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ABSTRACT
We present ATTRIBIT, an approach for people to create visual
content using relative semantic attributes expressed in lin-
guistic terms. During an off-line processing step, ATTRIBIT
learns semantic attributes for design components that reflect
the high-level intent people may have for creating content in
a domain (e.g., adjectives such as “dangerous,” “scary,” or
“strong”) and ranks them according to the strength of each
learned attribute. Then, during an interactive design session,
a person can explore different combinations of visual com-
ponents using commands based on relative attributes (e.g.
“make this part more dangerous”). Novel designs are assem-
bled in real-time as the strength of selected attributes are var-
ied, enabling rapid, in-situ exploration of candidate designs.
We applied this approach to 3D modeling and web design.
Experiments suggest this interface is an effective alternative
for novices performing tasks with high-level design goals.

Author Keywords
content creation, exploratory interfaces, high-level attributes,
relative attributes, semantic attributes, assembly-based
modeling, interactive modeling

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation (e.g., HCI):
User Interfaces - Interaction styles; I.2.10 Artificial Intelli-
gence: Vision and Scene Understanding - Shape

General Terms
Algorithms; Design; Human Factors.

INTRODUCTION
The ubiquity of visual media, and the growing interest in
new applications such as collaborative virtual worlds and
3D printing, has led to a demand for interfaces suitable
for novice users to engage in computer-aided visual design
∗S. C. and E. K. contributed equally to this work.

Figure 1: A user explores novel virtual creatures by changing
the strength of semantic attributes reflecting high-level design
intent. The attributes, and their relative strengths for different
parts, are learned from crowdsourced training data.

to produce their own content. This is especially true for
three-dimensional content, which is notoriously difficult for
novices to create [33]. A successful interface must make it
as easy as possible for novice users to map a design goal to
intuitive interactions so that they quickly reach the objective
and feel confident that it has been achieved.

Several types of state-of-the-art interfaces, such as drawing
and sculpting tools [15,27], drag-and-drop component assem-
bly [6,24] and design galleries [22,23,35] have been proposed
to address this need. However, such interfaces have a com-
mon limitation: they do not provide a way to directly express
a high-level design goal (e.g. “create a cute toy”). Instead, the
goal must be reached by careful planning and execution of a
series of low-level selection and editing commands — which
requires previsualization, dexterity and time — or serendip-
itiously through largely unstructured exploration. The gap
between how a person thinks about what she wants to create,
and how she can interact with a computer to get there, is a
barrier for the novice.

This paper introduces ATTRIBIT, an approach for quickly re-
alizing high-level design goals by directly capturing design
intent in linguistic terms. For example, the designer may want



Figure 2: Exploration with semantic attributes for 3D modeling. Top: Exploring less (left) to more (right) aerodynamic fuselages.
Bottom: Exploring less (left) to more (right) scary heads. The adjectives “aerodynamic” and “scary,” and the ranking of
components under these attributes were learned from crowdsourced training data. The displayed components, left to right, have
∼0%, 33%, 66% and 100% of the respective attribute strengths. All components are automatically positioned and glued.

to make a virtual creature more “scary”, or a web page more
“artistic”. Such requirements are natural for humans, yet can-
not be directly expressed in current interfaces. Nor are they
represented in the pioneering work of Coyne and Sproat [8]
which focuses, by contrast, on configurational specifications
(“the cat is facing the wall”). We seek a human-centric in-
terface that lets us specify such objectives directly, without
having to translate to computer-friendly abstractions.

ATTRIBIT is a data-driven interface for content creation that
associates relative semantic attributes with design elements.
A relative attribute [29] is one whose strength varies contin-
uously (e.g. “strong”), as opposed to binary attributes, which
are either present or absent (e.g. “quadruped”). ATTRIBIT
directly supports actions such as “show me scarier heads” or
“show me more artistic webpages”. Of course, it is infea-
sible to capture all possible design objectives as individual
attributes. However, complex concepts can usually be ex-
pressed in terms of simpler ones [25] (e.g. an airplane de-
signed to win dogfights is typically “aerodynamic”, “fast”
and “military”). Hence, ATTRIBIT supports a wide range of
design objectives beyond those corresponding to individual
supported attributes.

Further, ATTRIBIT is an exploratory interface, supporting the
notion of design as informed choice [3, 14]. It facilitates
targeted exploration of the design space in terms of human-
friendly, semantic axes of variation. ATTRIBIT uses domain
knowledge learned from a database of exemplar designs to
automatically assemble coherent designs from selected com-
ponents. The designer can rapidly iterate over a large num-
ber of relevant candidate designs to find a suitable one, rather
than spend time in painstaking geometric manipulation tasks
to assemble each design. Instead of trying to visualize the re-
sult of assembling components, she can simply evaluate the
finished design in-situ.

