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via deep-learned generative models of surfaces
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Figure 1: Given a collection of 3D shapes, we train a probabilistic model that performs joint shape analysis and synthesis.
(Left) Semantic parts and corresponding points on shapes inferred by our model. (Right) New shapes synthesized by our model.

Abstract
We present a method for joint analysis and synthesis of geometrically diverse 3D shape families. Our method
first learns part-based templates such that an optimal set of fuzzy point and part correspondences is computed
between the shapes of an input collection based on a probabilistic deformation model. In contrast to previous
template-based approaches, the geometry and deformation parameters of our part-based templates are learned
from scratch. Based on the estimated shape correspondence, our method also learns a probabilistic generative
model that hierarchically captures statistical relationships of corresponding surface point positions and parts as
well as their existence in the input shapes. A deep learning procedure is used to capture these hierarchical rela-
tionships. The resulting generative model is used to produce control point arrangements that drive shape synthesis
by combining and deforming parts from the input collection. The generative model also yields compact shape de-
scriptors that are used to perform fine-grained classification. Finally, it can be also coupled with the probabilistic
deformation model to further improve shape correspondence. We provide qualitative and quantitative evaluations
of our method for shape correspondence, segmentation, fine-grained classification and synthesis. Our experiments
demonstrate superior correspondence and segmentation results than previous state-of-the-art approaches.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—

1. Introduction
Discovering geometric and semantic relationships of 3D
shapes is fundamental to several computer graphics appli-
cations. In particular, several tools for geometric modeling,
manufacturing, shape retrieval and exploration can benefit
from algorithms that automatically extract part, region and
point correspondences within large shape collections. Dur-
ing the recent years, due to the growing number of online

3D shape repositories (Trimble Warehouse, Turbosquid and
so on), a number of algorithms have been proposed to jointly
analyze shapes in large collections to discover such corre-
spondences. The key advantage of these algorithms is that
they do not treat shapes in complete isolation from each
other, but rather extract useful mappings and correlations be-
tween shapes to produce results that are closer to what a hu-
man would expect.
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Although there has been significant progress on analy-
sis of shapes with similar structure (e.g., human bodies)
and similar types of deformations (e.g, isometries or near-
isometries), dealing with collections of structurally and geo-
metrically diverse shape families (e.g., furniture, vehicles)
still remains an open problem. A promising approach to
handle such collections is to iteratively compute part or/and
point correspondences and existence using part-based or lo-
cal non-rigid alignment [KLM∗13, HSG13]. The rationale
for such approach is that part correspondences can help lo-
calize point correspondences and improve local alignment,
point correspondences can refine segmentations and local
alignment, and in turn more accurate local alignment can fur-
ther refine segmentations and point correspondences. One of
the drawbacks of existing methods following this approach
is that strict point-to-point correspondences are not that suit-
able for collections of shapes whose parts exhibit signifi-
cant geometric variability, such as airplanes, bikes and so
on. In addition, these methods use templates made out of
basic primitives (e.g., boxes in [KLM∗13]) or other mediat-
ing shapes [HSG13], whose geometry may drastically differ
from the surface geometry of several shapes in the collec-
tion leading to inaccurate correspondences. In the case of
template fitting, approximate statistics on the used primitives
can be used to penalize unlikely alignments (e.g., Gaussian
distributions on box positions and scales). However, these
statistics capture rather limited information about the ac-
tual surface variability in the shapes of the input collection.
Similarly, in the context of shape synthesis, shape variabil-
ity is often modeled with statistics over predefined part de-
scriptors that cannot be directly mapped back to surfaces
[KCKK12] or parameters of simple basic primitives, such
as boxes [FAvK∗14, AKZM14].

We present a method that analyzes and synthesizes 3D shape
collections by learning representations of surface variabil-
ity from scratch. Our method has two main components:
a probabilistic deformation model and a generative surface
model. The probabilistic deformation model jointly esti-
mates fuzzy point correspondences and part segmentations
of shapes through learned part-based templates. In contrast
to previous works that use simple geometric primitives or
pre-existing shapes as templates, our method learns the tem-
plate geometry and deformations from the input collection.
The deformation model provides input to our generative sur-
face model that aims to learn geometric and structural re-
lationships of parts and corresponding surface point posi-
tions. Following the concept of deep learning (or hierarchi-
cal learning) [Ben09] widely used in computer vision and
natural language processing, the key idea of our generative
model is to learn relationships in the surface data hierarchi-
cally: our model learns geometric arrangements of points
within individual parts through a first layer of latent vari-
ables. Then it encodes interactions between the latent vari-
ables of the first layer through a second layer of latent vari-
ables whose values correspond to relationships of surface ar-
rangements across different parts. Subsequent layers medi-
ate higher-level relationships related to the overall shape ge-
ometry, semantic attributes and structure. The hierarchical
architecture of our model is well-aligned with the composi-
tional nature of shapes: shapes usually have a well-defined
structure, their structure is defined through parts, parts are

made of patches and point arrangements with certain regu-
larities.

Our method can jointly learn the probabilistic deformation
model and the generative surface model leading to improved
shape correspondence. In addition, the generative model can
be sampled to generate plausible point-sampled surfaces that
automatically drive shape synthesis. Finally, its uppermost
layer produces a compact shape descriptor, or feature rep-
resentation, that can be used to perform fine-grained clas-
sification (e.g., airplanes can be categorized to fighter jets,
propeller aircraft, unmanned aerial vehicles, and so on).

Contributions. The contribution of our work is two-fold.
First, we provide a probabilistic deformation model that es-
timates fuzzy point and part correspondences within struc-
turally and geometrically diverse shape families. The main
difference with previous work is that our method learns the
geometry and deformation parameters of templates within
a fully probabilistic framework to optimally achieve these
tasks instead of relying on fixed primitives or pre-existing
shapes. Second, we introduce a deep-learned probabilistic
generative model of 3D shape surfaces that can be used to
further optimize shape correspondences, synthesize surface
point arrangements, and produce compact shape descriptors
for fine-grained classification. Both probabilistic models can
be learned together leading to joint shape analysis and syn-
thesis. To the best of our knowledge, our method is the first
to apply deep learning for training generative models of 3D
shape surfaces. In contrast to previous work on generative
probabilistic models that rely on highly structured databases
(e.g., manually segmented shapes), our deep-learned model
synthesizes shapes without or minimal human supervision.
While previous generative models usually encode only high-
level part and shape descriptors, our model directly encodes
surface geometry and shape structure. Instead of mixing-
and-matching parts from a database to synthesize shapes as
frequently done in prior work, the sampled surface point ar-
rangements of our model can be used to also deform the in-
put collection parts to create more novel shape variations.

2. Related Work

Our method is related to prior work on data-driven meth-
ods for computing shape correspondences in collections with
large geometric and structural variability, statistical models
of shapes, and deep Boltzmann machines. We review the
most relevant work in these areas. A complete review of
previous research in shape correspondences and segmenta-
tion is out of the scope of this paper. We refer the reader
to recent surveys in shape correspondences [vKZHCO11],
segmentation [TPT15], and structure-aware shape process-
ing [MWZ∗13].

Data-driven shape correspondences. Analyzing shapes
jointly in a collection to extract useful geometric, struc-
tural and semantic relationships often yields significantly
better results than analyzing isolated single shapes or pairs
of shapes, especially for classes of shapes that exhibit large
geometric variability. This has been demonstrated in pre-
vious data-driven methods for computing point-based and
fuzzy correspondences [KLM∗12,HZG∗12,HSG13,HG13].
However, these methods do not leverage the part structure

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



H. Huang & E. Kalogerakis & B. Marlin / Analysis and synthesis of 3D shape familiesvia deep-learned generative models of surfaces

of the input shapes and do not learn a model of surface
variability. As a result, these methods often do not gener-
alize well to collections of shapes with significant struc-
tural diversity. A number of data-driven methods have been
developed to segment shapes and effectively parse their
structure [KHS10, HKG11, SvKK∗11, HFL12, WAvK∗12,
LMS13, XSX∗14, XXLX14]. However, these methods build
correspondences only at a part level, thus cannot be used
to find more fine-grained point or region correspondences
within parts. Some of these methods require several train-
ing labeled segmentations [KHS10, vKZHCO11, XXLX14]
as input, or require users to interactively specify tens to hun-
dreds of constraints [WAvK∗12].

Our work is closer to that of Kim et al. [KLM∗13]. Kim et
al. proposed a method that estimates point-level correspon-
dences, part segmentations, rigid shape alignments, and a
statistical model of shape variability based on template fit-
ting. The templates are made out of boxes that iteratively fit
to segmented parts. Boxes are rather coarse shape represen-
tations and in general, shape parts frequently have drastically
different geometry than boxes. Our method also makes use
of templates to estimate correspondences and segmentations,
however, their geometry and deformations are learned from
scratch. Our produced templates are neither pre-existing
parts nor primitives, but new learned parts equipped with
probabilities over their point-based deformations. Kim et
al.’s statistical model learns shape variability only in terms
of individual box parameters (scale and position) and can-
not be used for shape synthesis. In contrast, our statistical
model encodes both shape structure and actual surface ge-
ometry, thus it can be used to generate shapes. Kim et al.’s
method computes hard correspondences via closest points,
which are less suitable for typical online shape repositories
of inanimate objects. Our method instead infers probabilis-
tic, or fuzzy, correspondences and segmentations via a prob-
abilistic deformation model that combines non-rigid surface
alignment, feature-based matching, as well as a deep-learned
statistical model of surface geometry and shape structure.

Statistical models of 3D shapes. Early works developed
statistical models of shapes in specific domains, such as
faces [BV99], human bodies [ACP03], and poses [ASK∗05].
Yingze et al. [BCLS13] proposed a statistical model of
sparse sets of anchor points by deforming a mean tem-
plate shape using thin-plate spline (TPS) transformations for
shapes, like cars, fruits, and keyboards. Our work can be
seen as a generalization of these previous works to domains
where shapes differ in both their structure and geometry and
where no single template or mean shape can be used.

