of the curvature tensor (11).

Regarding convergence to true curvature values with increased sampling, max-
imum likelihood estimates (such as those obtained by M-estimation) converge
with increased sample density (maximum likelihood bias tends to zero as the
number of samples tends to infinity (24)).

The initial normals can also be corrected using the computed curvature tensors
and the final M-estimation weights per each normal variation sample. Firstly,
the normal differences between pi and every point in its final operating region
are computed using the values for the unknowns as estimated from the IRLS
process. Then, the new normal at pi is computed as the normalized weighted
sum of the normals of its neighbor points in the operating region plus the
derived normal differences. These weights are the final weights of the IRLS
process assigned to each sample.

We show results for this statistical estimation of curvature for point clouds in
Figures 1, 2, 3 and we provide quantitative numerical comparisons in Figures
6 and 7.
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Fig. 8. Results of applying our approach for extracting lines of curvature from
sampled analytic surfaces. From left to right: regularly sampled non-noisy torus,
randomly sampled and noisy torus (noise is gaussian with variance 1% of the bound-
ing-box diagonal), randomly sampled cube, a surface with mixed umbilical and
non-umbilical regions.

4 Point cloud correction

The robust statistical estimation of curvature subsequently drives the out-
lier rejection, point position correction and principal direction smoothing pre-
sented in the following subsections.

4.1 Surface outlier rejection

Let us denote with wi
j,k the final weight associated to the variation pair (pj, pk)

for the estimation of curvature at point pi (see Figure 4b). For each point pi

we can define a sparse weight vector wi as follows:

wi[pj] =
∑
k

wi
j,k

which intuitively represents how much pj contributes to determining curvature
at pi. If the weight is close to 1, then its associated normal variation is strongly
related to the curvature of the point (pi considers it an inlier). If it is 0, its
associated normal variation is unrelated (pi considers it an outlier).

Consider two points in the dataset, p1 with weight vector w1 and p2 with
weight vector w2. In the case where w1[p2] > 0 and w2[p1] = 0, the point p2

considers p1 as an outlier in its curvature estimation, while the same does not
hold for p1 (this is a vote from p2 for p1 for being an outlier). On the other
hand, if w1[p2] = 0 and w2[p1] = 0, the points are mutually irrelevant to each
other’s curvature estimation (no vote). If w1[p2] > 0 and w2[p1] > 0, both
points contribute to each other’s curvature.
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Fig. 9. Left: Average RMS position error of the sample points of the extracted
lines of curvature compared to ground truth for the case of torus point cloud with
increasing random noise variance (measured as percentage of the bounding box
diagonal). Note that the resulting error is much lower than the noise of the input
point cloud. Right: The approximation error of the extracted lines of curvature
linearly decreases with respect to point cloud resolution.

If over half of a point’s votes are in favor of considering it an outlier, we mark
it as such and ignore it during the next steps of our method. Isolated boundary
points are also ignored. We show this in the case of the helicoid (Figure 1)
and fish (Figure 14) datasets. After the outliers are rejected, the minimum
neighborhood for each point is reselected.

4.2 Point cloud denoising

The recomputed normals from the M-estimation process can be used to correct
the position of the rest of the surface points. This is based on a global energy
minimization process where the goal is to move the position of the points in
such a way so that the local first-order approximation of the normal in the
minimum neighborhood of each point pi matches its robustly corrected normal
~ni. The cost function is defined as follows:

E =
N∑

i=1

K−1∑
j=1

K∑
k=j+1

√
||~ni − s · n̂(pi, qi

j, q
i
k)||

where qi
j and qi

k denote the j-th and k-th nearest neighbors of pi respectively,
n̂(p, q, r) = unit((q − p)× (r − p)), and s = 1 if ~ni · n̂(p, q, r) ≥ 0 and s = −1
otherwise. Intuitively, s · n̂(p, q, r) represents the oriented normal of the plane
defined by p and its neighbors q and r.N is the number of points in the dataset,
and K = 6 is the number of nearest neighbors we always consider. We take the
square root of the norm of the difference to the local corrected normals as we
noticed this better preserves features, similarly to the square-root potentials
used in (7).