A key challenge in enabling this type of interaction is to de-
velop automatic or semi-automatic techniques to infer high-
level semantic attributes for design components. A second
key challenge is to develop interfaces that allow targeted ex-
ploration of the design space based on these attributes.

To infer semantic attributes, we first crowdsource descriptive
adjectives for design components from Amazon Mechanical
Turk. Since real-world applications will have too many exem-
plar components for complete manual annotation, we lever-
age techniques from information retrieval, machine learning
and computer vision to learn functions that map component
appearance to attribute strengths, e.g. how scary an animal
head is, or how artistic a web page title appears. The func-
tions are learned from a training set of pairwise comparisons
also gathered via Mechanical Turk. Finally, we introduce a
statistical model for multiple components to be changed si-
multaneously and coherently as attribute strength is varied.

To enable exploration with high-level attributes, we introduce
an interface that allows users to initialize a design with a co-
herent combination of components from a database, select a
subset of these components, interactively increase or decrease
the strength of an attribute using sliders, and observe changes
to the whole design in real time as new database components
corresponding to the updated attribute strengths are swapped
in. The components are automatically assembled into a co-
herent design.

In this paper, we discuss ATTRIBIT chiefly in the context
of modeling three-dimensional shapes: virtual creatures, air-
craft and ships. To demonstrate that the method generalizes
to other (non-3D) domains, we also describe an application
to web page design. We present results of experiments with
novice users, showing that the interface is easily mastered (in
10 minutes, by an 11-year-old) and can be used to rapidly
construct compelling visual content. Finally, we discuss pos-
sible future applications of high-level attributes for design.



Figure 3: Modeling interface. Sliders at the bottom and in a
radial menu allow exploring novel designs by increasing (+)
or decreasing (−) the strength of semantic attributes. Each
radial axis approximates the direction of corresponding geo-
metric variation: aerodynamic, angled and triangular wings
are stubby and swept back, those with opposite properties are
long and perpendicular to the fuselage. Here the user drags
the violet handle towards “+Aerodynamic” to explore more
aerodynamic wings. Red highlights indicate regions of high
geometric variation under the current attribute — the tips are
most salient because aerodynamic wings are swept back.

INTERFACE
ATTRIBIT employs a database of exemplar designs, assumed
to be compatibly segmented and labeled. E.g. creatures might
be decomposed into head, tail, torso and legs, and airplanes
into wings, fuselage, tailplane and engines. Novel designs
are created by recombining components from different exem-
plars [6, 11, 17]. Repurposing successful elements from prior
designs can be more efficient than reinventing them from
scratch [13]. The space of possible designs is exponentially
large: in comparison, the subset fulfilling a given design ob-
jective is infinitesimally small. The goal of ATTRIBIT is to
facilitate access to this subset of suitable designs.

When the interface is first launched, the artist is presented
with buttons on the right corresponding to categories of com-
ponents from the domain (e.g., heads, torsos, legs, tails for
animals; fuselages, wings, tails, engines for airplanes), and
a modeling area in the center (Figures 1, 3). She can click
buttons in any sequence to add initial components from the
corresponding categories to the modeling area. Each initial
component is chosen so that the assembled design is plau-
sible, according to a statistical shape prior [17]. They are
automatically positioned and stitched into a coherent, seam-
less design. Components are selected by clicking; selected

components are removed with the Delete key. Components
may be added and removed at any time, in any sequence. To
allow fine adjustment in positioning if desired, our interface
also provides translation, rotation and scaling controls.

Exploration Widgets
To explore semantic axes of variations, the user selects one or
more components. Upon selection, exploration widgets ap-
pear on the screen. The first such widget is a tabbed panel
of sliders at the bottom of the screen. Each tab is labeled
with the name of an attribute that applies to at least one of
the selected components (e.g. “Aerodynamic”, “Dangerous”,
“Fast”). As the user drags a slider up (or down) the range, new
components corresponding to higher (resp. lower) strengths
of the attribute replace the current ones (Figure 2). Replace-
ment, repositioning and re-stitching of assembled compo-
nents happens automatically and in real time (Appendix).

The second widget is a set of sliders displayed as spokes of a
wheel, positioned directly on the most recently selected com-
ponent. The spokes have equal angular spacing (45◦). Each
pair of opposed spokes maps to increasing and decreasing di-
rections of an attribute slider. For instance, the wheel might
display “+Fast” and “−Fast” sliders along opposed spokes,
corresponding to increasing or decreasing the strength of the
“Fast” attribute respectively. One clicks and drags the central
handle to explore replacements along any axis, or return to
the center to pick a new one.