A number of approaches have tried to model shape variabil-
ity using Principal Component Analysis or Gaussian Pro-
cess Latent Variable models on Signed Distance Function
(SDF) representations of shapes [SDYT11, CKC11, PR11,
DPRR13]. However, the dimensionality of SDF voxel-based
representations is very high, requiring the input shapes to
be discretized at rather coarse voxel grids or use compres-
sion schemes that tend to eliminate surface features of the
output shapes. Various ad-hoc weights are frequently used
to infer coherent SDF values for the output shapes. Other
methods use deformable templates made out of oriented
boxes [OLGM11, KLM∗13, AKZM14], and model shape

variability in terms of the size and position of these boxes.
Xu et al. [XZCOC12] mixes-and-matches parts through set
evolution with part mutations (or deformations) following
the box parametrization approach of [OLGM11] and part
crossovers controlled by user-speficied fitness scores. Fish
et al. [FAvK∗14] and Yumer et al. [YK14] represent shapes
in terms of multiple basic primitives (boxes, planes, cylin-
ders etc) and capture shape variability in terms of primi-
tive sizes, relative orientations, and translations. As a result,
these methods do not capture statistical variability at the ac-
tual surface level and cannot directly be used to generate new
surface point arrangements. Kalogerakis et al. [KCKK12]
proposed a generative model of shape structure and part de-
scriptors (e.g., curvature histograms, shape diameter, silhou-
ette features). However, these descriptors are not invertible
i.e., they cannot be directly mapped back to surface points.
As a result, their model cannot be used to output surface
geometry and was only used for shape synthesis by retriev-
ing and recombining database parts without further modifi-
cations. In constrast to the above approaches, our generative
model jointly analyzes and synthesizes 3D shape families,
outputs both structure and actual surface geometry, as well
as learned class-specific shape descriptors.

Deep Boltzmann Machines. Our statistical model of sur-
face variability follows the structure of a general class of
generative models, known as Deep Boltzmann Machines
(DBMs) in the machine learning literature. DBMs have been
used for speech and image generation [RSMH11, RHSW11,
MDH12, SH12], and can also be combined with discrimi-
native models [KSLLM13] for labeling tasks. In a concur-
rent work, Wu et al. [WSK∗15] proposed DBMs built over
voxel representations of 3D shapes to produce generic shape
descriptors and reconstruct low-resolution shapes from in-
put depth maps. Our model in inspired by prior work on
DBMs to develop a deep generative model of 3D shape sur-
faces. Our model has several differences compared to previ-
ous DBM formulations. Our model aims at capturing con-
tinuous variability of surfaces instead of pixel or voxel in-
teractions. To capture surface variability, we use Beta distri-
butions to model surface point locations instead of Gaussian
or Bernoulli distributions often used in DBMs. In addition,
the connectivity of layers in our model takes into account
the structure of shapes based on their parts. Since shape col-
lections have typically a much smaller size than image or
audio collections, and since the geometry of surfaces tend
to vary smoothly across neighboring points, we use spatial
smoothness priors during training. We found that all these
adaptations were important to generate surface geometry.

3. Overview

Given a 3D model collection representative of a shape fam-
ily, our goal is to compute probabilistic point correspon-
dences and part segmentations of the input shapes (Figure
1, left), as well as learn a generative model of 3D shape
surfaces (Figure 1, right). At the heart of our method lies
a probabilistic deformation model that learns part templates
and uses them to compute fuzzy point correspondences and
segmentations. We now provide an overview of our part tem-
plate learning concept, our probabilistic deformation model,
and our generative surface model.
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Figure 2: Hierarchical part template learning for a collec-
tion of chairs. (a) Learned high-level part templates for all
chairs. (b) Learned part templates per chair type or group
(benches, four-legged chairs, office chairs). (c) Representa-
tive shapes per group and exemplar segmented shapes (in
red box).

Learned part templates. Our method computes probabilis-
tic surface correspondences by learning suitable part tem-
plates from the input collection. As part template, we de-
note a learned arrangement of surface points that can be
optimally deformed towards corresponding parts of the in-
put shapes under a probabilistic deformation model. To ac-
count for structural differences in the shapes of the input
collection, the part templates are learned with a hierarchi-
cal procedure. Our method first clusters the input collection
into groups containing structurally similar shapes, such as
benches, four-legged chairs and office chairs (Figure 2c).
Then a template for each semantic part per cluster is learned
(Figure 2b). Given the learned group-specific part templates,
our method learns higher-level templates for semantic parts
that are common across different groups e.g. seats, backs,
legs, armrests in chairs (Figure 2a). The top-level part tem-
plates allow our method to establish correspondences be-
tween shapes that belong to structurally different groups,
yet share parts under the same label. If parts are unique to
a group (e.g., office chair bases), we simply transfer them to
the top level and do not establish correspondences to incom-
patible parts with different label coming from other clusters.

Probabilistic deformation model. At the heart of our algo-
rithm lies a probabilistic deformation model (Section 4). The
model evaluates the probability of deformations applied on
the part templates under different corresponding point and
part assignments over the input shape surfaces. By perform-
ing probabilistic inference on this model, our method itera-
tively computes the most likely deformation of the part tem-
plates to match the input shape parts (Figure 3). At each it-
eration, our method deforms the part templates, and updates
probabilities of point and part assignments over the input
shape surfaces. The updated probabilistic point and part as-
signments iteratively guides the deformation and vice versa
until convergence.

Generative surface model. Based on the estimated proba-
bility distributions over corresponding point and part assign-
ments on all the input shapes of the collection, our method
learns a probabilistic model characterizing the structural and
surface variability within a shape family (Section 5). The

surface variability is encoded in the model through a joint
probability distribution that captures relationships between
parts and surface point locations within the shape family.
For example, consider airplanes. The position of wingtips
is strongly related to the positions of other points on the
same wing (i.e., the overall wing geometry), as well as the
part arrangement and surface geometry of the whole air-
plane. These complex relationships of points and parts in
the shapes of a family are hierarchically captured through
latent variables. The model contains a layer of latent vari-
ables whose assignments are associated with arrangements
of surface points within the same part. Higher-level layers of
latent variables progressively capture relationships between
surface points belonging to different shape parts. The la-
tent variables also capture dominant modes of surface point
arrangements corresponding to structurally different shape
groups. By sampling the latent variables on the top layer, our
model can generate parts and surface points that are used to
synthesize new shapes. The top layer also produces shape
descriptors that can be used for fine-grained classification.
Through the captured relationships between point locations,
the model can be used to further improve correspondences
in the shapes of the collection.

Pre-processing. Our method requires the following pre-
processing, or initialization: first, we rely on the rigid align-
ments provided by Kim et al. [KLM∗13] to consistently ori-
ent the input shapes of each collection. Practically, we found
that our surface variability model can tolerate incorrectly
aligned shapes in the collections (e.g. about 5% of the input
shapes were not aligned correctly in the dataset it was trained
on). Second, our method requires as input a labeled segmen-
tation for at least one shape per group (Figure 2c, red boxes).
The segmentation can be provided by either the user, or an
automatic co-segmentation technique. In the case of manual
input, to facilitate the user, our method automatically clus-
ters the shapes into groups and selects an exemplar shape per
group. The user is asked to segment these exemplar shapes.
In the case of co-segmented input, we use the segmentations
provided by Kim et al. [KLM∗13]. We note that the pro-
vided segmentations are used for initialization only: given
initial segments, our methods learns the part templates and
improves the shape segmentations.

4. Probabilistic deformation model

Our method takes as input a collection of shapes, and outputs
groups of structurally similar shapes together with learned
part templates per group (Figure 2). Given the group-specific
part templates, our method also outputs high-level part tem-
plates for the whole collection. A probabilistic model is
used to infer the part templates. The model evaluates the
joint probability of hypothesized part templates, deforma-
tions of these templates towards the input shapes, as well as
shape correspondences and segmentations. The probabilistic
model is defined over the following set of random variables:

Part templates Y = {Yk} where Yk ∈ R3 denotes the 3D
position of a point k on a latent part template. There are
total K such variables, where K is the number of points on
all part templates. The number of points per part template
is determined from the provided exemplar shape parts.
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Figure 3: Given learned part templates for four-legged
chairs, our method iteratively deforms them towards an in-
put shape through probabilistic inference. At each itera-
tion, probability distributions over deformations, point cor-
respondences and segmentations are inferred according to
our probabilistic model (probabilistic correspondences are
shown only for the points appearing as blue spheres on the
learned part templates).

Deformations D = {Dt,k} where Dt,k ∈ R3 represents the
position of a point k on a part template as it deforms to-
wards the shape t. Given T input shapes and K total points
across all part templates, there are K ·T such variables.

Point correspondences U = {Ut,p} where Ut,p ∈
{1,2, ...,K} represents the “fuzzy” correspondence
of the surface point p on an input shape t with points
on the part templates. In our implementation, each input
shape is uniformly sampled with 5000 points, thus there
are total 5000 ·T such random variables.

Surface segmentation S = {St,p} where St,p ∈ {1, ...,L}
represents the part label for a surface point p on an in-
put shape t. L is the number of available part templates,
corresponding to the total number of semantic part labels.
There are also 5000 ·T surface segmentation variables.

Input surface points Xt = {Xt,p} where Xt,p ∈ R3 repre-
sents the 3D position of a surface sample point p on an
input shape t.

Our deformation model is defined through a set of factors,
each representing the degree of compatibility of different as-
signments to the random variables it involves. The factors
control the deformation of the part templates, the smooth-
ness of these deformations, the fuzzy point correspondences
between each part template and input shape, and the shape
segmentations. The factors are designed out of intuition and
experimentation. We now explain the factors used in our
model in detail.

Unary deformation factor. We first define a factor that as-
sesses the consistency of deformations of individual surface
points on the part templates with an input shape. Given an
input shape t represented by its sampled surface points Xt ,
the factor is defined as follows:

φ1(Dt,k,Xt,p,Ut,p = k) =

exp
{
− .5(Dt,k−Xt,p)

T
Σ
−1
1 (Dt,k−Xt,p)

}
where the parameter Σ1 is a diagonal covariance matrix es-
timated automatically, as we explain below. The factor en-

courages deformations of points on the part templates to-
wards the input shape points that are closest to them.

