
Functionality Preserving Shape Style Transfer
Zhaoliang Lun1 Evangelos Kalogerakis1 Rui Wang1 Alla Sheffer2

1University of Massachusetts Amherst 2University of British Columbia

Figure 1: Our algorithm transfers the geometric style of three exemplars, cabinet, loveseat, and sugar pot (left, highlighted with arrows), to
the rest of the objects in the scene, while preserving the target functionality (right). Please zoom-in to see more details.

Abstract

When geometric models with a desired combination of style and
functionality are not available, they currently need to be created
manually. We facilitate algorithmic synthesis of 3D models of man-
made shapes which combines user-specified style, described via an
exemplar shape, and functionality, encoded by a functionally differ-
ent target shape. Our method automatically transfers the style of the
exemplar to the target, creating the desired combination. The main
challenge in performing cross-functional style transfer is to implic-
itly separate an object’s style from its function: while stylistically
the output shapes should be as close as possible to the exemplar,
their original functionality and structure, as encoded by the target,
should be strictly preserved. Recent literature point to the presence
of similarly shaped, salient geometric elements as a main indicator
of stylistic similarity between 3D shapes. We therefore transfer the
exemplar style to the target via a sequence of element-level opera-
tions.We allow only compatible operations, ones that do not affect
the target functionality. To this end, we introduce a cross-structural
element compatibility metric that estimates the impact of each op-
eration on the edited shape. Our metric is based on the global con-
text and coarse geometry of evaluated elements, and is trained on
databases of 3D objects. We use this metric to cast style transfer as
a tabu search, which incrementally updates the target shape using
compatible operations, progressively increasing its style similarity
to the exemplar while strictly maintaining its functionality at each
step. We evaluate our framework across a range of man-made ob-
jects including furniture, light fixtures, and tableware, and perform
a number of user studies confirming that it produces convincing
outputs combining the desired style and function.

Keywords: style analysis, shape synthesis, style-vs-function

Concepts: •Computing methodologies→ Shape modeling;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SA ’16 Technical Papers, December 05-08, 2016, Macao
ISBN: 978-1-4503-4514-9/16/12
DOI: http://dx.doi.org/10.1145/2980179.2980237

Figure 2: Transferring a style from a table to a TV stand (a) without
(b) and with (c) functionality constraints in place.

1 Introduction

Human living spaces are typically populated with groups of func-
tionally different household objects which share a common style
that is reflective of both their temporal and geographic context and
the personal preferences of their owners. To model believable vir-
tual 3D scenes, artists aim to similarly populate them with stylis-
tically coherent sets of objects and to select a style reflective of
the desired scene context. Unfortunately, while large databases of
3D man-made objects already exist, sets of functionally diverse
shapes in a particular style are often not available. Synthesiz-
ing 3D objects with desired functionality and style from scratch
is time-consuming and expertise-intensive. Instead, we propose a
novel shape synthesis algorithm that transfers the style of an exem-
plar shape to structurally and functionally different target objects
while retaining target functionality (Figure 1). Using our frame-
work, instead of locating or generating an entire set of functionally
different objects in a desired style, users need to locate or create
a single exemplar, a much easier task. By enabling algorithmic,
cross-functional, exemplar-to-target style transfer we significantly
simplify and speed up the modeling of coordinated virtual environ-
ments.

The main challenge in style transfer between objects with different
functionality is to implicitly separate style from function: while
each output should stylistically look similar to the exemplar, it
should fully retain the functionality of the target (Figure 2). Pre-
vious attempts at achieving this goal addressed only very narrow
special cases of 3D style transfer: transfer of part scales across
co-segmented shapes [Xu et al. 2010] and analogy-based transfer
which employs an extra source model as input [Ma et al. 2014].
Our framework is much more general than these approaches and
requires significantly less user input (Section 2). Most of the results
shown in this paper, including those in Figure 1, are not attainable
by previous methods.

Conceptually, we can formulate style transfer as a constrained opti-

http://dx.doi.org/10.1145/2980179.2980237

Figure 3: (top) Using the same exemplar with two different same-
class targets may lead to different outputs due to variations in target
structure. (bottom) Using different exemplars and the same target
predictably generates outputs with distinct styles.

mization problem: given an exemplar and a target shape, construct
an output that preserves the target shape’s structure and function-
ality, while minimizing the style distance between the output and
the exemplar. Recent research [Lun et al. 2015; Liu et al. 2015b] as
well as descriptions of style common in art history literature [Nut-
ting 1928; Lewis 2008] argue for encoding style via fine-level ge-
ometric properties of shape elements, or separable object parts and
sub-parts. Shapes are deemed to be more stylistically similar if
they share more geometrically similar elements, and have fewer un-
shared decorative features. Following these observations, we define
our style transfer method around element level operations - substi-
tution, addition, removal, and deformation.

We first hierarchically segment the models (Section 4) and then ap-
ply a sequence of operations that minimizes the style distance [Lun
et al. 2015] between the target and the exemplar, using a tabu search
framework (Section 3). We only permit compatible operations, or
ones that maintain the original functionality of the output model.
To this end we introduce new element and shape compatibility met-
rics (Section 5) inspired by design literature [Norman 1988] and
recent research [Liu et al. 2015b] that suggest that gross form and
arrangement of elements within a shape are strongly correlated to
its functionality.

We consequently predict that preserving gross element form and
arrangement indirectly preserves shape functionality. Furthermore
we expect that the more similar these structural properties are, the
more likely are the elements and the shapes containing them to be
functionally compatible. Thus, our compatibility measure is based
around element overall shape and their context within their respec-
tive shapes. We encode these properties by considering the fea-
tures of the individual elements, their neighbors, and their symmet-
ric counterparts, and accumulating those into a graph kernel based
formulation [Laga et al. 2013]. Contrary to Laga et al. who seek
to compute semantic part correspondences within the same class,
the features we encode within the graph kernel are selected to eval-
uate functional compatibility across different classes. We employ
a learning based approach to derive robust metric parameters using
automatically generated training datasets. Specifically we note that
sets of coordinated same style shapes in online shape databases can
provide insights on element compatibility. In particular the con-
texts of similarly shaped, and hence likely compatible, elements lo-
cated on differently structured set shapes provide valuable cues as
to the intercalation between compatibility and context. Our result-
ing compatibility metric is validated to be well aligned with human
perception (Section 9).

The compatible operations supported by our framework are specif-
ically designed to maintain the target structure by preserving ele-
ment connectivity during edits (Figure 9). In particular, our substi-
tution and addition operations (Section 6) assemble the new outputs
by applying a restricted set of linear transformations to the newly
added-in element and the elements of the current model. The im-
posed restrictions are designed to simultaneously maintain the out-
put structure and preserve exemplar element style.

The output geometry we produce is impacted by the choice of
the target shape (Figure 3, top), with different target shapes, even
within the same narrow class, sometimes being more or less
amenable to style transfer from a particular exemplar. To facilitate
the selection of the most adaptable target for each exemplar we al-
low users to specify a target shape class rather than a specific target
shape. We then employ a variant of our compatibility measure to
select the most adaptable target object within a database of shapes
in the specified class (Section 8).

Our algorithm’s settings are learned from perceptual and geomet-
ric data and aim to achieve results that suit a typical user. Since
style-function separation is necessarily subjective, to account for
personal preferences we support computation of multiple alterna-
tives solutions, with a range of style similarity scores and compati-
bility thresholds. We then provide the user with both the best result,
generated with parameters empirically determined to be optimal, as
well as a ranked list of alternatives.

Contribution. Our main contribution is a new algorithm for ge-
ometric style transfer between models of man-made household ob-
jects with different structure and functionality. Our method is sig-
nificantly more general and requires less input than previous tech-
niques. It successfully maintains fine-grained output functionality
without specifically identifying functional parts or elements (Fig-
ure 1). The three technical components that form this method are
the general framework, based around element-level operations, a
new element compatibility measure, and a slot alignment algorithm
that balances functionality and style. Our major technical contribu-
tion, which has many applications beyond style transfer, is the new
compatibility metric that measures functional similarities between
objects across a range of granularities, from fine elements, to coarse
geometric parts and all the way to the entire models.