The wheel allows designers to efficiently evaluate the util-
ity of different attributes with a single click (and subsequent
dragging), instead of the click-heavy process of selecting and
interacting with individual slider tabs. It displays the 4 at-
tributes with largest geometric variation at the point c at the
wheel center (the attribute of the current tab is always in-
cluded for consistency). To estimate this variation for an at-
tribute, we pre-align all parts in its ordered sequence to the
current part using non-rigid ICP [1]. This lets us track c
through the preceding and succeeding parts in the sequence
of components ordered according to their attribute strength.
The local geometric variation for the attribute is computed as
the average displacement of the point through successive re-
placements, limited to K preceding and K succeeding parts
in the sequence (we use K = 3). The length of this vector
(“attribute saliency”) determines inclusion in the wheel, and
its screen-space direction determines the preferred orientation
of the corresponding pair of opposed spokes (Figure 3).

The wheel can be repositioned by clicking at a different point
on the selected part, whereupon the most salient attributes are
recomputed at that point. We visualize regions of high ge-
ometric variation for the active attribute as a saliency map,
highlighting more salient regions in red. This visualization
provides information on how semantic variation manifests as
geometric variation over a shape (Figures 1, 3). For instance,
fast airplane wings have their tips swept back, so related at-
tributes have high saliency at wingtips. The wheel is initially
positioned at the most salient point.

The accompanying video shows several example interaction
sessions with the ATTRIBIT interface.



Figure 4: Ordering of animal heads according to the “dan-
gerous” attribute (top-left is the least dangerous head, se-
quence is in row-major order). The orderings are organized
on sliders in the ATTRIBIT interface (Figure 1).

LEARNING ATTRIBUTES
Recent computer vision research has shown that low-level im-
age features can be mapped to “visual attributes” that corre-
spond to properties observable in images and have human-
designated names (e.g., smiling, natural, man-made) [2,9,10,
28, 31]. These visual attributes can serve as semantic cues in
various image analysis problems. Our work is particularly in-
spired by the idea of “relative attributes” introduced by Parikh
and Grauman [29].

ATTRIBIT uses relative semantic attributes to explore the de-
sign space. To achieve this, it learns mappings from features
of design components to attribute strengths, based on crowd-
sourced training data. For 3D shapes, the features include
histograms of curvature and shape diameter, and view-based
descriptors. We compute non-linear transformations of these
descriptors as additional higher-level features. For details,
please refer to the Appendix. By applying these learned map-
pings from features to attributes, ATTRIBIT automatically
ranks components by attribute strength.

Attribute Selection
Our first task is to find adjectives describing attributes of each
category of design component. Rather than picking attributes
ourselves, we resorted to crowdsourcing to quickly find such
adjectives. For each component category (e.g. “head”, “fuse-
lage”), we created web pages showing images of two ran-
domly selected designs with highlighted components. For
each such pair, we asked respondents in Amazon Mechani-
cal Turk to complete one of the following statements with a
suitable adjective (Type 1 questions):

• The left part is more than the right part.

• The left part is than the right part.

• The right part is more than the left part.

• The right part is than the left part.

We also asked about the role of the parts in influencing at-
tributes of the whole design (Type 2 questions):

• The left part makes the shape look more than the right
part.

• The left part makes the shape look than the right part.

• The right part makes the shape look more than the
left part.

• The right part makes the shape look than the left part.

To obtain a consistent set of salient adjectives across a large
sample of respondents, we followed Schelling [32]. Respon-
dents were asked to suggest adjectives they thought other
people would also select. In addition, to reduce spuri-
ous entries, we disallowed the adjectives “better,” “worse,”
“brighter,” and “darker.” Our survey collected a total of 21580
comparative adjectives for 32 component categories. Then,
we merged synonyms and corrected typos manually. For each
component category, we selected the top 10 most common
adjectives, omitting those selected < 5 times. For example,
the top adjectives for torsos were: large, long, thin, strong,
rounded, heavy, dangerous, smooth, curved and muscular.

Pairwise Comparison
After finding suitable attributes, we compute complete rank-
ings of all components of each category for each attribute.
Asking humans to manually rank thousands of components
would be impractical. However, it is relatively easy for a per-
son to compare two objects [29]. Hence, we collect a few
pairwise comparisons as training data and automatically infer
full rankings. We again created web pages showing pairs of
designs with highlighted components. If an attribute was as-
sociated with Type 1 questions during attribute selection, we
asked Mechanical Turk users to indicate which component in
each pair has more of the attribute:

• The left part is more [adjective] than the right part.

• The left part is less [adjective] than the right part.