Deformation smoothness factor. This factor encourages
smoothness in the deformations of the part templates. Given
a pair of neighboring surface points k,k′ on an input tem-
plate, the factor is defined as follows:

φ2(Dt,k,Dt,k′ ,Yk,Yk′) =

exp
{
− .5((Dt,k−Dt,k′)− (Yk−Yk′))

T
Σ
−1
2

((Dt,k−Dt,k′)− (Yk−Yk′))

}
The factor favors locations of deformed points relative to
their deformed neighbors that are closer to the ones on the
(undeformed) part templates. The covariance matrix Σ2 is
diagonal and is also estimated automatically. In our imple-
mentation, we use the 20 nearest neighbors of each point k
to define its neighborhood.

Correspondence factor. This factor evaluates the compati-
bility of a point on a part template with an input surface point
by comparing their geometric descriptors:

φ3(Ut,p = k,Xt) = exp
{
− .5(fk− ft,p)

T
Σ
−1
3 (fk− ft,p)

}
where fk and ft,p are geometric descriptors evaluated on
the points of the part template and the input surface Xt
respectively, Σ3 is a diagonal covariance matrix. Our de-
scriptor includes geometric information from shape diam-
eter [SSCO08] (under three different normalizing parame-
ters α = 1,2,4), average geodesic distance [HSKK01], and
PCA [KLM∗13], forming a 10− dimensional vector.

Segmentation factor. This factor assesses the consistency of
each part label with an individual surface point on an input
shape. The part label depends on the fuzzy correspondences
of the point with each part template:

φ4(St,p = l,Ut,p = k) =
{

1, if label(k) = l
ε, if label(k) 6= l

where label(k) represents the label of the part template with
the point k. The constant ε is used to avoid numerical insta-
bilities during inference, and is set to 10−3 in our implemen-
tation.

Segmentation smoothness. This factor assesses the consis-
tency of a pair of neighboring surface points on an input
shape with part labels:

φ5(St,p = l,St,p′ = l′,Xt) =

{
1−Φt,p,p′ , if l 6= l′

Φt,p,p′ , if l = l′

where p′ is a neighboring surface point to p and:

Φt,p,p′ = exp
{
− .5(ft,p− ft,p′)

T
Σ
−1
5 (ft,p− ft,p′)

}
To define the neighborhood for each point p, we first seg-
ment the input shape into convex patches based on the ap-
proximate convex segmentation algorithm [AGCO13]. Then
we find the 20 nearest neighbors from the patch the point
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p belongs to. The use of information from convex patches
helped our method compute smoother boundaries between
different parts of the input shapes.

Deformation model. Our model is defined as a Conditional
Random Field (CRF) [KF09] multiplying all the above fac-
tors together and normalizing the result to express a joint
probability distribution over the above random variables.

Pcr f (Y,U,S,D|X) =
1

Z(X) ∏
t

[
∏
k,p

φ1(Dt,k,Xt,p,Ut,p)

·∏
k,k′

φ2(Dt,k,Dt,k′ ,Yk,Yk′) ·∏
p

φ3(Ut,p,Xt)

·∏
p

φ4(St,p,Ut,p) ·∏
p,p′

φ5(St,p,St,p′ ,Xt)

]
(1)

Mean-field inference. Using the above model, our method
infers probability distributions for part templates and de-
formations, as well as shape segmentations and correspon-
dences. To perform inference, we rely on the mean-field ap-
proximation theory due to its efficiency and guaranteed con-
vergence properties. We approximate the original probabil-
ity distribution Pcr f with another simpler distribution Q such
that the KL-divergence between these two distributions is
minimized:

Pcr f (Y,U,S,D|X)≈ Q(Y,U,S,D|X)

where the approximating distribution Q is a product of indi-
vidual distributions associated with each variable:

Q(Y,U,S,D|X) =

∏
k

Q(Yk)∏
t,k

Q(Dt,k)∏
t,p

Q(Ut,p)∏
t,p

Q(St,p)

For continuous variables, we use Gaussians as approximat-
ing individual distributions, while for discrete variables, we
use categorical distributions. We provide all the mean-field
update derivations for each of the variables in the supple-
mentary material. Learning the part templates entails com-
puting the expectations of part template variables Yk with
respect to their approximating distribution Q(Yk). For each
part template point Yk, the mean-field update is given by:

Q(Yk)∝ exp
{
− .5(Yk−µk)

T
Σ
−1
2 (Yk−µk)

}
where:

µk =
1

|N (k)|∑k′
(
EQ[Yk′ ]+

1
T ∑

t
(EQ[Dt,k]−EQ[Dt,k′ ])

)
andN (k) includes all neighboring points k′ of point k on the
part template. As seen in the above equation, to compute the
mean-field updates, we need to compute expectations over
deformations of part templates. However, to compute these
expectations, we require an initialization for the part tem-
plates, as described next.

Clustering. The first step of our method is to cluster the
input shapes into groups of structurally similar shapes. For

this purpose, we define a dissimilarity measure between two
shapes based on our unary deformation factor. We measure
the amount of deformation required to map the points of
one shape towards the corresponding points of the other
shape in terms of their Euclidean distance, and vice versa.
For small datasets (with less than 100 shapes), we compute
the dissimilarities between all-pairs of shapes, then use the
affinity propagation clustering algorithm [FD07]. The affin-
ity propagation algorithm takes as input dissimilarities be-
tween all pairs of shapes, and outputs a set of clusters to-
gether with a set of representative, or exemplar, shape per
cluster. We note that another possibility would be to use
all the factors of the model to define a dissimilarity mea-
sure, however, this proved to be computationally too expen-
sive. For larger datasets, we compute a graph over the input
shapes, where each node represents a shape, and edges con-
nect shapes which are similar according to a shape descrip-
tor [KLM∗12]. We compute distances for pairs of shapes
connected with an edge, then embed the shapes with the
Isomap technique [TSL00] in a 20-dimensional space. We
use the distances in the embedded space as dissimilarity met-
ric for affinity propagation.

As mentioned above, affinity propagation also identifies a
representative, or exemplar, shape per cluster. In the case
of manual initialization of our method, we ask the user
to segment each identified exemplar shape per group, or
let him select a different exemplar shape if desired. In the
case of non-manual segmentation initialization, we rely on
a co-segmentation technique to get an initial segmentation
of each exemplar shape. In our implementation we use the
co-segmentation results provided by Kim et al. [KLM∗13].
Even if the initial segmentation of the exemplar shapes is ap-
proximate, our method updates and improves the segmenta-
tions for all shapes in the collection based on our probabilis-
tic deformation model, as demonstrated in the results. To en-
sure that the identified exemplar shape has all (or most) rep-
resentative parts per cluster in the case of automatic initial-
ization, we modify the clustering algorithm to force it to se-
lect an exemplar from the shapes with the largest number of
parts per cluster based on the initial shape co-segmentations.
Figure 2 shows the detected clusters for a small chair dataset
and user-specified shape segmentations for each exemplar
shape per cluster.

Inference procedure and parameter learning. Given the
clusters and initially provided parts for exemplar shapes, the
mean-field procedure follows the Algorithm 1. At line 1, we
initialize the approximating distributions for the part tem-
plates according to a Gaussian centered at the position of
the surface points on the provided exemplar parts. We then
initialize the deformed versions of the part templates using
the provided exemplar parts after aligning them with each
exemplar shape (lines 2-5). Alignment is done by finding
the least-squares affine transformation that maps the exem-
plar shapes with the shapes of their group. The affine trans-
formation is used to account for anisotropic scale differ-
ences between shapes in each group. We initialize the ap-
proximating distributions for correspondences and segmen-
tations with uniform distributions (lines 6-9). Then we start
an outer loop (line 10) during which we update the covari-
ance matrices (line 11) and execute an inner loop for updat-
ing the approximating distributions for segmentations, corre-
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spondences and deformations for each input shape (lines 12-
24). The covariance matrices are computed through piece-
wise training [SM05] on each factor separately using max-
imum likelihood. We provide the parameter updates in the
supplementary material. Finally, we update the distributions
on part templates (line 25). The outer loop for updating the
part templates and parameters requires 5− 10 iterations to
reach convergence in our datasets. Convergence is checked
based on how much the inferred point position on the part
template deviate on average from the ones of the previous
iteration. For the inner loop, we practically found that run-
ning more mean-field iterations (10 in our experiments) for
updating the deformations helps the algorithm converge to
better segmentations and correspondences. During the infer-
ence procedure, our method can infer negligible probability
(below 10−3) for one or more part labels for all points on an
input shape. This happens when an input shape has parts that
are subset of the ones existing in its group. In this case, the
part templates missing from that shape are deactivated e.g.,
Figure 3 demonstrates this case where the input shape does
not have armrests.

High-level part template learning. Learning the part tem-
plates at the top level of hierarchy follows the same algo-
rithm as above with different input. Instead of the shapes in
the collection, the algorithm here takes as input the learned
part templates per group. For initialization, we try each part
from the lower level to initialize each higher-level part tem-
plate per label, and select the one with highest probability
according to our model (Equation 1). The part templates,
deformations and correspondences are updated according to
Algorithm 1. For this step, we omit the updates for segmen-
tations, since the algorithm works with individual parts. We
note that it is straightforward to extend our method to han-
dle more hierarchy levels of part templates (e.g., splitting the
clusters into sub-clusters also leading to the use of more ex-
emplars per shape type, or group) by applying the same algo-
rithm hierarchically and using a hierarchical version of affin-
ity propagation [GCF11]. Experimentally, we did not see any
significant benefit from using multiple exemplars per group
at least in the datasets we used.