We validate our work in a number of ways. We provide a gallery of
results both in the main paper and the supplementary material, in-
cluding both the top scoring outputs and the suggested alternatives.
To evaluate the effectiveness of our method we conduct three user
studies validating our method’s ability to plausibly transfer the ex-
emplar style to the target; confirming its ability to retain the target
functionality; and comparing our functional compatibility metric
against prior work.

2 Related Work

We build upon previous work in shape style and function analysis,
part correspondence, part-based shape synthesis, and style transfer.

Style analysis. A large number of works explore fine-grained
and style similarities between shapes in the same functional class
[Xu et al. 2010; Kalogerakis et al. 2012; Huang et al. 2013; Yumer
and Kara 2014; Kleiman et al. 2015]. They offer few insights on
style similarity evaluation between models in different functional
classes, or categories. More recent works aim to fill this gap: Liu
et al. [2015b] propose a metric for stylistic compatibility between
furniture learned from collections of 3D scenes, while Lun et al.
[2015] introduce a more generic structure-invariant style similar-
ity measure applicable to multiple categories of man-made shapes.
Both measures are driven by analysis of variation in fine details
across model parts and sub-parts. Specifically, Liu et al. observe
that the functionality of objects is strongly correlated to the gross
shape and arrangement of their major parts, while style is strongly
linked to the fine geometric details of these parts. Similarly, the
work of Lun et al. is driven by observations in art history litera-
ture [Nutting 1928; Lewis 2008] that point to the presence of simi-
larly shaped, salient, geometric elements across analyzed shapes as
a key indicator of stylistic similarity.

While neither paper makes any suggestions as to how to reduce
style distance between shapes, the insights they provide inspire our

Figure 4: Part compatibility: [Laga et al. 2013] wrongly iden-
tify the highlighted parts (center) as compatible to those on the
left. Compatible parts correctly identified by our method (right) can
share same functionality (top) but can also have different function
(bottom) yet be safe to swap with those on the left without reducing
object functionality.

work. We note that regardless of which of these two style distance
measures we use, the distance between the exemplar and target can
be decreased by increasing the proportion of similarly shaped ele-
ments on them, e.g. by replacing elements on the target with ones
from the exemplar, or by deforming target elements to be more geo-
metrically similar to exemplar ones. However, unconstrained target
element editing can easily break target functionality. The key con-
tribution of our work is a method that preserves target functionality
while performing element-level style transferring edits that mini-
mize exemplar-target style distance.

Part Correspondence. Numerous existing methods compute
correspondences between compatible parts of objects within the
same class or co-segment such objects into such corresponding
parts, see [van Kaick et al. 2011; Xu et al. 2016] for recent surveys.
Recent methods leverage structural similarities between shapes to
extract functional part correspondences. Zheng et al. [2013] match
specific types of shape substructures (called SFARR) that have the
form of part triplets: two symmetric parts and a third part con-
necting the two. Such special substructures do not exist in many
man-made shape categories (e.g., lamps, cutlery) and span only a
small subset of compatible parts in others. Liu et al. [2015a] extract
common substructures on shapes through manual annotation of cor-
responding parts. Our method instead uses more general structural
relationships to measure functional compatibility between elements
and does not require any user interaction.

Laga et al. [2013] use graph kernels to evaluate functional part cor-
respondences between shapes within the same class. Our work
adopts some ideas from this work, and in particular the use of
graph kernels to measure element compatibility. As shown by our
comparisons to [Laga et al. 2013] (Figure 4, Section 9), apply-
ing graph kernels successfully to evaluate element compatibility
on structurally different shapes requires automatic kernel parameter
adaptation, different geometric feature sets and different encoding
of graph edge relationships. In particular, instead of hand-tuning
graph kernels, we employ a learning approach detailed in Section 5
to automatically adapt weights of appropriate feature descriptors
and graph kernel parameters impacting cross-functional compati-
bility.

A number of recent works compute functional correspondences be-
tween points, parts, or fuzzy regions on different shapes by ana-
lyzing their potential interactions with either other objects in the
scene [Hu et al. 2015; Hu et al. 2016], or with posed human
avatars [Jiang et al. 2013; Kim et al. 2014; Savva et al. 2014;
Zhu et al. 2014; Savva et al. 2016]. The detected interactions re-
late parts with similar gross functionality across objects within the
same broad shape class and with sufficient input can be extended to
handle patch correspondences with similar interaction types across

Figure 5: Example triplets that violate the assumptions of [Ma
et al. 2014]: (left) source and exemplar with misaligned decora-
tive elements (right) only a small portion of the target’s surface
(legs) has meaningful source counterparts. (bottom) We plausibly
transfer style in both cases, without using source models.

shapes with different functionality [Hu et al. 2016]. However, such
correspondences can only be estimated for patches with specific
types of object interactions and require large amounts of external
context data. Consequently it is likely unrealistic to extend these
methods beyond detecting gross functional part correspondences.
Our work uses readily available coordinated object scenes as the
only training input, and computes fine-level element compatibility,
necessary for synthesis of detailed functional geometric shapes in a
given style. We demonstrate that compatibility can be successfully
evaluated without explicit functionality detection.

Part-based shape synthesis. Interactive methods for part-
based shape synthesis rely on users to specify and edit parts to as-
semble a shape, either directly [Funkhouser et al. 2004; Kreavoy
et al. 2007] or indirectly through semantic handles, attributes and
suggestion mechanisms [Chaudhuri et al. 2011; Yumer et al. 2015],
and to explicitly control output style and function.

Shape grammars are used to generate new models, either by repeat-
ing structural patterns specified manually by the user, or through au-
tomatic inference of such patterns from a set of examples [Bokeloh
et al. 2010; Talton et al. 2012]. The shape structure and functional-
ity are determined by the grammar, which operates within a partic-
ular shape class, or sub-class.

Multiple methods generate new shapes by combining parts from
objects within the same functional class [Kalogerakis et al. 2012;
Huang et al. 2015a; Xu et al. 2012; Huang et al. 2015b], employing
part correspondences generated via co-segmentation and labeling
methods designed to operate on shapes with common functionality
and coarse structure. After assembling models using co-segmented
same class-shapes as input, Huang et al. [2015b] subsequently de-
form them to best fit input images. [Yumer and Kara 2014] fa-
cilitates structure preserving shape deformation by providing users
with deformation handles trained on co-segmented shapes within
a class. All these methods rely on co-segmentation or correspon-
dences between parts of objects within a single class. Our frame-
work is designed for transferring element style between shapes in
vastly different classes, requiring a cross-functional element com-
patibility measure and does not require any prior co-segmentation
or part labeling.

Style transfer. Researchers have explored style transfer for 2D
curves, e.g. [Hertzmann et al. 2002; Li et al. 2013] and im-
ages [Hertzmann et al. 2001]. While insights from these frame-
works are useful for understanding the conceptual notion of style
transfer, as explained by [Xu et al. 2010; Ma et al. 2014], algo-
rithms developed for the 2D setting cannot be readily extended to
3D space.

There had been no attempts to address generic style transfer for
3D shapes. However two recent methods address special cases
of this problem [Xu et al. 2010; Ma et al. 2014]. Given a pre-
defined coarse segmentation of the exemplar and target shapes into
corresponding parts, Xu et al. [2010] use these correspondences to
anisotropically scale target parts to fit the proportions of the match-

Figure 6: Framework overview.

Figure 7: Same style objects frequently have both similarly shaped
compatible elements (here legs) as well as similar curves positioned
on incompatible parts (here curved corner features and contours)
and similar element proportions.

ing parts on the exemplar. The method has limited applicability, as
it assumes a meaningful part level correspondence between the ex-
emplar and target, and cannot handle style properties beyond scale.