Such an optimization requires an analytic gradient in order to be performed
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Fig. 10. Lines of curvature extracted for the synthetic cow dataset.

efficiently, which we provide. We employ the L-BFGS-B optimization method
(52). L-BFGS-B is a limited-memory quasi-Newton method, which is intended
for large-scale optimization problems in which the Hessian matrix is difficult
to obtain, as in our case. In Figure 1 we show an example for a noisy helicoid.
Figures 8, 12 and 14 also illustrate this technique. The reduction of noise can
reach 70% or more in the noisy cases of torus (see Figure 9).

Notice that we do not explicitly place a penalty in our energy term for point
movement and they are only locally moved based on their corrected normals.
The minimization process does not result in global translation of points, since,
in such a case, this would not result in lower global energy. Given our choice of
the optimization algorithm, the fact that we use the original point positions as
the initial guess, and the use of an analytic gradient, it is ensured that we find
a minimum for locally optimal point placement which is close to the original
point positions.

4.3 Global Principal Direction Smoothing

Optionally, we can also globally smooth the principal direction vectors. This
is especially desired to reduce the number of singularities (which is useful
for meshing applications). In order to achieve this, we use a global energy
minimization, similar to the one defined in (16) and in (40). The energy is
defined as:

E(θi) = (1− α)·
∑

i

|ki1|
|ki2|

· sin2(θi − θ0i)− α ·
∑
i,j

cos2((θi − φij)−(θj − φji))

where θi are the unknown angles between the target smoothed principal di-
rection of k1 and a reference tangential direction and φij is the angle of the
projection of the vector vi−vj to the tangent plane of vertex vi. The angles θ0i

are the initial angles and the user parameter α ∈ [0...1] controls the smoothing
intensity. The points vj are all points neighboring vi that have non-zero sta-
tistical weights for the curvature estimation of vi. Note that for our meshing
purposes, the energy should be only invariant to differences of nπ on θi and
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not nπ/2 as it happens for cross-hatching (16). For this energy minimization,
we also provide the analytic gradient and use the L-BFGS-B algorithm again
(52).

5 Tracing lines of curvature and their intersections

After rejecting surface outliers and denoising the point dataset, our method
starts to create the flow lines of principal curvature. As there is no prior smooth
surface representation in our case, there is a need for special treatment of this
process in order to make sure that the flow lines are extracted properly and
no intersections are lost.

5.1 Tracing flow lines

A flow line is a piecewise linear curve created by sequentially sampling the
underlying surface in adaptive step sizes following the robust curvature esti-
mates. Let us call such a curve C = {c0, c1, ..., cn}, where ci is the i-th sample
point.

The sampling algorithm starts by building a priority queue of seed points
selected from the corrected dataset, as well as creating a Voronoi structure
over said set which will be used for efficiently implementing intersections.
The points with highest priority are those that exhibit the highest confidence
during the M-estimation process, i.e. those pj with highest

∑
i wi[pj], as they

contribute the most to the estimation of curvature of the other points in the
dataset.

The first point in a given curve, c0, is initialized by popping a point from the
queue. From this point, we will start to trace flow lines in each of the principle
curvature directions ~d ∈ {~k1, ~k2,−~k1,−~k2}. Note that during the tracing, we
conform the principal directions locally to have the same sign.

Each new sampling point is generated firstly as ci ← ci−1 + s · ~di, thus moving
towards the current signed principal direction ~di. As we will see, the step size
s will be adaptively chosen and is initialized to half the distance of c0 to its
nearest neighboring point. Of course, ci currently lies on the tangent plane of
ci−1 and possibly not on the underlying surface. Therefore, we proceed with a
process that corrects this by performing the following steps:

(1) Retrieve all points neighboring ci that have non-zero statistical weights
for the curvature estimation of ci (as stored upon completion of the IRLS
process). Let us call these points q1, q2, . . . , qk.
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Fig. 11. From left to right: Lines of curvature with decreasing density parameter
for the cow dataset (Left: κ = 1e− 5, Middle: κ = 1e− 4, Right: κ = 1e− 3).

(2) Project ci using LOP (Locally Optimal Projection) (28) using as support
region the neighborhood defined by the previous step. As ci is already
close to the underlying surface, very few LOP iterations are performed
(typically 4-5).