5. Generative surface model

We now describe a generative probabilistic model whose
goal is to characterize surface variability within a shape
family. This model is built on the probabilistic shape cor-
respondences and segmentations estimated with the tech-
nique described in the previous section. Learning a model
that characterizes surface variability poses significant chal-
lenges. First, even if we consider individual corresponding
surface points, there is no simple probability distribution that
can model the variability in their position. For example, Fig-
ure 4 shows the distributions over coordinates of character-
istic feature points across the shapes of four-legged chairs.
The coordinates are expressed in an object-centered coordi-
nate system whose origin is located on the chairs’ center of
mass. We observe that (a) the distributions are not unimodal
(Figure 4, left and middle), (b) the modes usually correspond
to different types of chairs, such as benches or single-person
chairs, and similar modes appear for different feature points
(Figure 4, left and middle), (c) even if the distributions ap-

input : Input collection and initially segmented parts of
exemplar shapes

output: Learned part templates, shape correspondences and
segmentations

1: Initialize EQ[Yk] from the position of the exemplar shape
part points;

2: for each shape t← 1 to T do
3: for each part template point k← 1 to K do
4: Initialize EQ[Dt,k] from the aligned part templates

with the shape t;
5: end
6: for each surface point p← 1 to P do
7: Initialize Q(Ut,p) and Q(St,p) to uniform

distributions;
8: end
9: end
10: repeat
11: Update covariance matrices Σ1,Σ2,Σ3,Σ5;
12: repeat
13: for each shape t← 1 to T do
14: for each surface point p← 1 to P do
15: update correspondences Q(Ut,p);
16: update segmentations Q(St,p);
17: end
18: for iteration← 1 to 10 do
19: for each part template point k← 1 to K do
20: update deformations Q(Dt,k);
21: end
22: end
23: end
24: until convergence;
25: update part templates Q(Y);
26: until convergence;

Algorithm 1: Mean-field inference procedure.

pear to be unimodal, they might not be captured with com-
monly used symmetric distributions, such as Gaussians (red
curves). For example, a Gaussian distribution would assign
noticeable probability density for unrealistic chairs whose
back would be aligned with the center of mass, or is in front
of it (with respect to the frontal viewpoint used to display
the chairs in the above figure). Furthermore, there are im-
portant correlations in the positions of different correspond-
ing points that would need to be captured by the genera-
tive model: for example, benches are usually associated with
wide seats, short backs, and legs placed on the seat corners.
Another complication is that shapes vary in structure: for ex-
ample, some chairs have armrests, while some others do not.
The existence of parts depends on the overall type of chairs.
Thus, a generative model needs to capture such structural re-
lationships between parts, as well as capture the dependen-
cies of point positions conditioned on the existence of these
parts in the input shapes. Finally, even if our 3D shapes are
parameterized with a relatively moderate number of consis-
tently localized points (about 5000 points), the dimension-
ality of our input data is still very large (15000), which also
needs to be handled by the learning procedure of our genera-
tive model. Following the literature in deep learning, the key
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Figure 4: Examples of feature point coordinate histograms for chairs and fitted distributions. The fitted Beta distributions are
bounded by the minimum and maximum values of the coordinates and fit the underlying probability density more accurately.

idea is to design the generative model such that it capture in-
teractions in the surface data hierarchically through multiple
layers of latent variables. We experimented with different
numbers of hidden layers, and discuss performance differ-
ences in Section 6. Our surface variability model is defined
over the following set of random variables:

Surface point positions D = {Dk} where Dk ∈ R3 repre-
sents the position of a consistently localized point k on
an input shape expressed in object-centered coordinates.
During the training of our model, these random variables
are observed by using the inference procedure of the pre-
vious section i.e., they are given by the part template de-
formations per input shape. We note that we drop the
shape index t since this variable is common across all
shapes for our generative model.

Surface point existences E = {Ek} where Ek ∈ {0,1} rep-
resents whether a point k exists on an input shape. These
variables are also observed during training the model of
surface variability. They are determined by the inference
procedure of the previous section based on which part
templates were active or inactive per input shape.

Latent variables for geometry H = {H(1)
m ,H(2)

n ,H(3)
o } en-

code relationships of surface point location coordinates at
different hierarchical levels. The super-script is an index
for the different hidden layers in our model.

Latent variables for structure G = {Gr} encode struc-
tural relationships of parts existence in shapes.

Model structure. The generative model is defined through
factors that express the interaction degree between the above
variables. The choice of the factors was motivated by exper-
imentation and empirical observations. We start our discus-
sion with the factors involving the observed surface point
position variables. Given that these are continuously values
variables, one way to model the distribution over point po-
sitions would be to use Gaussian distributions. However, as
shown in Figure 4, a Gaussian may incorrectly capture the
variability even for a single surface point position. Instead,
we use Beta distributions that bound the range of values for
a variable, and whose density function is more flexible. The
Beta distribution over a single coordinate of an individual
point location is defined as follows:

P(Dk,τ) =
1
B

Da−1
k,τ · (1−Dk,τ)

b−1

where the index τ = 1,2,3 refers to the x-,y-, or z-coordinate
of the point respectively, B is a normalization factor, a, b are
positive-valued parameters that control the shape of the dis-
tribution. The distribution is defined over the interval [0,1],

thus in our implementation we normalize all the observed
coordinate values within this range. As discussed above, us-
ing a single distribution to capture the statistical variability
of a point location is still inadequate since the point locations
on a surface are not independent of each other. As shown
in Figure 4, the locations are multi-modal and modes are
shared, thus we use latent variables to capture these com-
mon modes. Putting these empirical observations together,
the interaction between point locations and latent variables
can be modeled as follows:

φ(D,H(1)) =

∏
k,τ

Dak,τ,0−1
k,τ · (1−Dk,τ)

bk,τ,0−1

·∏
k,τ

∏
m∈Nk

Dak,τ,mH(1)
m

k,τ · (1−Dk,τ)
bk,τ,mH(1)

m

·∏
k,τ

∏
m∈Nk

Dck,τ,m(1−H(1)
m )

k,τ · (1−Dk,τ)
dk,τ,m(1−H(1)

m )

where ak,τ,m,bk,τ,m,ck,τ,m,dk,τ,m are positive weights ex-
pressing how strong is the interaction between each la-
tent variable m with point k, ak,τ,0,bk,τ,0 are positive bias
weights, Nk denotes the subset of latent random variables
of the first layer connected to the variable Dk. To decrease
the number of parameters and enforce some sparsity in the
model, we split the latent variables in the first layer into
groups, where each group corresponds to a semantic part.
We model the interaction between each point position with
the first hidden layer variables that correspond to the seman-
tic part it belongs to (see also Figure 5 for a graphical repre-
sentation of our model). In this manner, each latent variable
of the first layer can be thought of as performing a spatially
sensitive convolution on the input points per part (see also
supplementary material for the inference equations indicat-
ing this convolution).

As shown in Figure 4, each group of shapes has its own
distinctive parts e.g., benches are associated with wide and
short backs. The latent variables of the second layer medi-
ate the inter-dependencies of the part-level latent variables
of the first layer. The choice of factors for those interactions
are based on sigmoid functions that “activate” part-level ge-
ometry modes given certain global shape variability modes:

φ(H(1),H(2)) = exp
{

∑
m

wm,0H(1)
m +∑

m,n
wm,nH(1)

m H(2)
n

+∑
n

wn,0H(2)
n

}
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Figure 5: Graphical representation of the surface variability
model based on our airplane dataset.

where the parameters wm,n control the amount of interaction
between the latent variables of the first and second layer,
wm,0, wn,0 are bias weights. Given the above factor, it can be
seen that each latent variable is activated through sigmoid
functions:

P(H(1)
m = 1|H(2)) = σ(wm,0 +∑

n
wm,nH(2)

n )

P(H(2)
n = 1|H(1)) = σ(wn,0 +∑

m
wm,nH(1)

m )

where σ(x) = 1/(1+exp(−x)) represents the sigmoid func-
tion.

We model the interactions of the latent variables of the sub-
sequent hidden layers in the same manner. By multiplying
all of the above factors, we combine them into a single prob-
ability distribution, which has the form of a deep Boltzmann
machine [SH12]. By taking into account that some factors
must be deactivated when parts are non-existing in shapes
(i.e., when the existence variables for their points are 0), our
final probability distribution has the following form:

Pbsm(D,H,G,E) = 1
Z

exp
{

∑
k,τ
(ak,τ,0−1) ln(Dk,τ)Ek +∑

k,τ
(bk,τ,0−1) ln(1−Dk,τ)Ek

+ ∑
k,τ,m∈Nk

ak,τ,m ln(Dk,τ)H
(1)
m Ek

+ ∑
k,τ,m∈Nk

bk,τ,m ln(1−Dk,τ)H
(1)
m Ek

+ ∑
k,τ,m∈Nk

ck,τ,m ln(Dk,τ)(1−H(1)
m )Ek

+ ∑
k,τ,m∈Nk

dk,τ,m ln(1−Dk,τ)(1−H(1)
m )Ek

+∑
m

wm,0H(1)
m +∑

m,n
wm,nH(1)

m H(2)
n +∑

n
wn,0H(2)

n

+∑
n,o

wn,oH(2)
n H(3)

o +∑
o

wo,0H(3)
o

+∑
k

wk,0Ek +∑
k,r

wk,rEkGr +∑
r

wr,0Gr

}
(2)

where Z is a normalization constant. In the following para-
graphs, we refer to this model as Beta Shape Machine (BSM)
due to the use of Beta distributions to model surface data.

Figure 6: Samples generated from the BSM for airplanes
and chairs. The generated shapes are implicitly segmented
into labeled parts since each point is colored according to
the label of the part template it originated from.

Parameter learning. Learning the parameters of the BSM
model poses a number of challenges. Exact maximum like-
lihood estimation of the parameters is intractable in Deep
Boltzmann machines, thus we resort to an approximate
learning scheme, called contrastive divergence [KF09]. Con-
trastive divergence aims at maximizing the probability gap
between the surface data of the input shapes and samples
randomly generated by our model. The intuition is that by
increasing the probability of the observed data relative to the
probability of random samples, the parameters are tuned to
model the input data better. The objective function of con-
trastive divergence is defined as follows:

LCD =
1
T ∑

t
[ln P̃bsm(ξt)− ln P̃bsm(ξ

′
t)]

where T is the number of training examples, P̃bsm is given by
Equation 2 without the normalization factor Z (known as un-
normalized measure), ξt is an assignment to the variables of
the model given an input shape t and ξ

′
t is an assignment to

the variables according to a sample perturbed from the same
input shape t. The assignments to the variables Ek and Dk per
input shape t are set by checking if the part template exists in
the input shape and finding the closest surface point to each
point k on the deformed part templates for it respectively.
The assignments for the latent variables are computed by
performing mean-field inference and using the expectations
of their approximating distributions, following Salakhutdi-
nov et al. [SH12] (see supplementary material for more de-
tails). The perturbed sample is generated by inferring the ap-
proximating probability distribution of the top-layer binary
variables given an input shape, then sampling these binary
variables according to their distribution, and finally comput-
ing the expectations of the approximating distributions of all
the other variables in the model given the sampled values of
the top layer.