Following [Hertzmann et al. 2001; Hertzmann et al. 2002], Ma et
al. [2014] require a triplet of inputs: an exemplar, a source, and
a target, where the source and target are expected to share the
same style but have different functionality, while the source and
exemplar are expected to have the same functionality and struc-
ture. They assemble the output by combining exemplar and target
surface patches guided by a combination of a dense exemplar to
source mapping and a piece-wise similarity transformation between
the source and target. Their method makes a number of strong as-
sumptions, that rarely hold even when a source model which fits
the generic criteria above is available (Figure 5). For the transfer
to be successful, they implicitly assume that decorative elements
on the exemplar and source are co-located, and assume most target
surfaces to have meaningful source counterparts, related via simple
similarity transformations (target surfaces with no source counter-
parts are left untouched by the transfer). Our framework has none
of these limitations: it does not require a source or a compatible
segmentation, and can handle a far wider range of inputs than ei-
ther of the methods above.

3 Style Transfer Framework

Our framework takes an exemplar shape and a target shape in a dif-
ferent functional class as input. Users can either provide a specific
target shape, or alternatively point the algorithm to a database of
shapes within a target class. In the latter case our method auto-
matically analyzes the database and extracts the target shape that
is anticipated to be easiest to transfer exemplar style to while still
maintaining its functionality (Section 8).

Given the exemplar and target shapes, we search for modifications
to the target shape which bring it stylistically closer to the exemplar.
In evaluating style we follow previous work which focuses on fine-
level geometric features of model elements, or parts and sub-parts,
as major style cues. In particular, [Lun et al. 2015] identify three
factors affecting element-level style similarity: similar geometric
surface features across elements, similarity between dominant fea-
ture and contour curves, and element proportions (Figure 7). Using
this measure the style distance between two model decreases as the
number of similar elements on them increases, or the number of
dissimilar elements decreases.

Our method is consequently designed around element level opera-

tions. It begins by hierarchically segmenting both the exemplar and
the target into potential geometric elements (Section 4) and then
employs a set of element-level target modifications that reduce the
style distance between the output and the exemplar (Figure 6). To
measure this distance we use the style measure of [Lun et al. 2015]
which is demonstrated to work well on a large range on household
object categories. We perform only compatible operations, ones
that do not violate the target functionality. We evaluate compatibil-
ity as discussed in Section 5.

Operations. The simplest and most common operation we em-
ploy is substituting elements on the current shape with (appropri-
ately scaled) exemplar elements. By definition any such substi-
tution reduces the style distance between shapes; however, it is
rarely possible to replace every single portion of the target shape
with exemplar elements without violating functionality. We there-
fore use three additional operations that can improve style similarity
once substitution is no longer possible: curve-based element defor-
mation, element addition, and element removal. Our deformation
step takes as input a pair of dominant, decorative curves, or curve
handles, on pairs of exemplar and current models, and deform the
current model by substituting the current curve with its (appropri-
ately scaled) exemplar counterpart adjusting the rest of the model’s
geometry to match the new curve (Section 7). Our addition and
removal operations are intended to process purely decorative ele-
ments (i.e., ones whose presence does not affect overall shape com-
patibility) occasionally present on either the exemplar or the target
models which do not have a counterpart on the other model. Ad-
dition of decorative exemplar elements to the target shape, and re-
moval of decorative target elements facilitate further improvement
of style similarity between the two models.

When a target shape contains symmetric elements (such as four legs
in a chair), processing these elements separately can break this sym-
metry, potentially degrading output functionality and negatively af-
fecting its look. To ensure that our operations preserve target shape
symmetries, we detect all replicated elements and curve handles on
the target shape, and apply each operation to an entire symmetry
group instead of to a single element.

Tabu Search. Our optimization procedure is designed to select
from a large set of possible target shape modifications the modifi-
cations which will provide maximal style adaptation while preserv-
ing target functionality. Our algorithm follows the concept of tabu
search [Glover and Laguna 1997]. A detailed pseudocode of our
method is provided in the Appendix.

Throughout the optimization, we maintain a list of seed shapes
which is initialized with the given target shape. At each iteration,
we remove a seed shape from the list and attempt to bring it closer,
style-wise, to the exemplar using one of the four supported oper-
ations. To explore the most promising solutions first, we always
select the seed shape currently closest to the exemplar in terms of
style. If the attempt to improve it through allowable operations suc-
ceeds, then the improved shape is inserted into the seed list. If
the attempt yields a shape which has been generated before, or if
all evaluated operations violate the functionality preservation con-
straints, then we discard and forbid the output. In this manner, the
tabu search only searches the space of valid target shape modifi-
cations (a much smaller subset of the set of all possible modifica-
tions), and avoids performing redundant operations on previously
generated shapes or performing operations on functionally implau-
sible shapes. If no more operations can be performed on any shapes
in the seed list, the optimization loop terminates.

To reduce search space and avoid redundant operations we first per-
form tabu search using only element substitutions, then once com-
patible style-distance-reducing substitutions are exhausted we re-
peat the search using curve-based deformation, and finally use the
same process for adding and then for removing decorative elements.

Figure 8: Hierarchical segmentation and extracted curves.

Improvement Step. Given a seed shape, we aim to perform a
compatible editing operation that will maximally reduce the style
distance from the seed to the exemplar. We thus cycle through all
possible operations of the currently examined type and select the
one that reduces style distance the most. We can only compute
the exact impact of each operation after it is performed, since most
operations change the geometry of both the elements involved and
their surroundings. However, for both substitution and deforma-
tion we can reasonably predict beforehand if the operation is in-
compatible, or if it does little to reduce style distance. We rely on
such predictions to avoid unnecessary computations. To examine
if an operation is a priori incompatible, we use the compatibility
measure and the threshold learned from training data discussed in
Section 5, and only proceed with full computation if the predicted
compatibility is higher than the threshold. We also avoid opera-
tions predicted to reduce the style distance by less than a minimum
threshold. Style distances are normalized to the [0, 1] interval and
we use 1% as a threshold. Once the operation is performed we
reassess both compatibility and style distance, rejecting operations
that after the fact violate compatibility or do not sufficiently reduce
style distance. We add the compatible result with the smallest dis-
tance to the exemplar to the list of seeds.

Substitution. Give a pair of compatible elements in the exemplar
and seed shape, we seek to replace the seed shape element, includ-
ing any of its symmetric counterparts, with the corresponding ele-
ment on the exemplar shape. This step requires alignment or cov-
erage of slots [Kalogerakis et al. 2012], i.e. areas on the elements
which are in contact with the rest of the shape (Figure 9). The align-
ment step, Section 6, balances two potentially contradictory goals:
it seeks to preserve output functionality and to minimally change
the style, and specifically the proportions, of both the substituted-in
and pre-existing output elements (Figure 9).

Curve-Based Deformation. Our curve based deformation step
only considers seed elements originating from the target, and eval-
uates the compatibility of each possible deformation using a variant
of the compatibility measure designed for curves (Section 5). The
deformation embeds the exemplar curve into the candidate shape
replacing its target counterpart and adapting the surrounding sur-
face, see Section 7.

Element Additions. Addition is performed after substitution and
deformation, the two operations expected to be most effective at
minimizing exemplar-output style distance. To add a new element
to a model one needs to know the attachment point or slot to place
it at. We thus only consider adding elements that on the exemplar
are immediately adjacent to an element previously substituted-in or
added to the seed. To add the element we first place it next to this
prior neighbor using the slots they shared on the exemplar. If after
this step the element has any uncovered slots left, we perform slot
alignment to cover them (Section 6).

Element removals. Finally, we perform removal of target ele-
ments, deemed decorative, i.e. having only marginal impact on
functionality as measured by our per-object compatibility function.
We only remove elements if the slots they share with the rest of
the model are closed surfaces, i.e. if no gaping holes are left af-
ter removal. Typically only a tiny fraction of elements fits these
constraints.

Termination. Once a seed shape can no longer be improved it
is considered to be a terminal solution, or in other words it corre-
sponds to a local minimum. In this case, we store it in an output
list and proceed to examine the next best seed shape in our search
list, terminating when this list is empty. The tabu search typically
computes and evaluates a few dozen solutions.