• The left part is as [adjective] as the right part.

• Neither part is [adjective].

If an attribute was associated with Type 2 questions, we asked
which component contributes more to the global attribute:

• The left part makes the shape look more [adjective] than
the right part.

• The left part makes the shape look less [adjective] than the
right part.

• The left part makes the shape look as [adjective] as the right
part.

• Neither part makes the shape look [adjective].



We posted at most 100 pairs for each category and for each
adjective, for a total of 87650 comparisons. Each respondent
compared 25 pairs and repeated the process for consistency.
We rejected respondents whose answers for more than a third
of the pairs differed across repetitions. Three different people
evaluated each pair, yielding a per-pair confidence measure.

Learning to Rank Components
Given training pairs, we learn a ranking function that infers
the strength of an attribute for each associated component.
The function maps features of a component to its ranking
“score,” and thus generalizes to components not in the train-
ing comparisons.

For each component category and each associated adjective
m, the input to the learning step is a set of training pairs
Om = {i, j} in which component i has more of an attribute
than j, and a set of training pairs Sm = {i, j} in which com-
ponents i and j have comparable attribute strengths. For each
training pair and relative ordering thereof, we also have a con-
fidence measure cij ∈ [0, 1] defined as the fraction of respon-
dents who agreed on this ordering. Each component i is rep-
resented in Rn by a feature vector xi (for more details on the
features used, please refer to the Appendix).

The ranking function rm maps features to attribute strength:

rm(x) = wm · x,

where wm is a parameter vector, s.t. the maximum number
of dissimilarity and similarity constraints is satisfied:

∀(i, j) ∈ Om : wm · xi > wm · xj

∀(i, j) ∈ Sm : wm · xi = wm · xj

Learning the optimal ranking function is NP-hard [16]. How-
ever, we can introduce slack variables to relax the problem,
as in Support Vector Machine (SVM) classification [29].

minimize
1

2
‖wm‖22 + α

∑
i,j

(L(ξij) + L(γij))

s.t. wm(xi − xj) ≥ 1− ξij , ∀(i, j) ∈ Om

|wm(xi − xj)| ≤ γij , ∀(i, j) ∈ Sm

ξij ≥ 0 and γij ≥ 0

where ξij , γij are slack variables, L(ξij), L(γij) are loss
functions to progressively penalize misranked training exam-
ples, and α weights the approximated error. Various loss
functions can be employed — for example, in [29] quadratic
loss functions L(ξij) = ξ2ij , L(γij) = γ2ij were used. This
problem is equivalent to solving the following unconstrained
optimization problem [5]:

minimize ‖wm‖22 + α
∑

i,j∈Om

`(1−wm(xi − xj))

+α
∑

i,j∈Sm

`(|wm(xi − xj)|)

where the first term serves as a regularization term favoring
sparse parameter vectors, and `(·) is the loss function pe-
nalizing misranked examples, e.g. quadratic loss: `(t) =
max(0, t)2, or hinge loss: `(t) = max(0, t). In practice,

we found the sigmoid loss function [4,30] performed slightly
better (see Ranking Quality section). We also consider the
confidence cij for each pair, and weight the loss functions for
similarity and dissimilarity constraints differently. Thus, the
optimization problem we solve is the following:

minimize ‖wm‖22 + µ
∑

i,j∈Om

cij(1− σ(wm(xi − xj)))

+ ν
∑

i,j∈Sm

cijσ(|wm(xi − xj)|)

where µ, ν are weighting coefficients and
σ(t) = 1/(1 + exp(−λt)) is the sigmoid function. The
sigmoid loss function is not convex, so we start optimizing
the parameters wm with a quadratic loss function that is
convex and can be minimized with Newton’s method [5].
Then, we refine the parameters with a subgradient method
for the objective function using the sigmoid loss, which prac-
tically converges as also shown in [12]. The weights λ, µ, ν
are estimated using 5-fold cross-validation to minimize the
number of wrong pairwise rankings in the validation sets.

Using Attributes as Additional Features for Learning
Some attributes, such as “strong”, can depend on other sim-
pler attributes, such as “large,” “heavy,” “thin,” or other
higher-level attributes, such as “dangerous”. ATTRIBIT takes
into account these inter-dependencies between attributes to
learn them more effectively. Specifically, we first learn a
model rm(·) for each attribute using the base features. Then,
we learn a new model r′m(·) by enriching the feature vec-
tor with the scores of all other attributes inferred from the
first trained models. We repeat the procedure to learn an-
other model r′′m(·) using the attribute scores from the sec-
ond trained models. This procedure further decreased test
errors (see Ranking Quality section). Subsequent repetitions
did not decrease errors significantly. Interestingly, many nat-
ural inter-dependencies of attributes are successfully captured
in this way. E.g. the attribute scores for “strong” heads are
strongly correlated with “larger,” “heavier,” more “danger-
ous” and less “thin” heads.