(3) Define the normal of ci to be the normalized weighted average of the
normals of qj using their statistical weights. We also define its principal

curvatures in the same way. We set ~di

′
according to this interpolated

principal curvature direction and we update the point ci. Then we again
locally project the sampling point to get its new estimated position c′i.
We found this scheme provided the best stability compared to other in-
tegration methods. In order to adapt the step size according to the error
of the integration, we also perform a second-order estimate c′′i (by con-

sidering the average of the principal directions ~di

′
and ~di

′
this time) and

compute the relative error ∆ = |c′i− c′′i |/|c′i|. The step size is then limited

to s ·
√
τ/∆ (if this quantity is smaller than the current step size), where

τ is the prescribed user tolerance as commonly used in numerical integra-
tion techniques (in all our experiments, we used τ = 0.01). Such choice
of adaptive step sizes for backward Euler schemes follows the numerical
integration literature e.g., see (48; 23).

(4) Check if the current flow line is crossing into a new datapoint Voronoi
cell by intersecting one of the separating hyperplanes of the current cell.
If so, further limit the step size s and update ci (see below for reasoning).

(5) The statistical weights for ci are set to the weights of the closest point in
the dataset. Therefore, find this closest point and update it if necessary.

We continue this process, by repeating steps 1 through 5 for the updated flow
point ci. As noted in step 4, we also keep track of the flow points that belong to
each of the Voronoi cells of the dataset and register them accordingly. This will
be very important for the tracking of flow line intersections. For each Voronoi
site in the dataset, we only need to check for intersections of the corresponding
registered flow segments. This is efficient and guarantees no intersections will
be lost.

The integration scheme we use allows for the efficient tracing of flow lines with
satisfactory stability. It is also reminiscent of the flow tracing method in (9),
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Fig. 12. Lines of curvature extracted for the scanned hand point cloud.

where instead of “walking” across a triangle, we walk across the neighborhood
of each point by interpolating the tangential directions. This tracing is rela-
tively fast, very stable and handles surfaces of arbitrary genus avoiding any
assumptions for local parametrization.

Preserving features: Notice that our choice of neighborhood and the use of
the statistical weights serve to preserve features during the tracing of the flow
lines. For example, in the case of a cube (see Figure 8), for points near the
cube edges, the weights of the points past the corresponding feature boundaries
are zero. Thus, the flow line interpolates correctly along the cube faces and
preserves hard edges (see also the preservation of sharp features of the cow in
Figure 10).

Stopping conditions: Each current flow line stops if one of the following
conditions is met:

(1) if the current flow point has a distance less than d(κ) to a point of a differ-

ent flow line (of the same principal curvature), where d(κ) = 2
√
ε(2/|κ| − ε).

This density threshold is adapted to the corresponding curvature κ of
the flow point as in (1). For the examples of this paper, we have used
κ = 1e − 5. In Figure 11, we show results with varying density of lines
using different values of κ.

(2) If the current flow point is closer than 2 multiplied by the current step
size to the starting point of the line, then there is a self-intersection.

(3) If a flow line reaches an umbilical point (the current flow point has dis-
tance less than the step size to an umbilic).

The proximity queries are performed by running a breadth-first search (BFS)
based on the six nearest points of each point in the dataset. The BFS stops
when there are no more points in the dataset within a distance equal to the
density threshold and the current step size. For each retrieved point, we access
its Voronoi cell structure and retrieve its registered flow points. Then, we check
the above conditions based on the distance of the current flow point to the
retrieved flow points of the nearby cells, as given by the BFS. Of course, this
is done for efficiency reasons, as a KD-tree query for each flow point would be
prohibitively slow, as also noticed in (31).
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Fig. 13. Results of applying our method to head and tooth datasets.