Output. If the user seeks a single output, then at the end of the
process we return the shape in the output list closest to the exemplar
in terms of style distance. To provide multiple results with different
emphasis on target functionality preservation versus exemplar style
adaptation, we add to the output list all the seed models produced
during the tabu search, as well as models generated with more lax
compatibility thresholds, see supplementary material.

4 Pre-Processing and Segmentation

Our style transfer framework requires that models are first hierar-
chically segmented into meaningful geometric elements. We as-
sume that the input shapes are represented as partially connected
meshes (polygon soups), are consistently scaled and oriented (have
the same upright orientation, and face the same front direction
when that direction is well defined). Consistent orientations can
be found manually or by using the automatic method by Huang et
al. [2013]. Consistent scalings are computed through bounding
box-based alignment.

Segmentation. We follow previous works that use convexity as a
criterion for shape segmentation into meaningful parts or elements.
At the finest hierarchy scale, we generate geometric elements by
using the approximate convex decomposition technique by [Asafi
et al. 2013]. We generate elements at a number of scales by repeat-
ing the segmentation with different convexity thresholds (0.3, 0.5
and 0.7). Since when designing 3D models of man-made objects
artists often leave functionally meaningful parts as separate com-
ponents we also add such separate connected components as poten-
tial elements. We introduce additional larger elements by merging
neighboring elements when they jointly approximate a portion of a
primitive (box, sphere, or cylinder). The primitive-based element
grouping is based on [Yumer and Kara 2012]. The result of this
step is a collection of a few dozen elements at a range of scales
(Figure 8, left). We also detect symmetry groups of elememts by
approximately matching them through ICP.

For each shape we build a graph representing its structure, which
is consequently used for compatibility evaluation (Section 5). The
nodes of the graph are the different elements (typically 10-50 el-
ements per shape). The graph has three types of edges: we con-
nect nodes by an adjacency edge if their corresponding elements
are adjacent; we create a symmetry edge connecting nodes whose
corresponding pairs of elements are related under a reflective, trans-
lational or rotational symmetry; and we create containment edges
between nodes corresponding to pairs of elements where one ele-
ment directly contains the other in the hierarchical segmentation.

Curve Handles. Our element deformation operation uses match-
ing curve handles on target and exemplar elements. Following the
style formulation of Lun et al [2015], which points to both feature
and contour curves as reflective of object style, we extract two types
of curve handles (Figure 8, right): view-independent ridges and val-
leys [Ohtake et al. 2004], and occluding contours. To compute the
latter we use 12 views uniformly distributed about the upright axis
at elevation angles of 0, 30, and 60 degrees above the horizontal
plane. We extract the feature curves as described in [Kalogerakis
et al. 2009], and hierarchically segment them along element bound-
aries.

5 Compatibility

To effectively transfer style we need to evaluate the impact of each
editing operation on the functionality of the edited shape. We an-
swer this question by using a set of compatibility measures that
predict the impact of our most commonly used operations - ele-
ment substitution and deformation before those are fully executed
and also assess the a posteriori impact of any operation on the out-
put functionality once completed.

We formulate substitution and deformation compatibility by con-
sidering the contextual similarity between the substituted elements
or deformation handles, and formulate shape-level similarity by an-
alyzing compatibility between pairs of elements on them.

5.1 Formulation

Previous research, e.g. [Liu et al. 2015b] as well as insights from
design literature [Norman 1988] point to the context and gross
shape of geometric elements as important features in determining
an object’s functionality. While we do not aim to detect functional-
ity, we speculate that elements with similar context and shape fea-
tures are more likely to be compatible, i.e. replacing one with the
other is less likely to negatively affect the functionality of the re-
sulting shape. For example consider the element pairs in Figure 4
- the seats on the sofa and armchair share similar relative locations
with respect to the overall object center, have comparable orienta-
tions, and similar local neighborhood structures; the same applies
to the “skirts” on the table and armchair at the bottom. Replacing
one with the other, using appropriate scaling will preserve the func-
tionality of the containing shapes. In contrast the skirt and the table
leg, or the sofa seat and the chair back may be geometrically simi-
lar but have very different context. Our metric is designed to reflect
these similarities and differences.

We encode each element’s functional and contextual properties us-
ing the element relation graph contracted as described in Section 4.
We then use a graph kernel-based similarity evaluation framework,
inspired by [Laga et al. 2013] to combine those into a single com-
patibility metric. In contrast to Laga et al. we design our graph ker-
nels to measure cross-class functional compatibility by choosing a
different set of feature descriptors and then learning their individual
importance and kernel parameters from training data. Our proce-
dure offered dramatic improvements in performance compared to
using the formulation of [Laga et al. 2013] as-is (Section 9).

Per-Element Descriptors. We encode each element’s gross ge-
ometry and context within the overall shape using the following set
of descriptors: the element’s relative position with respect to its
containing shape, encoded by the location of its markers such as
its center of mass, lowest and highest points with respect to global
object’s markers (center of mass and its projections on supporting
planes); its relative dimensions with respect to the object’s dimen-
sions; its mass distribution; and the relative orientation of the ele-
ment’s major axis with respect to the object’s coordinate axes. The
full set of the detailed 13 descriptors is provided in the Appendix.

Pairwise Descriptors. For each pair of elements connected by
an edge in our graph we compute two sets of relative pairwise de-
scriptors, using the same measurement as for individual elements,
but computed for each element with respect to its graph neighbor
rather than with respect to the containing object.

We assemble these descriptors into an element compatibility mea-
sure and learn their respective weights as discussed in Section 5.2.
Intuitively, the learned weights indicate which geometric descrip-
tors are more relevant for evaluating functional compatibility be-
tween elements on functionally different shapes.

Element Compatibility. We evaluate compatibility between pairs
of elements on two shapes by comparing the graph walks initiated
at their corresponding nodes in the respective graphs. Given an
element p in a shape S, an nth order (length) walk W (n)

S (p) is
defined as a finite sequence of n + 1 vertices and n edges forming
a continuous path in the graph. Given another element q in another
shape E, the nth order similarity K(n)(p, q), defined for the nth

order walks starting at p and q, is given by the recursive formula:

K(n)(p, q) = Knode(p, q)·
∑

p′∈N (p)

q′∈N (q)

Kedge(epp′ , eqq′)·K(n−1)(p′, q′)

(1)
where Knode(p, q) is a kernel function comparing node descriptors
for elements p and q; N (p) and N (q) represent the set of neigh-
boring elements for p and q respectively; andKedge(epp′ , eqq′) is a
kernel function comparing edge (i.e. pairwise) descriptors that rep-
resent relationships between elements. For n = 0 (0th order walk),
the kernel function only evaluates Knode(p, q).

We define the node and edge kernels as a weighted combination of
Radial Basis Function (RBF) kernels with learned parameters. The
kernels evaluate node similarity and edge similarity respectively as
follows:

Knode(p, q) =
∑
k

wk · exp
{
− D2

k(p, q)

2σ2
k

}
(2)

Kedge(epp′ , eqq′) = δ(epp′ , eqq′)
∑
l

wl·exp
{
−D

2
l (epp′ , eqq′)

2σ2
l

}
(3)

where Dk(p, q), Dl(epp′ , eqq′) are distances between the descrip-
tors of nodes and edges respectively, δ(epp′ , eqq′) is a binary func-
tion that returns 1 when the edges epp′ , eqq′ are of the same type
(symmetry, containment, or adjacency) and 0 otherwise.

Compatibility between elements p and q is then defined as a
weighted combination of nth order similarities between them
across a range of walk lengths n:

Kfunc(p, q) =
∑
n

wnK
(n)(p, q) (4)

where wn is a learned weight for each different walk length. For
computational efficiency, in our implementation we use walks up
to length 5, as in our experiments the learned weights assigned to
longer walks were negligible. The above similarity function is a
kernel function itself, and can therefore be normalized to ensure
consistent similarity values for graphs of different size [Lanckriet
et al. 2004]:

K̂func(p, q) =
Kfunc(p, q)√

Kfunc(p, p) ·Kfunc(q, q)
(5)

Given positive weights {wk}, {wl}, {wn}, our kernel is guaran-
teed to be positive definite, thus distances between elements can be
derived from the above kernel as follows [Schölkopf 2001]:

Dfunc(p, q) =
√
K(p, p)− 2K(p, q) +K(q, q) (6)

where K(p, p),K(q, q) represent the self-similarities of elements
in the graphs used for normalization.