MULTIPLE COMPONENTS AND DESIGN PRIORS
ATTRIBIT also supports exploring variation in multiple com-
ponents simultaneously. When more than one component is
selected, some will possess the active high-level attribute and
some will not. For example, the attribute “scary” exists for
animal heads, but not for legs. We define a joint ranking score
for multiple components that share the same active attribute,
and infer plausible replacements for components that do not
have the attribute.

Joint Ranking of Multiple Components
When multiple components P = {p1, p2, . . . , pn}, from cat-
egories q1, q2, . . . , qn respectively, share a single high-level
attribute m, we define a joint ranking score over them. First,
the ranking scores r′′qm for the components in each associ-
ated category q are normalized to [0, 1]. Let Rqi

m(pi) the
normalized scores for each component pi in their associ-
ated category qi. The combined score is defined as the sum



Rm(P ) =
∑n

i=1R
qi
m(pi). Starting from the current configu-

ration P , we greedily find the single component replacement
that will improve the ranking score, defined above, by the
smallest increment. We continue this process until no further
replacements are possible — the resulting configuration has
the maximum attribute strength under our definition. Simi-
larly, we extend the ranking in the other direction, decreasing
the score by minimal increments until we reach the lowest-
strength configuration. The resulting ordering ranks config-
urations of n components under the attribute. We found this
simple approach sufficient for our needs. More sophisticated
techniques for combining attribute scores (e.g. with learned
weights, or nonlinearly) may be considered in future work.

Inference
When a component does not share the active attribute, we per-
form inference to find a suitable replacement, given context
from the rest of the design. This can be thought of as en-
forcing a design prior. For 3D shapes, we follow Kalogerakis
et al. [17] to learn a probability distribution over the shape
space that captures relationships between shape components.
The distribution is defined over discrete and continuous prop-
erties, such as shape type, component styles, number and ge-
ometric features of components from each category.

Real-Time Inference
The 3D shape prior of Kalogerakis et al. [17] was designed
for sampling novel shapes (not for inference). We developed
a real-time inference technique for this model. Given a cate-
gory q, the technique finds the component from q most com-
patible with the rest of the shape.

Inference is performed as follows. Let Xq be the model
variables sufficient to identify the most probable component
from category q, Xe be observed features of components
from other categories existing in the shape, and Xu be un-
observed shape variables. The unobserved variables include
latent shape and component styles, and features from cate-
gories not observed in the current shape. The goal of infer-
ence is to compute the posterior

P (Xq | Xe = e) =

∫
u

P (Xq,Xe = e,Xu = u)∫
u,q

P (Xq = q,Xe = e,Xu = u)
,

where the integral is replaced by a sum for discrete variables.
Since the denominator does not differentiate between differ-
ent components (i.e. is a normalizing factor), we only need to
compute the marginal distribution in the numerator. Comput-
ing the marginal distribution however requires summing over
an exponential number of joint assignments to the variables
Xu, which makes its direct computation intractable. We re-
sort to loopy belief propagation to approximate the marginal
distribution [20]. Each factor in the model is mapped to a
node in a “cluster graph”. Belief propagation maintains a
set of beliefs (marginals) over these nodes by passing mes-
sages along edges to exert the influence of one variable on
another. If we mutually connect all nodes including a variable
X , the messages would cycle endlessly, resulting in incorrect
beliefs. Hence, we introduce auxiliary nodes involving indi-
vidual variables that are connected to nodes containing the

factors in which they appear. The resulting cluster graph has
Bethe-style structure and guarantees there is only a single,
non-cyclic path along which messages about a variable can
flow. In each belief propagation iteration, messages are sent
from all nodes to their neighbors synchronously. The beliefs
typically converge after 5-10 iterations in under 50ms, allow-
ing real-time approximation of the marginal distribution.

Organizing Components on Sliders
Components are placed on the slider for an associated at-
tribute according to their attribute strength. To increase ease
of use, the slider intervals are equally spaced (even if the rank-
ing strengths are not). Second, to increase visual continu-
ity and better organize components in the slider according to
their types (so that, e.g., canine heads precede dinosaur heads
for the “scary head” attribute, even if MTurk users judged
some canine heads to be scarier than some dinosaur heads),
the ordering is adjusted to group components by visual style,
found by the design prior above. For this purpose, we define
attribute strengths for each visual style as the average of the
attribute strengths of components associated with this style.
We place components on the slider based first on attribute
strength of their style, then on their individual strength.