An additional complication in parameter learning is that
even for collections whose shapes are parameterized with
a relatively moderate number of points and even with the
sparsity in the connections between the observed variables
and the first hidden layer, the number of parameters ranges
from 5 to 10 million. Yet the available organized 3D shape
collections are limited in size e.g., the corrections we used
contain only a few thousand shapes. A key idea in our learn-
ing approach is to use strong spatial priors that favor simi-
lar weights on the variables representing point positions that
are spatially close to each other on average across the input
shapes of our collections. To favor spatial smoothness in the
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Figure 7: Certain latent variables in our learned model have
meaningful interpretations. For example, given the leftmost
delta-shaped wing arrangement, certain hidden variables
of the first layer are activated (i.e., activation probability
based on mean-field inference becomes approximately one),
while given the rightmost straight wing arrangement, the
same variables are deactivated. Similarly, other first layer
variables are activated and deactivated for triangular and
straight tailplanes respectively. The model also learns that
there is a potential statistical correlation between straight
wings and tailplanes through variables of the second layer.
Initializing the synthesis procedure with interpolated proba-
bilities (e.g., 50%) of these variables generate plausible in-
termediate configurations of wings and tailplanes (middle).

learned parameters, we change the above objective function
with the following spatial priors and L1 norm regularization
terms. The L1 norm was desired to eliminate weak hidden
node associations causing higher noise when sampling the
model and also prevent model overfitting. The new objective
function is defined as follows:

LCD,spatial =
1
T ∑

t
[ln P̃bsm(ξt)− ln P̃bsm(ξ

′
t)]

−λ1 ∑
k,τ,k′∈Nk ,m

|ak,τ,m−ak′,τ,m|−λ2 ∑
k,τ,m
|ak,τ,m|

−λ1 ∑
k,τ,k′∈Nk ,m

|bk,τ,m−bk′,τ,m|−λ2 ∑
k,τ,m
|bk,τ,m|

−λ1 ∑
k,τ,k′∈Nk ,m

|ck,τ,m− ck′,τ,m|−λ2 ∑
k,τ,m
|ck,τ,m|

−λ1 ∑
k,τ,k′∈Nk ,m

|dk,τ,m−dk′,τ,m|−λ2 ∑
k,τ,m
|dk,τ,m|

−λ1 ∑
k,r,k′∈Nk

|wk,r−wk′,r|

−λ2(∑
m,n
|wm,n|−∑

n,o
|wn,o|−∑

k,r
|wk,r|)

where λ1,λ2 are regularization parameters, set to 10−3 and
10−4 respectively in our experiments, N (k) here denotes
all the variables representing point positions whose aver-
age distance to point k is less than 10% of the largest dis-
tance between a pair of points across all shapes. We per-
form projected gradient ascent to maximize the above ob-
jective function under the constraint that the parameters
ak,m,bk,m,ck,m,dk,m are all positive. The same parameters
are initialized to random positive numbers according to a
uniform distribution on [10−7,10−3], while the rest of the
weights are initialized according to a normal distribution
with mean 0 and variance 0.1.

To avoid local minima during learning, we perform pre-
training [SH12]: we first separately train the parameters be-
tween the surface points layer and the first hidden layer, then
the parameters of the first and second hidden layer, and so
on. Then in the end, our method jointly learns the parame-
ters of the model across all layers. To train our model with
contrastive divergence, we also found that it was necessary
to apply our training procedure separately on the part of the
model involving the interaction parameters between the ex-
istence variables Ek and the latent variables G, then the pa-
rameters involved in the rest of the model are learned condi-
tioned on the existence variables Ek [Mar08]. Otherwise, the
parameters of the model were abruptly diverging due to the
three-way interaction of the existence variables, point posi-
tion variables and the first-layer latent variables. For more
details regarding learning and parameter update equations,
we refer the reader to the supplementary material and pro-
vided source code. Figure 7 demonstrates a characteristic ex-
ample of the information captured in latent variables of our
model after learning. In the results section, we discuss fine-
grained classification experiments indicating the relationship
of the uppermost layer variables with high-level shape at-
tributes, e.g., shape types.

Number of latent variables. A significant factor in the de-
sign of the model is the number of latent variables G and H.
Using too few latent variables in the model results in missing
important correlations in the data and causing large recon-
struction errors during training. Using too many latent vari-
ables causes longer training times, and results in capturing
redundant correlations. We practically experimented with
various numbers of latent variables per layer, and checked
performance differences in terms of correspondence accu-
racy (see joint shape analysis and synthesis paragraph). The
best performance was achieved by selecting the number of
latent variables of the first layer to be 1/10th of the total
number of the point position variables D per part. The num-
ber of latent variables in the second layer was 1/5th of the
number of latent variables in the first layer, and the number
of latent variables in the third layer H(3) was 1/2.5th the
number of latent variables in the second layer. The number
of latent variables G was set equal to the total number of
latent variables H(1).

Shape synthesis. To perform shape synthesis with the gen-
erative model, we first sample the binary variables of the
top hidden layer, then we alternate twice between top-down
and bottom-up mean-field inference in the model. We then
compute the expectations of the surface point existences and
location variables based on their inferred distributions. The
result is a point cloud representing the surface of a new
shape. Figure 6 shows representative sampled point clouds.
The point clouds consists of 5000 points. Due to the ap-
proximate nature of learning and inference on our model,
the samples do not lie necessarily on a perfect surface. Due
to their low number, we cannot apply a direct surface re-
construction technique. Instead, we find parts in the training
shapes whose corresponding points are closest to the sam-
pled point positions based on their average Euclidean dis-
tances. Then we apply the embedded deformation method
[SSP07] to preserve the local surface detail of the used mesh
parts, and deform them smoothly and conservatively towards
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Figure 8: Synthesis of new shapes (left) based on the Beta
Shape Machine samples (green box) and embedded defor-
mation on input shape parts (right).

the sampled points. A deformation graph of 100 nodes is
constructed per part, and nodes are deformed according to
the nearest sampled points. We use the following parameters
found in [SSP07]: wrot = 3, wreg = 15, wcon = 120 and set
the deformation node neighborhood size equal to 20. Fig-
ure 8 shows synthesized shapes based on the sampled point
clouds and the closest training shape parts (in blue). As it
can been, the model learns important constraints for gener-
ating plausible shapes, such as symmetries and functional
part arrangements.

Joint shape analysis and synthesis. The BSM model can
be used as a surface prior to improve shape correspondence.
To do this, we combine the deformation model of the pre-
vious section and the BSM generative model into a single
joint probability distribution, and find the most likely joint
assignment to all variables:

maximize Pcr f (Y,U,S,D|X) ·Pbsm(D,H,G,E)

The most likely joint assignment to the above variables is
found again with mean-field inference. First, we apply the
Algorithm 1 to compute initial correspondences and seg-
mentations, and train the BSM model based on the esti-
mated correspondences and segmentations. Then we per-
form mean-field inference on the joint model to compute the
most likely assignments to all variables based on their in-
ferred approximating distribution modes, yielding improved
point correspondences. We alternate between training the
BSM model and mean-field inference 3 times in our exper-
iments, after which we did not notice any considerable im-
provement.

6. Results

We now describe the experimental validation of our method
for computing semantic point correspondences, shape seg-
mentation, fine-grained classification, and synthesis.

Correspondence accuracy. We evaluated the performance
of our method on the recent benchmark provided by Kim

et al. [KLM∗13]. We refer to it as BHCP benchmark. The
benchmark provides positions of ground-truth points in a
collection of 404 shapes from Trimble Warehouse includ-
ing bikes, helicopters, chairs and airplanes. We compared
our algorithm with previous methods whose authors made
their results publically available or agreed to share results
with us on the same benchmark: Figure 9a demonstrates the
performance of our method, the box template fitting method
by Kim et al. [KLM∗13], the local non-rigid registration
method by Huang et al. [HSG13], and the functional map
network method also by Huang et al [HWG14]. We report
the performance of Huang et al.’s method [HSG13] based
on the originally published results as well as the latest up-
dated results kindly provided by the authors. Following Kim
et al.’s protocol, we measure the Euclidean distance error be-
tween each provided ground-truth point position and its cor-
responding point position predicted by the competing meth-
ods averaged over all the pairs of shapes in the benchmark.
The y-axis demonstrates the fraction of correspondences
predicted correctly below a given Euclidean error threshold
shown on the x-axis. We stress that all methods are com-
pared using the same protocol evaluated over all the pairs of
the shapes contained in the benchmark, as also done in pre-
vious work. The performance of our algorithm is reported
using the BSM surface prior together with the CRF defor-
mation model. Our part templates were initialized based on
the co-segmentations provided by Kim et al. (no manual seg-
mentations were used). Our surface prior was learned in a
subset of the large datasets used in Kim et al. (1509 air-
planes, 408 bikes, 3701 chairs, 406 helicopters). We did not
use their whole dataset because we excluded shapes whose
provided template fitting error according to their method
was above the median error value for airplanes and chairs,
and above the 90th percentile for bikes and chairs indicating
possible wrong rigid alignment. A few tens of models could
also not be downloaded based on the provided original web
links. To ensure a fair comparison, we updated the perfor-
mance of Kim et al. by learning the template parameters in
the same subset as ours. Their method had slightly better
performance compared to using the original dataset (0.95%
larger fraction of correspondences predicted correctly at dis-
tance 0.05). Huang et al.’s reported experiments and results
do not make use of the large datasets, but are based on pair-
wise alignments and networks within the ground-truth sets
of the shapes in the benchmark. Figure 9a indicates that our
method outperforms the other algorithms. In particular, we
note that even if we initialized our method with Kim et al.’s
segmentations, the final output of our method is significantly
better: 18.2% more correct predictions at 0.05 distance than
Kim et al.’s method.