To evaluate compatibility between pairs of symmetric group of el-
ements GE , GS , we find the best pairwise element match. If the
best match is compatible for substitution or deformation, this in-
dicates that at least one pair of elements are interchangeable. The
rest of the elements within their respective symmetric group can be

substituted or deformed under symmetry constraints. Thus, we use
the compatibility of the best element match for measuring group
compatibility Dfunc(GE , GS):

Dfunc(GE , GS) = min
p∈GE ,q∈GS

Dfunc(p, q). (7)

Shape Compatibility. We employ the shape compatibility mea-
sure after each editing operation, to evaluate whether the resulting
new shape S′ is functionally compatible with the original target
one T . We define compatibility as the maximal compatibility dis-
tance between corresponding elements on the two shapes, seeking
the worst-case influence on shape compatibility:

Dfunc(S
′, T) = max

p∈T,p′∈S′
Dfunc(p, p

′) (8)

where p is an element on the original target shape, and p′ is its cor-
responding substituted or original element on the generated shape.
Note that while added or removed parts are not explicitly accounted
for by this metric, their presence or absence will be reflected in the
graph kernels of their neighboring elements.

Curve Compatibility. To evaluate curve compatibility for curve-
based deformation, we take into account the compatibility of the
elements they belong to, and the similarity between the shape, rel-
ative location and size of the curves within the overall shape. The
list of curve descriptors is provided in the Appendix.

For a pair of view-independent curves e, f belonging to elements
p, q respectively, their compatibility is expressed as follows:

Kcurve(e, f) = Kfunc(p, q)+
∑
m

wm ·exp
{
−D

2
m(e, f)

2σ2
m

}
(9)

and Dm(e, f) represent distances between curve descriptors and
{wm}, {σm} are learned parameters. We note that the curves are
segmented according to our hierarchical element segmentation such
that the curve segments can be associated with the corresponding
element compatibilities.

For a pair of view-dependent curves e, f , we additionally take into
account the distance between the views they are generated from:

Kviewcurve(e, f) = Kcurve(e, f)+wv exp

{
−||v(e)− v(f)||2

2σ2
v

}
(10)

where v(e) and v(f) represent given 3D viewpoint location for
these two curves, and wv, σv are learned parameters.

Curve compatibility is defined by converting kernel similarity to
distance (as in Equation 6). Our deformation only pairs same-type
curves; that is, we do not match view-dependent curves on one
shape with view-independent curves on the other.

5.2 Parameter Learning

We algorithmically learn the parameters of our element and curve
compatibility measures. For element compatibility these include
the kernel weights {wk}k=1...K , {wl}l=1...L, {wn}n=1...N and
RBF variances {σk}k=1...K , {σl}l=1...L (58 parameters in total).
For curve compatibility these include the weights {wm}m=1...M ,
{σm}m=1...M and wv, σv (8 parameters in total). We use the same
learning procedure for both. We note that these parameters can
vary across object classes - compatibility criteria for chairs and so-
fas may differ from those for beds and cabinets. We consequently
learn these parameters separately for each pair of shape classes. In
our experiments we used coarse class classification with up to five

classes per broad shape category (e.g. tables, chairs, sofas, cabinets,
and beds for furniture).

Clearly, learning requires training data. One possibility to create a
training dataset is to manually specify pairs of compatible or incom-
patible elements or curves across shapes. However, creating such
a dataset requires human labor and supervision. Instead, we devel-
oped an automatic procedure to create training data. Specifically,
we observe that online repositories such as Google Warehouse al-
ready contain a significant number of coordinated sets of objects in
the same style. Since these shapes are designed to have the same
style, many of the objects in these scenes contain elements which
are identical up to an affine transformation. By construction these
elements are compatible, since they can be clearly substituted (sub-
ject to appropriate scaling) without affecting shape functionality.
Consequently, detected pairs of such compatible elements across
different models yield valuable training data for learning compat-
ibility parameters. We clearly detect only a subset of compatible
pairs since compatible elements may have different geometry even
on same set shapes. However, our compatibility function is based
on coarse-scale element properties and context and does not con-
sider fine-level element geometry. Thus, restricting our training
data to elements identical up to affine transformation, does not, in
our experience, bias our learning setup. On the assumption that
most random element substitutions would lead to structurally or
functionally invalid results, we complement our compatible pairs
with less compatible ones using random pair assignment.

Given a dataset of scenes downloaded from Google Warehouse,
we first segment each model, extracting elements and curves (Sec-
tion 4); we then use an ICP based alignment to compute all pairs
of elements approximately identical up to an affine transformation.
Given these training pairs, the goal of parameter learning is to com-
pute the set of parameters with which our compatibility function
will, on average, deem these pairs p, q more compatible than ele-
ment pairs which contain one of the elements in our compatible pair
and a randomly selected one - p, r or q, r. We use a probabilistic
framework that is well suited to handle such relative comparisons
for training and is known to be robust to outliers [Burges et al. 2005;
Tamuz et al. 2011]. We express the probability that a pair {p, q} is
more compatible than {p, r} (or more compactly pq . pr) as:

P (pq . pr) = σ
(
Dfunc(p, r)−Dfunc(p, q)

)
(11)

where σ(x) is a sigmoid function that converts the functionality
differences into probabilities. We also include an L1 norm as regu-
larization term that minimizes the weights assigned to the different
descriptors. The L1-norm regularization, proposed by Tibshirani
[1996], promotes sparsity by allowing some weights to dominate
while pushing others toward zero. In addition, when the number
of training pairs is small relative to the number of parameters, the
regularization encourages more zero weights, leading to a simpler
model with better predictive performance. Our regularizer is for-
mulated as follows:

P (w) = exp
(
− λ||w||1)

)
(12)

where the weight vector w includes all kernel weights. The reg-
ularization parameter λ controls the degree of regularization and
is automatically estimated through 10-fold cross-validation on the
training set.

Given T training triplets p, q, r, we learn the parameter values that
maximize the following likelihood:

L(w,σ) = lnP (w)+

T∑
t=1

lnP (pq[t] . pr[t])

(13)

Figure 9: Element alignment: (a) exemplar and target; (b) seed
model and substituted-in element with identified slots and their cov-
ers; (c) alignment using non-uniform scaling across the board; (d)
style and structure aware alignment.

where vector σ includes all variances, pq[t].pr[t] refers to the auto-
matically generated training triplet t. For element correspondences,
we train the weights and variances by maximizing the above regu-
larized likelihood function on the element training data for input
shapes per each pair of classes. Then for curve correspondences,
we train the weights and variances by again maximizing the same
likelihood function, but this time using curve training data for in-
put shapes per each pair of classes. We use bound constraints to
enforce all parameters to be positive. To maximize our regularized
likelihood function, we use the the L-BFGS-B method [Zhu et al.
1997]. We note that analytic gradients of our kernel functions with
respect to weights can be derived following a recursive formulation
explained in the Appendix. In our datasets, the number of our train-
ing inputs based on the ICP-aligned pairs varied from 25 to 300
depending on the pair of classes (most were above 100).

Automatic Threshold Selection. We use the detected element
and curve correspondences to algorithmically select the compati-
bility threshold ε used in our tabu search. For each pair of classes
c, c′, we set the threshold εc,c′ for element correspondence to the
maximum distance between corresponding elements in the training
data. We similarly use the maximum distance between correspond-
ing curves in our training data as the threshold for curve compati-
bility. We note that we can safely use these maximum distances as
thresholds since any outlier matches are pruned by the ICP match-
ing step.