DATASETS
We implemented ATTRIBIT on three domains of 3D models:
animals, airplanes and ships. The models were obtained from
publicly available commercial libraries (Digimation, Dosch
3D). They were segmented and labeled semi-automatically
[17]. Statistics for the datasets are shown in Table 1.

Airplanes Animals Ships
# of source shapes 100 69 42

# of categories 7 11 14
# of components 881 593 639

# of attributes 59 81 21

Table 1: Input datasets.

COMPARING ATTRIBIT TO A CATALOG-DRIVEN
INTERFACE
We ran an experiment to test the following hypothesis for 3D
content creation: high-level attributes help accomplish cer-
tain types of content creation tasks more effectively than an
alternative data-driven interface where components have to
be located by searching catalogs. We chose this comparison
for two reasons. The first reason is normalization: the two
interfaces can operate on identical input databases, differing
only in the semantic exploration aspects introduced in this pa-
per. The second reason is that catalog-driven drag-and-drop
interfaces have been shown to be highly accessible to first-
time designers in both industrial [24] and academic [6] set-
tings. We chose the state-of-the-art “Modeling by Assembly”
(MBA) interface of Chaudhuri et al. [6], which leverages
context-sensitive component suggestions. We restricted the
experiment to novice users to discount the influence of prior
experience with particular modeling interfaces, and because
a goal of both ATTRIBIT and MBA is to be as accessible as
possible to non-professionals.



Figure 5: Dogfight airplanes (top), high-security cargo ships
(middle) and cute animals (bottom) created by novice mod-
elers in 15 minutes with ATTRIBIT. Images of all 68 models
created in the study are provided in supplementary material.

Method
We recruited 37 persons ranging in age from 11 to 57 . Each
reported zero prior 3D modeling experience. We asked them
to perform the following content creation tasks:

Airplane. Create an airplane that is best suited to win a dog-
fight (one-on-one aerial combat) in a computer game.

Animal. Create the cutest possible toy for a small (∼7-year
old) child.

Ship. Create the best possible ship for carrying large
amounts of valuable cargo across a sea infested by modern-
day pirates.

The tasks were chosen to represent real-world open-ended de-
sign situations which did not directly correspond to maximiz-
ing any single attribute (e.g. no animal attribute was “cute”
or any synonym thereof).

Each participant completed one task using MBA, and one
using ATTRIBIT, with no indication of which interface was
“test” and which was “control”. We skinned the two inter-
faces identically and supplied them with identical segmented
and labeled datasets. We also let MBA use the state-of-the-art
probabilistic model of [17] (an improvement on [6]) and our
real-time inference algorithm for component suggestions.

The choice and order of both tasks and interfaces were ran-
domized. No participant was assigned the same task twice,
to eliminate the influence of memory of available parts in de-
signing new shapes. Each participant was given a 10 minute
orientation with each interface and then allowed 15 minutes
of unsupervised modeling time. In all, we collected 68 mod-
els: 13 airplanes, 13 animals and 8 ships with each interface
(to balance the numbers, the last participant was assigned
tasks and interfaces deterministically). A selection of the cre-
ated models are shown in Figure 5. Images of all models are
provided in the supplementary material.

Task ATTRIBIT MBA Both good Both bad
Airplane 278 142 163 19
Animal 265 196 53 102

Ship 226 166 150 96

(a) Model better accomplishes goal of task.

Task ATTRIBIT MBA Both good Both bad
Airplane 199 97 213 27
Animal 192 152 65 137

Ship 183 119 279 31

(b) Model is more plausible.

(c) Model is better in both goal and plausibility. Green:
ATTRIBIT, red: MBA. Statistics obtained from comparisons
of the same pair of models under both questions.

Table 2: Distribution of votes cast in blind evaluations of
user-created models by MTurk respondents. Overall, raters
favoured ATTRIBIT models over those created with MBA [6].

Evaluation
To evaluate how well the interfaces helped people accom-
plish tasks, we asked 71 Mechanical Turk respondents to do
blind comparisons of the created models. Each respondent
was asked 25 questions via a web survey. Each page of the
survey showed renderings of two shapes. One shape was ran-
domly selected from models created with ATTRIBIT, and the
other from models for the same task created with MBA. The
order was randomized. The respondent was asked to compare
either how well the two models accomplished the task (better
dogfighter, cuter toy, etc.), or how plausible they were. The
rater could say one shape was better than the other, or both
were equally good, or both were equally bad. After the rater
had answered all 25 questions, (s)he was presented the same
questions again in a different order, to check for consistency.
Raters with ≥ 8 inconsistent responses were discarded.