We provide images of the corresponding feature points and
labeled segmentations for the shapes of our large datasets in
the supplementary material as well as Figures 1 (left) and
10 (left). All these results were produced by initializing our
method with the co-segmentations provided by Kim et al.
(no manual shape segmentation was used). We also provide
correspondence accuracy plots for each category separately
in the supplementary material.

Alternative formulations. We now evaluate the perfor-
mance of our method compared to alternative formulations.
First, we show the performance of our method in the case

c© 2015 The Author(s)
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Figure 9: Correspondence accuracy of our method in Kim et al.’s benchmark versus (a) previous approaches, (b) using box
templates and skipping the BSM surface prior, (c) skipping factors from the CRF deformation model, (d) versus alternative
Deep Boltzmann Machine formulations.

it does not learn part templates, but instead uses the same
mean-field deformation procedure on the box templates pro-
vided by Kim et al. In other words, we deform boxes instead
of learned parts. Figure 9b shows that the correspondence ac-
curacy is significantly better with the learned part templates.
In the same plot, we show the performance of the two ver-
sions of our method with and without the BSM surface prior.
We note that using the BSM prior improves correspondence
accuracy either in the case of box or learned part templates.

We also evaluate the performance of our method by testing
the contribution of the different factors used in the CRF de-
formation model. Figure 9c shows the correspondence ac-
curacy in the same benchmark by using all factors in our
model (top curve), without using the unary deformation, de-
formation smoothness, correspondence or segmentation fac-
tors. For all these alternative models, we do not include the
BSM prior to factor out its influence. As shown in the plot,
all factors contribute to the improvement of the performance.
In particular, skipping the deformation or segmentation parts
of the model cause a noticeable performance drop.

Finally, we evaluate the performance of our method by using
different formulations of the surface prior. Figure 9d demon-
strates the correspondence accuracy of our three-layer BSM
model (original model), versus a two-layer and a single-
layer BSM model. In addition, we include a comparison
with a Deep Boltzmann Machine that uses Gaussian instead
of Beta distributions (Gaussian-Bernoulli DBM) using three
layers and the same training procedure. Our three-layer BSM
model provides the best performance. Using more layers did
not yield any significant improvement based on our datasets.

Category Num. Kim et al. Our Num.
(Dataset) shapes (our init.) method groups

Bikes (BHCP) 100 76.8 82.3 2
Chairs (BHCP) 100 81.2 86.8 2

Helicopters (BHCP) 100 80.1 87.4 1
Planes (BHCP) 104 85.8 89.6 2

Lamps (COSEG) 20 95.2 96.5 1
Chairs (COSEG) 20 96.7 98.5 1
Vase (COSEG) 28 81.3 83.3 2

Quadrupeds (COSEG) 20 86.9 87.9 3
Guitars (COSEG) 44 88.5 89.2 1
Goblets (COSEG) 12 97.6 98.2 1

Candelabra (COSEG) 20 82.4 87.8 3
Large Chairs (COSEG) 400 91.2 92.0 5
Large Vases (COSEG) 300 85.6 83.0 5

Table 1: Labeling accuracy of our method versus Kim et al.

Segmentation accuracy. We now report the performance of
our method for shape segmentation. We evaluated the seg-
mentation performance on the COSEG dataset [WAvK∗12]
and a new dataset we created: we labeled the parts of the
404 shapes used in the BHCP correspondences benchmark.
We provide images of the ground-truth segmentations in the
supplementary material. We compared our method with Kim
et al.’s segmentations in these datasets based on the publi-
cally available code and data. These are the same segmen-
tations that we used to initialize our method (no manual
segmentations were used). For both methods, we evaluate
the labeling accuracy by measuring the fraction of faces for
which the part label predicted by our method agrees with the
ground-truth label. Since our method provides segmentation
at a point cloud level, we transfer the part labels from points
to faces using the same graph cuts as in Kim et al. Table 1
shows that our method yields better labeling performance.
The difference is noticeable in complex shapes, such as he-
licopters, airplanes, bikes and candelabra. The same table
reports the number of clusters (groups) used in our model.
We note that our method could be initialized with any other
unsupervised technique. This table indicates that our method
tends to improve the segmentations it was initialized with.

Fine-grained classification. The uppermost layer of the
BSM model can be used to produce a compact, class-specific
shape descriptor. We demonstrate its use in the context of
fine-grained classification. For this purpose, we labeled the
BHCP benchmark shapes with fine-grained class labels: we
categorized airplanes into commercial jets, fighter jets, pro-
peller aircraft and UAVs, chairs into benches, armchairs,
side and swivel chairs, and bikes into bicycles, tricycles and
motorbikes. We compute activation probabilities in the up-
permost layer through mean-field inference given each in-
put shape, and used those as descriptors. Using 10 training
examples per class, and a single nearest neighbor classifi-
cation scheme based on L1 norm distance, the rest of the
shapes were classified with accuracy 92%, 94%, 96.5% for
airplanes, chairs, and bikes respectively. Descriptors, results,
training and test splits are included in the supplementary ma-
terial.

Shape synthesis. Figure 1(right) and 10(right) demonstrates
synthesized chairs and airplanes using samples from the
BSM model trained on these large collections. Our shape
synthesis procedure makes use of the shape parts segmented
by our method in these collections. However, not all shapes
are segmented perfectly: even if the labeling accuracy of our
method is high as demonstrated above, minor errors along
segmentation boundaries (e.g., mislabeled individual faces

c© 2015 The Author(s)
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Figure 10: Left: Shape correspondences and segmentations for chairs. Right: Synthesis of new chairs

crossing boundaries) cause visual artifacts when shapes are
assembled from these segmented parts. Such errors are com-
mon in graph cuts. Corrections would require re-meshing
or other low-level mesh operations. We instead manually
flagged 25% of airplanes and 40% of chairs with imper-
fect segmentation boundaries. These were excluded during
the nearest neighbors procedure for selecting parts given the
BSM samples. We still believe that the amount of human su-
pervision for this process is much smaller compared to pre-
vious generative models [KCKK12] that required manually
specified shape segmentations for at least half or the whole
input collections. We also conducted a perceptual evalua-
tion of our synthesized shapes with 31 volunteers recruited
through Amazon Mechanical Turk. Our user study indicates
that the shapes produced by our model were seen as plausi-
ble as the training shapes of the input collections. We include
the user study details and results in the supplementary ma-
terial. We also provide images of 500 synthesized airplanes
and chairs in the supplementary material.

Running times. The mean-field procedure (Algorithm 1) re-
quires 6 hours for our largest dataset (3K chairs). Learning
the BSM model requires 45 hours on the same dataset. Run-
ning times are reported on a E5-2697 v2 processor. Running
times scale linearly with the dataset size.

7. Limitations and Discussion

Our paper described a method for joint shape analysis and
synthesis in a shape collection: our method learns part tem-
plates, computes shape correspondence and part segmen-
tations, generates new shape surface variations, and yields
shape descriptors for fine-grained classification. Our method
represents an early attempt in this area, thus there are sev-
eral limitations to our method and many exciting directions
for future work. First, our method is greedy in nature. Our
method relies on approximate inference for both the CRF
deformation and the BSM generative model. Learning relies
on approximate techniques. As a result, the sampled point
clouds are not smooth and noiseless. We used conservative
deformations of parts from the input collection to factor out
the noise and preserve surface detail during shape synthesis.

Assembling shapes from parts suffers from various limita-
tions: adjacent parts are not always connected in a plausible
manner, segmentation artifacts affect the quality of the pro-
duced shapes, topology changes are not supported. Instead
of re-using parts from the input collection, it would be more
desirable to extend our generative model with layers that
produce denser point clouds. In this case, the denser point
clouds could be used as input to surface reconstruction tech-
niques to create new shapes entirely from scratch. However,
the computational cost for learning such generative model
with dense output would be much higher. From this aspect, it
would be interesting to explore more efficient learning tech-
niques in the future. Our part template learning procedure
relies on provided initial rigid shape alignments and segmen-
tations, which can sometimes be incorrect. It would be better
to fully exploit the power of our probabilistic model to per-
form rigid alignment. Deep learning architectures could be
used to estimate initial segmentations and correspondences.
The learned shape descriptor could improve the shape group-
ing. Finally, the variability of the synthesized shapes seems
somewhat limited. Fruitful directions include investigating
deeper architectures, better sampling strategies, and match-
ing templates with multiple symmetric parts if such exist in
the input shapes.
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Analysis and synthesis of 3D shape families via
deep-learned generative models of surfaces

Supplementary Material

1 Mean-field inference equations

According to the mean-field approximation theory [1], given a probability distribu-
tion P defined over a set of variablesX1, X2, ..., XV , we can approximate it with a
simpler distribution Q, expressed as a product of individual distributions over each
variable, such that the KL-divergence of P from Q is minimized:

KL(Q || P ) =
∑
X1

∑
X2

...
∑
XV

Q(X1, X2, ..., XV ) · ln Q(X1, X2, ..., XV )

P (X1, X2, ..., XV )

In the case of continuous variables, the above sums are replaced with integrals over
their value space. Suppose that the original distribution P is defined as a product
of factors:

P (X1, X2, ..., XV ) =
1

Z

∏
s=1...S

φs(Ds)

where Ds is a subset of the random variables (called scope) for each factor s in the
distribution P , and Z is a normalization constant.

Minimizing the KL-divergence of P from Q yields the following mean-field up-
dates for each variable Xv (v = 1...V ):

Q(Xv) =
1

Zv
exp

{∑
s

∑
Ds−{Xv}

Q(Ds − {Xv}) lnφs(Ds)

}

where Zv =
∑
Xv

Q(Xv) is a normalization constant for this distribution (the sum

is replaced with the integral over the value space of Xv if this is a continuous
variable), and Ds − {Xv} is the subset of the random variables for the factor s
excluding the variable Xv.