6 Element Alignment

Part and element adjacencies within an object obviously impact its
functionality. In particular the locations of contact areas, or slots,
connecting each element to the rest of the model are likely to re-
flect on this element’s role within the larger whole. To preserve
target functionality when adding or substituting elements into an
edited seed shape we aim to, whenever possible, preserve all previ-
ously existing slots on both the incorporated element and the seed
model, i.e. to keep previously covered, or in contact areas, simi-
larly covered. We detect all slots on the seed shape and exemplar
element, using the algorithm developed by [Kalogerakis et al. 2012]
for part-based model synthesis. The identified slots include shared
boundary loops, in-contact surfaces, and part-intersections. To pre-
serve functionality, we treat object contacts with the ground plane
as additional slots. By construction, within a model each slot has an
opposite matching, or cover, slot. To assemble the new model, we
need to compute such covers for slots at the interface between the
seed shape and the new element, and then transform the elements
to bring all pairs of matching slots into contact (Figure 9).

Aligning, or bringing slots into contact, often requires changes to
element geometry, e.g. incorporating an armchair back into a sofa
requires stretching it. Yet, unconstrained changes to element shape,
can decrease the output functionality and negatively affect style
similarity with the exemplar. Thus in performing alignment we seek
to achieve the balance of changing element geometry enough to
provide coverage but with minimal style and function degradation.
While the method of Kraevoy et al. [2008] seeks to preserve geo-
metric features when non-uniformly resizing models, adapting it to

our setting and applying it on a per element basis using coverage
constraints is too computationally expensive. Instead, we facilitate
an effective yet efficient alignment computation using the following
framework. We first restrict the set of allowable per-element trans-
formations to translation, rotation, and axial scaling. By preventing
non-axial shear, and penalizing deviations from pure translation we
seek to weakly preserve element proportions and orientation. How-
ever, applying a penalty approach to all elements uniformly is insuf-
ficient. Even small non-uniform scaling can lead to visible artifacts
by breaking element symmetry (Figure 9c); and even small rota-
tions of anisotropic elements can affect their look and functionality.
We therefore disallow symmetry violating scaling and rotations that
change the direction of the major axis on anisotropic elements. To
detect both scenarios we use the element’s oriented bounding box
(OBB) . When an element has two or more OBB axes with roughly
similar length we constrain our transformations to maintain their
length ratio (we use 20% deviation as conservative threshold). We
only allow rotations for elements that are either isometric or that
have two near identical axis lengths, in the later case rotation is
allowed only within the plane span by these axes, using the same
threshold as above to detect similar axis lengths. We also note that
from a style perspective changes in thickness of thin elements are
particularly undesirable, and disallow such changes (an element is
considered thin if one of its axes is shorter than 10% of the sum of
all axis lengths).

As in many alignment settings we face a chicken-and-egg problem,
we need correspondences to perform the desired transformations,
but correspondences computed when two objects are far apart are
not reliable. We consequently use an iterative-closest-point (ICP)
strategy, iterating alignment and correspondence steps. We first ap-
proximately align the new element to the seed shape. For substitu-
tion we transform the incoming element to align its OBB with that
of the outgoing one. During addition, the added-in element by con-
struction has at least one adjacent exemplar element that had been
incorporated into the seed. We therefore similarly transform the
added-in element to align the slots it shares with those elements.
We then locate and pair seed and element slots nearest to one an-
other. For any unpaired slot we treat the closest points on the oppo-
site model as the matching covers.

At each subsequent alignment step, to minimize changes in element
proportions and orientations we first solve for closest slot alignment
using only translations. If this step is unsuccessful, we use the set of
permissible scaling constraints per element to perform a restricted
scale plus translation closest-point alignment of all participating el-
ements. For each element we restrict the scalings to the permissible
ones, while seeking to distribute the amount of scaling evenly be-
tween all elements. If and when this step fails we repeat the closest-
point alignment allowing restricted element rotations and scales.
For all symmetric groups of incorporated or seed elements, we con-
strain the transformations to preserve these symmetries. We iterate
between correspondence computation and alignment till distances
no longer improve or full coverage is achieved.

7 Curve Based Deformation

The input to our curve based deformation is a handle curve on
the currently processed seed shape and a corresponding exemplar
curve. Our deformation step modifies the seed by replacing the
handle with the exemplar curve while smoothly deforming the seed
surface so as to conform to the new curve geometry while preserv-
ing local surface details (Figure 10). While multiple surface defor-
mation methods exist, we found that the ARAP framework [Sorkine
and Alexa 2007] works well in our setup, as it supports curve defor-
mation handles and preserves local geometric features under signif-
icant handle deformations. To facilitate deformation, we first align
the endpoints of the exemplar curve with those of the handle curve
through translation and uniform scaling and use arc-length param-
eterization to define curve-to-curve correspondences. We then de-
form the seed model by moving handle vertices to corresponding

Figure 10: Curve based deformation without (center) and with
(right) swept surface edits.

locations on the transformed exemplar curve. Using, the original,
surface-based ARAP formulation as-is for large curve deformations
can cause surface self-intersections. We therefore implemented
ARAP on a volumetric graph, following the graph construction de-
scribed in [Zhou et al. 2005] shown to prevent self-intersections in
the case of Laplacian deformations. In our experiments, this modifi-
cation allows for the intersection-free large deformations necessary
to modify curve style.

We seek to impact not only the features but also the contours of
the output shape, and note that man-made objects are frequently
dominated by swept surfaces. We implement the desired contour
changes by editing the sweep profiles on these surfaces (Figure 10,
right). For each handle contour curve we examine whether its un-
derlying surface is well defined by sweeping the contour handle
along a path curve, and maintain these swept surfaces during de-
formation. For simplicity we only implemented this mechanism for
the most common sweep cases, revolution and extrusion, where this
structure is easiest to detect and preserve. Specifically, for each pair
of similarly shaped and oriented handle curves on an element, we
interpolate the curves and compare the distance from the resulting
surface to the element. If the generated surface is close to the mesh
surface, then we infer that it is a swept surface. To detect extrusions
we use linear interpolation, and to detect surfaces of revolution we
interpolate handle normals and positions.

8 Automatic Target Selection

Our output is dependent on the choice of a particular target shape
(Figure 3). Typically the more similar the exemplar and the target
are structurally, the more compatible their elements are, and the
more complete, or compelling, the style transfer. Thus when users
specify a database of shapes within a particular class as a target
for style transfer, we use structural compatibility as a criterion for
selecting the target shape to operate on within the database.

Intuitively one shape is more compatible with a given exemplar than
another when a larger share of its elements are more compatible
with exemplar elements. Given the exemplar shape E and a shape
D within a target class, we compute their compatibility by first lo-
cating for each shape element the most compatible exemplar ele-
ment, and then summing up the degrees of compatibility between
them using the normalized kernel of Equation 5:

K̂(D,E) =
∑

p∈D,q∈E,q=s(p)

K̂func(p, q)

where p is an element on the database shape, and q is its most com-
patible element on the exemplar shape. A simple brute-force ap-
proach for selecting the most compatible shape is to evaluate these
similarities across all database shapes and select the best one.

However, for large shape collections, this brute force approach is
too slow. We speed up the process by leveraging the observation
that in practice shape databases frequently contain clusters of struc-
turally similar shapes. We first find such clusters, then select a rep-
resentative shape per cluster, and finally perform the above compu-
tation only for those representative shapes, selecting one of them as

Figure 11: Among all possible tables on the right we selected the
highlighted one as most compatible target for the exemplar chair.

the target. We perform clustering using affinity propagation [Frey
and Dueck 2007] with the following similarity metric between two
database shapes D1, D2:

K̂(D1, D2) =
1

|P |
∑

p∈D1,q∈D2,q=s(p)

K̂func(p, q)+

1

|Q|
∑

q∈D2,p∈D1,p=s(q)

K̂func(p, q)

where |P | is the number of elements in shapeD1, |Q| is the number
of elements in shape D2, s(p) returns the most similar element in
D2 to element p, s(q) returns the most similar element in D1 to
element q. The affinity propagation method automatically infers
both the number of clusters and their representative shapes.