The results are in Table 2. Shapes created with ATTRIBIT
were preferred by proportions of 52.6% to 94.1% in terms of
both goal achievement and plausibility (Table 2c). All prefer-
ences for ATTRIBIT in Table 2 are statistically significant ac-
cording to a two-tailed Mann-Whitney U test with p < 0.05.

To see if participants actually found the semantic attributes
useful for accomplishing tasks, we logged how often individ-
ual attributes were used for exploration. Table 3 shows the top
attributes used to select the parts present in the final user mod-
els. The common attributes (“faster fuselages”, “less scary
heads”, “more modern hulls”) correspond to natural associa-
tions of adjectives with the tasks, which indicates that users
benefited from semantic controls to achieve design goals.

We also observed that participants could more easily explore
designs with ATTRIBIT, because parts do not need to be man-
ually positioned. This is supported by statistics from program



Task Part Most Popular Attributes

Airplane

Fuselage Fast, Military, Aerodynamic
Wing Delta-Shaped, Military, Aerodynamic
Tail Aerodynamic, Military, Less-Delta-Shaped
Engine Advanced, Fast, Strong
Weapon Dangerous, Less-Big, Pointed

Animal

Head Less-Scary, Less-Big, Rounded
Torso Curved, Rounded, Large
Leg Less-Agile, Stubby, Long
Tail Curled, Less-Big, Bushy
Ear Curved, Long, Floppy

Ship

Hull Fast, Less-Rounded, Modern
Weapon Large, Advanced
Cabin Modern
Antenna Military, Powerful, Tall
Funnel Less-Complex

Table 3: Most popular attributes used to select final parts
in user models. Part categories are ordered by decreasing
frequency of replacements explored using their top attributes.
Attributes for a part are ordered by decreasing frequency of
replacements initiated using them. “Less-” indicates chosen
parts came from the lower half of the ranking for the attribute
(no prefix indicates parts were chosen from the upper half).

logs: on average, participants saw 243.4 distinct designs with
ATTRIBIT vs 24.6 designs with MBA, a 9.9x improvement.

Two participants told us that without ATTRIBIT, they would
not have been able to fulfill the airplane and ship tasks as they
lacked the necessary domain knowledge to assemble suitable
models. Informal feedback from others also showed encour-
aging support for ATTRIBIT.

RANKING QUALITY AND COMPUTATIONAL COMPLEXITY
We evaluated our ranking method by test ranking error: the
fraction of test pairs where the predicted relative ordering
contradicts ground truth. We used leave-one-out mode, itera-
tively omitting one element from the training set and testing
on all pairs containing that element. As a baseline, the hu-
man inconsistency (fraction of times a human ranking for a
pair contradicted the majority vote) was 14.0%. The lowest
average test ranking error (20.4%) was obtained with the sig-
moid loss function and attribute strengths as additional fea-
tures. Using only the sigmoid, hinge and quad loss functions,
the average error was 20.9%, 21.1% and 21.1% respectively.

Training an attribute is O(P ·D) where P is number of train-
ing pairs and D is feature vector size. Evaluating the ranking
score per attribute is O(N · D), where N is component cat-
egory size. Practically, training the model and ranking the
parts for each attribute took ∼10 minutes in Matlab on an i7.

APPLICATION TO WEB DESIGN
We believe high-level attributes constitute a viable design
paradigm in many different visual (and possibly non-visual)
domains. To demonstrate that our approach generalizes, we
applied it to an important non-3D domain: web page design.

We collected 30 WordPress blog templates
(http://wordpress.com), recreated by hand to have
compatible DOM structure (background, body, sidebar, title
font, header image). Since we focused on exploring attribute
variations, we did not experiment with more sophisticated
style transfer methods [21] to work with unmodified HTML
sources: this forms an interesting avenue for future work.

Web page components were of two types: images and (styled)
text. Their feature vectors comprised image and font de-
scriptors respectively, as described in the Appendix. We set
up Mechanical Turk surveys analogously to 3D shapes, re-
placing “shape” with “web page” in the survey text. The
attributes learned for web page components were: artistic,
casual, cheerful, colorful, creative, cute, elegant, emphatic,
modern, professional, romantic, simple and welcoming.

At runtime, components were swapped into the current tem-
plate by exchanging matched CSS/HTML blocks as attributes
were varied with sliders. Joint ranking was performed on all
components using a simple handwritten model that tries to
maintain compatibility with dominant design elements (e.g.
background) or between associated elements (e.g. title font
and header image). The wheel widget was not relevant for
this domain and was omitted. Two sequences of novel web
designs created with ATTRIBIT are shown in Figure 6. The
“casual” sequence progresses from bare, formal pages to
bright, colorful pages, matching our intuition of “casual”. A
similarly meaningful progression holds for “artistic”.