In umbilical regions, the principal directions are not well defined. An umbilical
region is defined as a contiguous set of umbilical points in the dataset (like in
the case of the region of points lying on the face of a cube). A point is defined
to be umbilic if its principal curvatures are equal. Because of numerical errors,
we use a threshold to classify if a point is umbilic (as also used in other umbilic
detection approaches like (34)). In our experiments, we found it reasonable to
set a point to be umbilic if the ratio of its principal curvatures is larger than the
threshold of 0.95. This value works well in our experiments, allowing for minute
differences in values due to numerical errors. If an umbilical region contains
more than three points, we perform Principal Component Analysis (PCA)
on the region including the umbilical points and their non-umbilical neighbor
points. The main reason for this is that the local symmetry axes (given by the
eigenvectors of PCA) is an approximation of the averaged principal curvature
directions of this region (51), which is expected to be more stable. We set the
principal directions to be the projections of the eigenvectors which correspond
to the highest eigenvalues on their tangent plane. If a flow line starting from
an umbilical region reaches its boundary, then it stops (see example of cube
in Figure 8). However, if a surface is comprised of patches of umbilical and
non-umbilical regions, the lines of curvature can have discontinuities on their
boundaries. In this case, the global optimization process of section 4.3 can be
used to globally smooth the directions as in (16). A result of this process is
shown in the example model on the right of Figure 8.

The result of executing the above process for each point in the priority queue
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Fig. 14. Results of applying our method to highly noisy and outlier rich data
acquired using scatter-trace photography. (36)

is a network of principal curvature lines (see Figure 8 of the torus) where each
Voronoi cell data structure has the registered flow points. We can now track
the intersections of the flow lines efficiently.

5.2 Checking for intersections

For each Voronoi site in the dataset, we search for intersections of the flow
segments incident on said site. As the flow segments may not intersect exactly
in 3D, we project them onto the tangent plane of the associated point. A
sweep-line algorithm (6) is employed to quickly find the intersections. If there
is an intersection between two flow segments on the tangent plane, we find
their intersecting points and we reproject them. The new intersection (a new
vertex) is set to be the midpoint of these reprojected points. We also check if
the flow segments of other lines of curvature meet at an existing intersection.
In this case, we update the vertex structure with all the meeting flow lines.
Moreover, we set the normal of the point to be the average of the normals of
the flow points of the intersecting segments in order to remain consistent with
the original surface orientation.

Dataset # of Curvature Normal Outlier Point cloud Extraction Meshing Total Maximum

points estimation correction rejection denoising of lines time memory

torus 1600 0.7 0.2 0.1 2.4 2.9 0.9 7.2 14.5

cube 600 0.2 0.1 0.1 1.3 2.1 0.5 4.3 10

helicoid 1730 0.9 0.3 0.2 3.3 3.9 1.1 9.7 22.1

cow 46K 16.5 5.7 0.9 43.5 99.7 34.6 200.9 240.3

tooth 21K 10.5 2.9 0.4 30.2 65.2 20.4 129.6 135.7

Einstein 29K 13.9 4.1 0.6 26.8 79.1 28.7 153.2 169.2

fish 113K 87.4 30.5 4.9 170.4 378.9 115.0 787.1 714.9

hand 195K 94.9 31.4 3.5 176.3 466.3 159.9 932.3 989.5

Table 1
Indicative running times (in seconds) for each stage of our method captured on

a 3GHz Intel Pentium IV processor with 2GB memory. Total execution time (in
seconds) and maximum memory used (in megabytes) are also reported.
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6 Application: curvature-aligned mesh construction

After the generation of lines of curvature and the checking for intersection, the
application to curvature-aligned mesh construction follows from our method
in a straightforward manner. Our approach can provide dense mesh recon-
structions, is statistically robust to noise and preserves fine features.

After tracking the new vertices of the intersecting segments, it is easy to pro-
ceed with the construction of the half-edge structure. In the vertex structure,
we keep indices to the flow points of the intersecting flow lines. Each flow point
has pointers to its previous and next flow points in the line. We traverse the
flow lines to find the neighboring intersections of each vertex. In this way, we
create all the edges between the vertices.

Similarly to (31), for every vertex, we project all its edges onto its tangent
plane, as given by its computed normal. Having one of the projected edges
as a reference, we find the angles of all the other edges to it and we sort
them according to this angle in a counter-clockwise direction. This results
in the correct cyclic half-edge order. Based on this process, we build all the
half-edges for each vertex.

We select a half-edge from the list of all retrieved half-edges and traverse the
next half-edge until the starting vertex is met. We mark these half-edges as
visited and we create a face. Then we continue this process, until all half-edges
are visited. Optionally, the faces can be triangulated. Otherwise the meshing
process naturally produces a quad-dominant mesh.