9 Validation

We evaluate our method by synthesizing over a hundred new shapes
using style transfer, see Figures 1 and 12 for representative exam-
ples, and supplementary material. We tested our method on four
broad categories of everyday objects: furniture, lamps, cutlery, and
coffee and tea sets. Our choice of categories was motivated both by
availability and by diversity of functions and styles within each cat-
egory. We use as inputs models from publicly available databases,
3D warehouse and TurboSquid. Throughout the paper and the ac-
companying video we demonstrate a diverse range of style transfer
results. In our supplementary material, we include all our synthe-
sized shapes including the exemplar along with the manually or au-
tomatically selected target shapes. We used automatic selection for
37 of the 126 generated models. Our results convincingly combine
exemplar styles with target functions.

Perceptual Validation. We validate the key properties of our
method via three user studies: one designed to evaluate the func-
tionality of the output models, one designed to evaluate the degree
of style similarity between the outputs and the exemplars, and one
designed to specifically evaluate our compatibility metric against
the most similar prior work [Laga et al. 2013]. We summarize those
below. The full study details are provided in the appendix and sup-
plementary material.

Style similarity. Style similarity is an inherently relative notion,
thus asking if two shapes have the same style is often inconclu-
sive. We consequently use relative comparison to assess our re-
sults. We asked participants to compare style similarity between an
exemplar model and our output generated from it, against style sim-
ilarity between the exemplar and a range of alternatives, aiming to
ascertain the degree of success our method has at believably trans-
ferring style. We used questionnaires based on triplets of models,
laid out with one shape image on the top and two on the bottom.
The shape on the top (A) is an exemplar shape and one of the two
shapes on the bottom (B or C, assigned randomly) is the top result
synthesized by our method using this exemplar and a target in a dif-
ferent functional class. The second shape on the bottom is in the

Figure 12: Typical style transfer results. For each group we show the exemplar first then, multiple synthesized outputs in the same style with
targets shown as insets.

Figure 13: Study outlier examples: (a) the only query where par-
ticipants deemed the third ranked result more stylistically similar
to exemplar than the top; (b) the only four of our top results par-
ticipants deemed non-functional; (c) examples of 5% of queries
where participants ranked Laga et. al correspondences as superior
to ours.

plurality raw votes
T O both neither draw T O both neither

top (T) vs target (O) 100.0% 0.0% 0.0% 0.0% 0.0% 93.2% 0.4% 0.5% 6.0%
top (T) vs third (O) 78.9% 1.4% 9.9% 5.6% 4.2% 68.6% 5.5% 15.1% 10.8%

top (T) vs original (O) 38.8% 26.9%19.4% 1.5% 13.4% 39.1%32.5%21.2% 7.2%

Table 1: Style similarity study results: per-query plurality re-
sponses (left) and raw vote percentages (right).

same functional class as the output and is randomly selected among
the following alternatives: a shape from a style-coordinated pre-
existing scene which included the exemplar A - these shapes can be
viewed as plausible ground truth for style transfer; a shape synthe-
sized by our method using the same exemplar, but ranked as third in
terms of its stylistic similarity to the exemplar - this shape is useful
to evaluate the meaningfulness of our ranking; and the target shape
used for style transfer which serves as a random baseline, expected
to be arbitrarily different style-wise from the exemplar. Subjects
were asked the question “Which of the two shapes on the bottom
(B or C) is more similar, style-wise, to the shape on the top (A)?”
and were asked to select one of the following answers: “(i) B, (ii)
C, (iii) can’t tell - both B and C, (iv) can’t tell - neither B nor C”.

We assembled a total of 264 queries, up to three per each of our gen-
erated outputs comparing each output to all available alternatives.
We gathered answers to each query from 10 different, reliable users

plurality raw votes
yes no draw yes no

target 96.0% 1.6% 2.4% 89.8% 10.2%
top 92.1% 3.2% 4.8% 86.7% 13.3%

third 90.1% 7.0% 2.8% 86.3% 13.7%
lax compatibility 69.8% 23.0% 7.1% 68.4% 31.6%

Laga et al. 65.3% 29.8% 5.0% 65.2% 34.8%
exemplar 12.2% 86.1% 1.7% 17.0% 83.0%

Table 2: Functionality study results: per-query plurality responses
(left) and raw vote percentages (right).

plurality raw votes
ours 93.3% 91.8%

Laga et al. 5.0% 8.2%
draw 1.7%

Table 3: Element compatibility study results: per-query plurality
responses (left) and raw vote percentages (right).

using the procedure described in the Appendix. Vote distribution
by query and raw vote percentages for each answer are listed in
Table 1. Participants perceived our synthesized shapes as at least
as similar style-wise to the exemplars as the ground truth models.
Furthermore the top-ranked shapes were perceived as more style-
wise similar to the exemplar compared to the third-ranked ones,
and drastically more similar when compared to the baseline target
shapes. The supplementary material contains the full results. The
only query for which our top result was ranked below the third one
is shown in Figure 13. These results strongly validate our claim of
consistently successful style transfer across shapes with different
functionality.

Functionality. Functionality is a largely boolean property, thus
to evaluate how well our outputs preserve target functionality we
show participants one model at a time and ask “Is this a functional
X?” where X is the name of the specific, narrow, target class used
for synthesis, e.g. coffee table, loveseat, side table, etc. Users were
asked to choose either “yes” or “no”. To provide a baseline to com-
pare against, in addition to showing participants our top and third
ranked results, we also included equal numbers of models from the
following groups: original target models - intuitively one would
expect a near 100% positive response on these models, with the

actual positive response rate providing a good upper bound to com-
pare against; top-ranking results synthesized using our framework
but with either our compatibility metric but with a 10-times more
lax compatibility threshold, or with the original threshold but with
the similarity metric of Laga et al. [2013] (based on the graph en-
coding, edge relationships and kernel parameters described in their
paper) - intuitively we expect these two sets of results to produce
less positive responses than ours; and last exemplar models - these
serve as the lower bound, as they do not share target functionality.

We assembled a total of 611 queries and gathered answers to each
query from 10 different, reliable users using the procedure de-
scribed in the Appendix. The responses are reported in Table 2.
The results demonstrate that our synthesized shapes are deemed to
fulfill their function at nearly the same rate as the ground-truth tar-
get models. The only four outputs deemed non-functional by re-
spondent majority are shown in Figure 13. If we relax our learned
threshold for element compatibility, the functional plausibility of
shapes drops significantly. Similarly, over a third of the shapes syn-
thesized using Laga et al.’s metric are found to violate functionality
considerations. The results validate the second goal of our method
- the ability to reliably preserve target functionality during trans-
fer. The comparisons to alternative methods also confirm that our
compatibility metric and the automatic threshold setting we employ
(Section 5) are key to this success.

Element compatibility metric. We directly evaluate our met-
ric’s effectiveness by comparing the correspondences it computes
against those produced using the metric of [Laga et al. 2013]. To
compare the methods we randomly selected pairs of an exemplar
and a target across our inputs, and then selected a random element
on the exemplar. We ran both methods to find its corresponding, or
most compatible element on the target. Of the 660 queries assem-
bled this way, the methods were in agreement 54.7% of the time.

Our user study consequently focused on the remaining queries. We
used questionnaires based on triplets of models, laid out with one
shape image on top and two on the bottom. The shape on the top
(A) is an exemplar shape with the selected element highlighted, one
of the two shapes on the bottom (B or C, assigned randomly) is the
compatible target element selected by our method and the second
shape is the element selected by the method of Laga et al. Subjects
were asked “Which of the two highlighted parts on the bottom (B
or C) is MORE similar functionality wise to the highlighted part on
the top (A)?”, and were asked to select either B or C. The user study
had the same format and filters as the first study.

Study participants selected our result 93% of the time, and only on
5% or 15 queries did a plurality of respondents prefer the corre-
spondences computed by Laga et. al (1.7% were a draw). Most
of the outliers (12) were on queries which compared elements on
lamps with different attachment mechanisms (floor vs ceiling vs
wall) . Representative outliers are shown in Figure 13. These re-
sults confirm that our metric is significantly better aligned with hu-
man perception of functional part compatibility. At the same time
additional features may be useful to consider to address attachment
diversity when processing hanging shapes.