DISCUSSION
This paper introduces an approach for people to create visual
content by exploring an assembly-based space of designs with
commands based on linguistic terms. We also demonstrate a
method to learn relative attributes for 3D shapes. During ex-
periments, we find it is more effective for 3D modeling with
high-level design goals compared to related prior work.

Although our initial results are encouraging, there are limita-
tions of the current implementation and questions for future
research. First, our interface based on sliders to control rel-
ative attributes is a first prototype. It will be interesting to
explore other interactions for adjusting semantic attributes,
e.g. using voice input and natural language processing.

Second, our current system only allows creation of new con-
tent by combining components of existing examples. It will
be interesting to study how relative attributes can be mapped
back to design parameters to synthesize completely novel
designs, for example by incorporating attributes directly in
probabilistic models of shapes and design patterns [17, 34].

Third, attributes that do not increase monotonically in the se-
lected feature space cannot be learned effectively with the
current method and would require a more complex approach.

Fourth, our assembly-based system leverages highly struc-
tured databases of examples containing consistent segmen-
tations and alignments of components. While many data sets
are available of this type, it would be nice to relax this con-
straint by inferring such structures automatically, for example
using methods described in [18, 19, 21]).

http://wordpress.com


(a) Less (left) to more (right) “casual” novel web pages.

(b) Less (left) to more (right) “artistic” novel web pages.

Figure 6: Novel web page designs created with ATTRIBIT using components from 30 exemplars. Attributes learned for web pages
were: artistic, casual, cheerful, colorful, creative, cute, elegant, emphatic, modern, professional, romantic, simple, welcoming.

Finally, our study has considered design tasks only in the do-
mains of 3D modeling and web page design. It will be in-
teresting to investigate the range of application domains for
which design with semantic attributes is possible.
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APPENDIX

Automatic Placement and Stitching
It can be tedious to assemble designs from components man-
ually. For 3D shapes, we developed a placement algorithm to
automatically readjust the assembly to accommodate newly
added parts (re-scaled to have comparable relative scales
[17]). A preprocessing step records “slots” for each part that
connect it to others in its source shape. At runtime, we sort
all parts in the assembly by decreasing average part scale of
their categories, yielding a sequence p1, p2, p3, . . . . The first
(canonically largest) part p1 is held fixed. The second part p2
is placed relative to it by identifying valid connection points
between the two parts. If slots with matching labels (e.g.
leg-torso) exist, they constitute these connection points. Else,
we check if any part p′1 from the category of p1 exists in the
source mesh of p2. If the check succeeds, we map the connec-
tion points between p′1 and p2 to p1 via non-rigid registration
and use them to attach p2 to p1. If the check fails, we try with
p1 and p2 exchanged. The process repeats with the next part
in the sorted order. Parts are smoothly stitched together using
the method described by Chaudhuri et al. [6].

Features for 3D Shape Components
The feature vector for a part comprises: i) low-level geomet-
ric features (same as [17]): part scales, histograms of cur-
vature, shape diameter, and light-field descriptor values [7]
— the dimensionality is reduced by PCA; ii) high-level fea-
tures representing nonlinear transformations of the low-level
features. Specifically, the high-level features are probabili-
ties for the part to belong to each part and shape “style” esti-
mated by a statistical model [17]. The probabilities character-
ize soft memberships of the part in these visual “styles”, and
also take into account the context of the parent shape of the
part. This context provides additional useful information for
the part (e.g. that it belonged to a dinosaur).

Features for Web Page Components
The feature vector for a web page component that is an im-
age (background or header) includes: i) color histograms in
CIE L*a*b space (4 bins per channel) and ii) the GIST de-
scriptor [26] with a 4 × 4 spatial resolution, where each bin
contains the corresponding image region’s average response
to steerable filters at 6 orientations and 4 scales.

The feature vector for a web page component containing text
(sidebar/body/title) includes: i) histograms of curvature of
character outlines (10 bins), ii) 32 Fourier coefficients of the
signal representing the distance of the outlines to their cen-
troids, iii) area coverage of characters w.r.t. their bounding
rectangle, iv) aspect ratio of characters, and v) width of pairs
of letters divided by their height. These features are measured
for each character individually: we use the median values as
final features. In addition, we include features from the CSS
style: vi) a boolean indicating whether the font is italicized,
vii) a boolean indicating whether the font is bold, and viii) the
font size. Finally, each feature vector is augmented with non-
linear transformations of the low-level features from a proba-
bilistic model, analogously to 3D shape components.

http://www.spore.com
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