7 Results

We show results of our curvature estimation algorithm in Figures 1, 2, 3,
6, and 7. We show the results of our approach for the extraction of lines of
curvature on analytic examples with varying noise and sampling quality (see
Figures 1, 8 and 9), models with sharp features, large umbilic regions, as well

Fig. 15. The lines of curvature traced on the point clouds by our method can also
be used for direct mesh reconstruction.
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as synthetic and commercially scanned real-world examples (Figures 1, 8, 10,
12 and 13) and even highly noisy, reflective objects (Figure 14) with many
outliers, acquired using scatter-trace photography (36). We show examples of
surface reconstruction in Figure 15.

Our implementation uses CGAL for its data structures and the QHULL al-
gorithm for the Voronoi cell computation. Indicative running times for each
stage of our algorithm for our datasets are shown in table 1. We note that
there our implementation is not optimized, since we were more interested in
ease of prototyping than in speed.

8 Discussion, Limitations and Future Work

We presented a method that allows the generation of lines of curvature directly
on noisy point clouds with outliers. We believe that there are many other point
cloud based techniques that can benefit from our method: point cloud shape
recognition, registration, feature extraction, symmetry detection to name a
few. The entire technique is well grounded on a robust statistical estimate
of curvature and normals used in the denoising of the point cloud, excluding
outliers and smoothly extracting the lines of curvature in a feature-preserving
manner.

We acknowledge that the computational cost and memory requirements of
the current implementation of our method are relatively high. Moreover, as
the meshing explicitly follows the lines of curvature, the resulting meshes are
not very regular. We note that our algorithm mainly focuses on producing a
faithful mesh reconstruction with all the fine features of the underlying surface
well represented, rather than building a smooth global parametrization (such
as in (40)), based also on the fact that curvature-aligned meshes optimally
approximate a smooth surface at least in non-hyperbolic regions (45; 5).

There are many extensions to our work that we are currently exploring, which
could further enhance this novel type of lines of curvature extraction. A sta-
tistical technique to automatically improve the sampling density over an arbi-
trary genus surface, in the lines of the method presented in (7), could improve
the reconstruction quality. A robust statistical detection of boundaries and
crest lines from the point clouds would also be very important for better
surface reconstruction. An interesting extension of our work could be to gen-
erate isotropic flow lines on the point cloud given a global parametrization.
Another improvement would be to automatically set some user parameters
(e.g, the density threshold) through an example-based learning technique. A
data-driven method like (21) could be employed to track lines of curvature at
interactive rates. Our technique could potentially be used for automatic hole
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filling and repairing of incomplete meshes. Finally, it would be interesting to
explore if our framework could be used for parametrization of noisy point
clouds.
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[33] M. Meyer, M. Desbrun, P. Schröder, A. H. Barr, Discrete differential-
geometry operators for triangulated 2-manifolds, in: Visualization and
Mathematics III, Springer-Verlag, 2002, pp. 35–57.

[34] N. J. Mitra, L. J. Guibas, M. Pauly, Partial and approximate symmetry
detection for 3d geometry, ACM SIGGRAPH 25 (3) (2006) 560–568.

[35] N. J. Mitra, A. Nguyen, L. Guibas, Estimating surface normals in noisy
point cloud data, Special issue of International Journal of Computational
Geometry and Applications 14 (4–5) (2004) 261–276.

[36] N. J. W. Morris, K. N. Kutulakos, Reconstructing the surface of inhomo-
geneous transparent scenes by scatter trace photography, in: International
Conference on Computer Vision, 2007, pp. 1–8.

[37] Y. Ohtake, A. Belyaev, H.-P. Seidel, Ridge-valley lines on meshes via
implicit surface fitting, ACM Transactions on Graphics (2004) 609–612.

[38] M. Pauly, R. Keiser, L. P. Kobbelt, M. Gross, Shape modeling with point-
sampled geometry, ACM Transactions on Graphics 22 (3) (2003) 641–650.

[39] M. J. Pratt, Cyclides in computer aided geometric design, Computer
Aided Geometric Design 7 (1-4) (1990) 221–242.
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