Below we specialize the above update formula for each of our variable in our prob-
abilistic model.
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1.1 Deformation variables

The mean-field update for each deformation variables is the following:

Q(Dt,k) ∝ exp

{
− 0.5

∑
p

Q(Ut,p = k)(Dt,k −Xt,p)
TΣ−11 (Dt,k −Xt,p)

− 0.5
∑

k′∈N(k)

(Dt,k − µt,k,k′)
TΣ−12 (Dt,k − µt,k,k′)

}

whereN (k) includes all neighboring points k′ of point k on the part template (see
main text of the paper) and µt,k is a 3D vector defined as follows:

µt,k,k′ = EQ[Dt,k′ ] + (EQ[Yk]− EQ[Yk′ ]))

We note that the above distribution is a product of Gaussians; when re-normalized,
the distribution is equivalent to a Gaussian with the following expectation, or mean,
which we use in other updates:

EQ[Dt,k] =(
∑
p

Q(Ut,p = k)Σ−11 +
∑

k′∈N(k)

Σ−12 )−1

· (
∑
p

Q(Ut,p = k)Σ−11 Xt,p +
∑

k′∈N(k)

Σ−12 µt,k,k′) (1)

The above formula indicates that the most likely deformed position of a point on
a part template is a weighted average of its associated points on the input surface
as well as its neighbors. The weights are controlled by the covariance matrices
Σ1 and Σ2 as well as the degree of association between the part template point
and each input surface point, given by Q(Ut,p = k). The covariance matrix of the
above distribution is forced to be diagonal (see next section); its diagonal elements
tend to increase when the input surface points have weak associations with the part
template point, as indicated by the following formula:

CovQ[Dt,k] = (
∑
p

Q(Ut,p = k)Σ−11 +
∑

k′∈N(k)

Σ−12 )−1

Computing the above expectation and covariance for each variable Dt,k involving
summing over every surface point p on the input shape t. This is computationally
too expensive. Practically in our implementation, we find the 100 nearest input
surface points for each part template point k, and we also find the 20 nearest part
template points for each input surface point p. For each template point k, we
always keep indices to its 100 nearest surface points as well as the surface points
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whose nearest points include that template point k. Instead of summing over all
the surface points of each input shape, for each template point k we sum over its
abovementioned indices to surface point only. For the rest of the surface points,
the distribution values Q(Ut,p = k) are practically negligible and are skipped in
the above summations.

1.2 Part template variables

For each part template point Yk, the mean-field update is given by:

Q(Yk) ∝ exp

{
− .5(Yk − µk)

TΣ−12 (Yk − µk)

}
where µk is the mean, or expectation (3D vector), defined as follows:

µk = EQ[Yk] =
1

|N (k)|
∑
k′

(
EQ[Yk′ ] +

1

T

∑
t

(EQ[Dt,k]− EQ[Dt,k′ ])
)

and N (k) includes all neighboring points k′ of point k on the part template, T is
the number of input shapes. The covariance matrix for the above distribution is
given by Σ2.

1.3 Point correspondence variables

The mean-field update for the latent variables Ut,p yields a categorical distribution
computed as follows:

Q(Ut,p = k) ∝ exp

{
− 0.5(EQ[Dt,k]−Xt,p)

TΣ−11 (EQ[Dt,k]−Xt,p)

− 0.5Tr(Σ−11 · CovQ[Dt,k])

− 0.5(fk − ft,p)
TΣ−13 (fk − ft,p)− ln ε ·Q(St,p = label(k))

}

where Tr(Σ−11 · CovQ[Dt,k]) represents the matrix trace, ε is a small constant
discussed in the main text of the paper. For computational efficiency reasons, we
avoid computing the above distribution for all pairs of part template and input
surface points. As in the case of the updates for the deformation variables, we keep
indices to input surface point positions that are nearest neighbors to part template
points and vice versa. We compute the above distributions only for pairs between
these neighboring points. For the rest of the pairs, we set Q(Ut,p = k) = 0.
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1.4 Segmentation variables

The mean-field update for the variables St,p also yields a categorical distribution:

Q(St,p = l) ∝ exp

{∑
k

Q(Ut,p = k)[label(k) 6= l] ln ε

+
∑

p′∈N(p)

∑
l′ 6=l

Q(St,p′ = l′) ln(1.0− Φ)

+
∑

p′∈N(p)

Q(St,p′ = l) ln(Φ)

}

where N(p) is the neighborhood of the input surface point used for segmenta-
tion (see main text for more details), Phi evaluates feature differences between
neighboring surface points (see main text for its definition). The binary indicator
function [label(k) 6= l] is 1 if the expression in brackets holds, otherwise it is 0.

2 Covariance matrix updates

The covariance matrices of our factors are updated as follows:

Σ1 =
1

Z1

∑
t,k,p∈N (k)

Q(Ut,p = k)(EQ[Dt,k]−Xt,p)(EQ[Dt,k]−Xt,p)
T

Σ2 =
1

Z2

∑
t,k,k′∈N(k)

((EQ[Dt,k]− EQ[Dt,k′ ])− (EQ[Yk]− EQ[Yk′ ]))·

· (EQ[Dt,k]− EQ[Dt,k′ ]− (EQ[Yk]− EQ[Yk′ ]))
T

Σ3 =
1

Z3

∑
t,k,p∈N (k)

Q(Ut,p = k)(fk − ft,p)(fk − ft,p)
T

Σ5 =
1

Z5

∑
t,p,p′∈N(p)

(ft,p − ft,p′)(ft,p − ft,p′)
T
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where Z1 = Z3 =
∑

t,k,p∈N (k)

Q(Ut,p = k), Z2 =
∑

t,k,k′∈N(k)

1, Z5 =
∑

t,p,p′∈N(p)

1.

The computed covariance matrices are forced to be diagonal i.e., in the above com-
putations only the diagonal elements of the covariance matrices are taken into ac-
count, while the rest of the elements are set to 0.

3 Contrastive divergence

Contrastive divergence iterates over the following three steps in our implementa-
tion: variational (mean-field) inference, stochastic approximation (or sampling),
and parameter updates. We discuss the steps in detail below.

Variational inference step. Our deformation model yields expectations over de-
formed point positions of the part templates based on Equation 1. For each de-
formed point, we find the surface point that is closest to its expected position. Let
Dk,τ [t] the observed surface position of point k for an input shape t. The subscript
τ takes values 1, 2, or 3 that correspond to the x−,y−,z− coordinate of the point
respectively. Let Ek[t] represents the observed existence of a point k (binary vari-
able) also inferred by our deformation model. Given all observed point positions
D[t] and existences E[t] per shape t, we perform bottom-up mean-field inference
on the binary hidden nodes according to the following equations in the following
order:

Q(H(1)
m = 1|D[t],E[t]) = σ

(
wm,0 +

∑
k∈Nm,τ

(ak,τ,m − ck,τ,m) ln(Dk,τ [t])Ek[t]

+
∑

k∈Nm,τ
(bk,τ,m − dk,τ,m) ln(1−Dk,τ [t])Ek[t]

+
∑
n

wm,nQ(H(2)
n = 1|D[t],E[t])

)

Q(H(2)
n = 1|D[t],E[t]) = σ

(
wn,0 +

∑
m

wm,nQ(H(1)
m = 1|D[t],E[t])

+
∑
o

wn,oQ(H(3)
o = 1|D[t],E[t])

)

Q(H(3)
o = 1|D[t],E[t]) = σ

(
wo,0 +

∑
n

wn,oQ(H(2)
n = 1|D[t],E[t])

)

where σ(·) represents the sigmoid function,Nm is the set of the observed variables
each hidden node (variable) H(1)

m is connected to. The mean-field updates for H(1)
m
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involve a weighted summation over the observed variables D[t] per part, which
can be thought of as a convolutional scheme per part. We perform 3 mean-field
iterations alternating the updates over the above hidden nodes. During the first
iteration, we initialize Q(H

(2)
n = 1) = 0 and Q(H

(3)
o = 1) = 0 for each hidden

node n and o.

Stochastic approximation. This step begins by sampling the binary hidden nodes
of the top layer for each training shape t. Sampling is performed according to the
inferred distributions Q(H

(3)
o = 1|D[t],E[t]) of the previous step. Let H(3)

o [t′] the
resulting sampled 0/1 values. Then we perform top-down mean-field inference on
the binary hidden nodes of the other layers as well as the visible layer:

Q(H(2)
n = 1|E[t],H(3)[t′]) = σ

(
wn,0 +

∑
m

wm,nQ(H(1)
m = 1|E[t],H(3)[t′])

+
∑
o

wn,oH
(3)
o [t′]

)

Q(H(1)
m = 1|E[t],H(3)[t′]) = σ

(
wm,0 +

∑
k∈Nm,τ

(ak,τ,m − ck,τ,m) ln(Dk,τ [t′])Ek[t]

+
∑

k∈Nm,τ
(bk,τ,m − dk,τ,m) ln(1−Dk,τ [t′])Ek[t]

+
∑
n

wm,nQ(H(2)
n = 1|E[t],H(3)[t′])

)

Q(Dk,τ |E[t],H(3)[t′]) ∝

D

(ak,τ,0−1)+
∑

m∈Nk
ak,τ,mQ(H

(1)
m =1|E[t],H(3)[t′])+

∑
m∈Nk

ck,τ,m(1−Q(H
(1)
m =1|E[t],H(3)[t′]))

k,τ

(1−Dk,τ )
(bk,τ,0−1)+

∑
m∈Nk

bk,τ,mQ(H
(1)
m =1|E[t],H(3)[t′])+

∑
m∈Nk

dk,τ,m(1−Q(H
(1)
m =1|E[t],H(3)[t′]))

where Dk,τ [t′] in the above mean-field updates is set to be the expectation of the
above Beta distribution and Nk is the set of the hidden variables each observed
node (variable) Dk,τ is connected to. We note that sampling all the variables in the
model caused contrastive divergence not to converge, thus we instead used expec-
tations of the above distributions instead. As in the previous step, we performed 3
iterations alternating over the above mean-field updates. During the first iteration,
we skip the terms involvingDk,τ [t′] during the inference of the hidden nodes of the
first layer. At the second and third iteration, we infer distributions for the hidden
layers as follows:

Q(H(3)
o = 1|D[t′],E[t]) = σ

(
wo,0 +

∑
n

wn,oQ(H(2)
n = 1|D[t′],E[t])

)
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Q(H(2)
n = 1|D[t′],E[t]) = σ

(
wn,0 +

∑
m

wm,nQ(H(1)
m = 1|D[t′],E[t])

+
∑
o

wn,oQ(H(3)
o = 1|D[t′],E[t])

)

Q(H(1)
m = 1|D[t′],E[t]]) = σ

(
wm,0 +

∑
k∈Nm,τ

(ak,τ,m − ck,τ,m) ln(Dk,τ [t′])Ek[t]

+
∑

k∈Nm,τ
(bk,τ,m − dk,τ,m) ln(1−Dk,τ [t′])Ek[t]

+
∑
n

wm,nQ(H(2)
n = 1|D[t′],E[t])

)

Parameter updates. The parameters of the model are updated with project gra-
dient ascent according to the expectations over the final distributions computed in
the previous two steps and the observed data. We list the parameter updates below.
We note that sgn(·) used below denotes the sign function, ν is the iteration number
(or epoch), η is the learning rate, µ is the momentum rate. The learning rate is set
to 0.001 initially, and is multiplied by a factor 0.9 when at the previous epoch the
reconstruction error

∑
t,k,τ |Dk,τ [t]Ek[t]−Dk,τ [t′]Ek[t]| increases, and it is multi-

plied by a factor 1.1 when the reconstruction error decreases. The momentum rate
is progressively increased from 0.5 towards 1.0 asymptotically during training.

ak,τ,0 = max(ak,τ,0 + ∆ak,τ,0[ν], 0) , where

∆ak,τ,0[ν] = µ ·∆ak,τ,0[ν − 1] + η
1

T

∑
t

(
ln(Dk,τ [t])− ln(Dk,τ [t′])

)
− ηλ1

∑
k′∈Nk

sgn(ak,τ,0 − ak′,τ,0)− ηλ2sgn(ak,τ,0)

bk,τ,0 = max(bk,τ,0 + ∆bk,τ,0[ν], 0) , where

∆bk,τ,0[ν] = µ ·∆bk,τ,0[ν − 1] + η
1

T

∑
t

(
ln(1−Dk,τ [t])− ln(1−Dk,τ [t′])

)
− ηλ1

∑
k′∈Nk

sgn(bk,τ,0 − bk′,τ,0)− ηλ2sgn(bk,τ,0)
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ak,τ,m = max(ak,τ,m + ∆ak,τ,m[ν], 0) , where

∆ak,τ,m[ν] = µ ·∆ak,τ,m[ν − 1] + η
1

T

∑
t

(
ln(Dk,τ [t])Q(H(1)

m = 1|D[t],E[t])

− ln(Dk,τ [t′])Q(H(1)
m = 1|D[t′],E[t])

)
− ηλ1

∑
k′∈Nk

sgn(ak,τ,m − ak′,τ,m)− ηλ2sgn(ak,τ,m)

bk,τ,m = max(bk,τ,m + ∆bk,τ,m[ν], 0) , where

∆bk,τ,m[ν] = µ ·∆bk,τ,m[ν − 1] + η
1

T

∑
t

(
ln(1−Dk,τ [t])Q(H(1)

m = 1|D[t],E[t])

− ln(1−Dk,τ [t′])Q(H(1)
m = 1|D[t′],E[t])

)
− ηλ1

∑
k′∈Nk

sgn(bk,τ,m − bk′,τ,m)− ηλ2sgn(bk,τ,m)

ck,τ,m = max(ck,τ,m + ∆ck,τ,m[ν], 0) , where

∆ck,τ,m[ν] = µ ·∆ck,τ,m[ν − 1] + η
1

T

∑
t

(
ln(Dk,τ [t])(1−Q(H(1)

m = 1|D[t],E[t])

− ln(Dk,τ [t′])(1−Q(H(1)
m = 1|D[t′],E[t])

)
− ηλ1

∑
k′∈Nk

sgn(ck,τ,m − ck′,τ,m)− ηλ2sgn(ck,τ,m)

dk,τ,m = max(dk,τ,m + ∆dk,τ,m[ν], 0) , where
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∆dk,τ,m[ν] = µ ·∆dk,τ,m[ν − 1] + η
1

T

∑
t

(
ln(1−Dk,τ [t])(1−Q(H(1)

m = 1|D[t],E[t])

− ln(1−Dk,τ [t′])(1−Q(H(1)
m = 1|D[t′],E[t])

)
− ηλ1

∑
k′∈Nk

sgn(dk,τ,m − dk′,τ,m)− ηλ2sgn(dk,τ,m)

wm,0 = wm,0 + ∆wm,0[ν] , where

∆wm,0[ν] = µ ·∆wm,0[ν − 1] + η
1

T

∑
t

(
Q(H(1)

m = 1|D[t],E[t])

−Q(H(1)
m = 1|D[t′],E[t])

)
− ηλ2sgn(wm,0)

wn,0 = wn,0 + ∆wn,0[ν] , where

∆wn,0[ν] = µ ·∆wn,0[ν − 1] + η
1

T

∑
t

(
Q(H(2)

n = 1|D[t],E[t])

−Q(H(2)
n = 1|D[t′],E[t])

)
− ηλ2sgn(wn,0)

wo,0 = wo,0 + ∆wo,0[ν] , where

∆wo,0[ν] = µ ·∆wo,0[ν − 1] + η
1

T

∑
t

(
Q(H(3)

o = 1|D[t],E[t])

−Q(H(3)
o = 1|D[t′],E[t])

)
− ηλ2sgn(wo,0)
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wm,n = wm,n + ∆wm,n[ν] , where

∆wm,n[ν] = µ ·∆wm,n[ν − 1] + η
1

T

∑
t

(
Q(H(1)

m = 1|D[t],E[t])Q(H(2)
n = 1|D[t],E[t])

−Q(H(1)
m = 1|D[t′],E[t])Q(H(2)

n = 1|D[t′],E[t])

)
− ηλ2sgn(wm,n)

wn,o = wn,o + ∆wn,o[ν] , where

∆wn,o[ν] = µ ·∆wn,o[ν − 1] + η
1

T

∑
t

(
Q(H(2)

n = 1|D[t],E[t])Q(H(3)
o = 1|D[t],E[t])

−Q(H(2)
n = 1|D[t′],E[t])Q(H(3)

o = 1|D[t′],E[t])

)
− ηλ2sgn(wn,o)

3.1 Parameter updates for the structure part of the BSM

To learn the parameters wk,0, wk,r, wr,0 involving the variables E and G of the
BSM part modeling the shape structure, we similarly perform contrastive diver-
gence with the following steps:

Inference. Given the observed point existences E[t], we infer the following distri-
bution over the latent variables G (we note that this is exact inference):

Q(Gr = 1|E[t]) = σ(wr,0 +
∑
k

wk,rEk[t])

Sampling. We sample the binary latent variables G according to the inferred distri-
bution Q(Gr = 1|E[t]). Let Gr[t′] the resulting sampled 0/1 values. We perform
inference for the existence variables as follows:

Q(Ek = 1|G[t′]) = σ(wk,0 +
∑
r

wk,rGr[t
′])
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and repeat for the latent variables:

Q(Gr = 1|G[t′]) = σ(wr,0 +
∑
k

wk,rQ(Ek = 1|G[t′]))

Parameter updates The parameters of the structure part of the BSM are updated
as follows:

wk,0 = wk,0 + ∆wk,0[ν] , where

∆wk,0[ν] = µ ·∆wk,0[ν − 1] + η
1

T

∑
t

(
Ek[t]−Q(Ek = 1|G[t′])

)
− ηλ1

∑
k′∈Nk

sgn(wk,0 − wk′,0)− ηλ2sgn(wk,0)

wr,0 = wr,0 + ∆wr,0[ν] , where

∆wr,0[ν] = µ ·∆wr,0[ν − 1] + η
1

T

∑
t

(
Q(Gr = 1|E[t])−Q(Gr = 1|G[t′])

)
− ηλ2sgn(wr,0)

wk,r = wk,r + ∆wk,r[ν] , where

∆wk,r[ν] = µ ·∆wk,r[ν − 1] + η
1

T

∑
t

(
Ek[t]Q(Gr = 1|E[t])

−Q(Ek = 1|G[t′])Q(Gr = 1|G[t′])

)
− ηλ1

∑
k′∈Nk

sgn(wk,r − wk′,r)− ηλ2sgn(wk,r)
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Analysis and synthesis of 3D shape families via
deep-learned generative models of surfaces

User Study

We conducted a perceptual evaluation of our synthesized shapes with volunteers re-
cruited through Amazon Mechanical Turk. Each volunteer performed 40 pairwise
comparisons in a web-based questionnaire. Each comparison was between images
of two shapes from the chairs or airplanes domain. For each pair, one shape was
coming from the training collection of one of the two domains, and the other shape
was coming from our collection of synthesized shapes of the same domain. The
two shapes were randomly sampled from their collections. They appeared in a
random order on the web pages of the questionnaire.

The participants were asked to choose which of the two presented shapes was more
plausible, or indicate whether they found both shapes to be equally plausible, or
none of them to be plausible. Each questionnaire contained 20 unique compar-
isons and each comparison was repeated twice by flipping the order of the two
shapes in the question. To diminish the risk of contaminating the results of the user
study with unreliable respondents, we excluded participants that gave two different
answers to more than 6 of the 20 unique comparisons, or took less than 2 minutes
in total to complete the questionnaire.

The number of reliable Mechanical Turk respondents after the above filtering was
31. A total of 1240 pairwise comparisons were gathered in total. The results
are visualized in the following figure. The user study indicates that the shapes
produced by our model were seen as plausible as the training shapes of the input
collection.

195 votes: 210 votes: 171 votes:32 votes:
synthesized airplanes

are more plausible
both airplanes 
are plausible 

none are
plausible

training airplanes
are more plausible

148 votes: 260 votes: 163 votes:61 votes:
synthesized chairs
are more plausible

both chairs 
are plausible 

none are
plausible

training chairs
are more plausible

Figure 1: Results of our Amazon Mechanical Turk user study
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