Implementation and Runtimes. Our method is implemented in
C++ and source code is publically available on our project web
page. Our method takes on average 6 min to synthesize a new
model, with roughly 2 min out of this time spent pre-processing
the models. The rest of the time is spent in the tabu search. Tabu
search runtime depends on the complexity and number of opera-
tions, and ranges from 2 min for typical models to up to 10 min
for the slowest ones. Learning the parameters of our compatibil-
ity measure requires about one hour for each pair of shape classes.
This learning step is an offline process: once the compatibility mea-
sure is learned, evaluating the compatibility between all pairs of el-
ements on two shapes takes only a few seconds. All running times
are reported on an Intel E5-2697 v2 processor.

10 Conclusion

We have described the first algorithm for synthesizing shapes by
transferring style between man-made objects with different struc-
ture and functionality. As demonstrated by our results, given a sin-
gle exemplar model, our method is able to successfully generate
functional, plausible, similar-style models in a wide range of shape
classes. Key to our success is a novel, learned metric designed to
assess element compatibility across shapes with different structure
and function.

There are many exciting directions for future work. Our algo-
rithm requires as input an exemplar 3D model that represents the
desired style to be transferred to other objects. It would be inter-
esting to explore other input modalities that describe style, such as
sketches and natural language. Furthermore, our algorithm lever-
ages the structure of a target shape, either specified manually or
retrieved automatically, to synthesize new shapes. Instead of rely-
ing on a pre-existing target shape structure, it would be interesting
to employ generative models that are capable of generating plau-
sible shape structure and accurate surface geometry automatically.
Such models could also avoid the need of slot-based part alignment
that may fail when slots largely differ in number, size and orienta-
tion. Finally, another interesting direction would be to combine our
structure-based functional compatibility metric with functionality
models [Kim et al. 2014; Hu et al. 2016] that consider part interac-
tions with agents and other objects in a scene to improve correspon-
dences especially for parts where such interactions are meaningful.

11 Acknowledgments

Kalogerakis and Wang gratefully acknowledge support from NSF
(CHS-1422441, CHS-1617333, IIS-1423082). Sheffer gratefully
acknowledges support from NSERC discovery and DAS grants. We
thank Nicholas Vining for proofreading the paper and narrating the
video, Mikhail Bessmeltsev for useful suggestions on the figures,
and the anonymous reviewers for their comments.

References

ASAFI, S., GOREN, A., AND COHEN-OR, D. 2013. Weak convex
decomposition by lines-of-sight. In Proc. SGP.

BOKELOH, M., WAND, M., AND SEIDEL, H.-P. 2010. A connec-
tion between partial symmetry and inverse procedural modeling.
ACM Trans. Graphics 29, 4.

BURGES, C., SHAKED, T., RENSHAW, E., LAZIER, A., DEEDS,
M., HAMILTON, N., AND HULLENDER, G. 2005. Learning to
rank using gradient descent. In Proc. ICML.

CHAUDHURI, S., KALOGERAKIS, E., GUIBAS, L., AND
KOLTUN, V. 2011. Probabilistic reasoning for assembly-based
3d modeling. ACM Trans. Graph. 30, 4.

FREY, B. J., AND DUECK, D. 2007. Clustering by passing mes-
sages between data points. Science 315.

FUNKHOUSER, T., KAZHDAN, M., SHILANE, P., MIN, P.,
KIEFER, W., TAL, A., RUSINKIEWICZ, S., AND DOBKIN, D.
2004. Modeling by example. ACM Trans. Graphics 23, 3.

GLOVER, F., AND LAGUNA, M. 1997. Tabu Search. Kluwer
Academic Publishers, Norwell, MA, USA.

HERTZMANN, A., JACOBS, C. E., OLIVER, N., CURLESS, B.,
AND SALESIN, D. H. 2001. Image analogies. In Proc. SIG-
GRAPH.

HERTZMANN, A., OLIVER, N., CURLESS, B., AND SEITZ, S. M.
2002. Curve analogies. In Proc. Eurographics workshop on
Rendering.

HU, R., ZHU, C., VAN KAICK, O., LIU, L., SHAMIR, A., AND
ZHANG, H. 2015. Interaction context (icon): Towards a geo-
metric functionality descriptor. ACM Trans. Graph. 34, 4.

HU, R., VAN KAICK, O., WU, B., HUANG, H., SHAMIR, A.,
AND ZHANG, H. 2016. Learning how objects function via co-
analysis of interactions. ACM Trans. Graph., to appear.

HUANG, Q.-X., SU, H., AND GUIBAS, L. 2013. Fine-grained
semi-supervised labeling of large shape collections. ACM Trans.
Graph. 32, 6.

HUANG, H., KALOGERAKIS, E., AND MARLIN, B. 2015. Anal-
ysis and synthesis of 3d shape families via deep-learned genera-
tive models of surfaces. Computer Graphics Forum 34, 5.

HUANG, Q., WANG, H., AND KOLTUN, V. 2015. Single-view
reconstruction via joint analysis of image and shape collections.
ACM Trans. Graph. 34, 4.

JIANG, Y., KOPPULA, H., AND SAXENA, A. 2013. Hallucinated
humans as the hidden context for labeling 3d scenes. In Proc.
CVPR.

KALOGERAKIS, E., NOWROUZEZAHRAI, D., SIMARI, P., MC-
CRAE, J., HERTZMANN, A., AND SINGH, K. 2009. Data-
driven curvature for real-time line drawing of dynamic scene.
ACM Trans. Graph. 28, 1.

KALOGERAKIS, E., CHAUDHURI, S., KOLLER, D., AND
KOLTUN, V. 2012. A probabilistic model for component-based
shape synthesis. ACM Trans. Graph. 31, 4.

KIM, V. G., CHAUDHURI, S., GUIBAS, L., AND FUNKHOUSER,
T. 2014. Shape2pose: Human-centric shape analysis. ACM
Trans. Graph. 33, 4.

KLEIMAN, Y., VAN KAICK, O., SORKINE-HORNUNG, O., AND
COHEN-OR, D. 2015. Shed: Shape edit distance for fine-
grained shape similarity. ACM Trans. Graph. 34, 6.

KRAEVOY, V., SHEFFER, A., SHAMIR, A., AND COHEN-OR, D.
2008. Non-homogeneous resizing of complex models. ACM
Trans. Graphics 27, 5.

KREAVOY, V., JULIUS, D., AND SHEFFER, A. 2007. Model
composition from interchangeable components. In Proc. Pacific
Graphics, 129–138.

LAGA, H., MORTARA, M., AND SPAGNUOLO, M. 2013. Geom-
etry and context for semantic correspondences and functionality
recognition in man-made 3d shapes. ACM Trans. Graph. 32, 5.

LANCKRIET, G. R. G., CRISTIANINI, N., BARTLETT, P.,
GHAOUI, L. E., AND JORDAN, M. I. 2004. Learning the ker-
nel matrix with semidefinite programming. J. Machine Learning
Research 5.

LEWIS, M. 2008. Architectura: elements of architectural style.
Barrons Educational Series.

LI, H., ZHANG, H., WANG, Y., CAO, J., SHAMIR, A., AND
COHEN-OR, D. 2013. Curve style analysis in a set of shapes.
Computer Graphics Forum 32, 6.

LIU, H., VIMONT, U., WAND, M., CANI, M.-P., HAHMANN, S.,
ROHMER, D., AND MITRA, N. J. 2015. Replaceable substruc-
tures for efficient part-based modeling. Comp. Graph. Forum 34,
2.

LIU, T., HERTZMANN, A., LI, W., AND FUNKHOUSER, T. 2015.
Style compatibility for 3d furniture models. ACM Trans. Graph-
ics 34, 4.

LUN, Z., KALOGERAKIS, E., AND SHEFFER, A. 2015. Elements
of style: Learning perceptual shape style similarity. ACM Trans.
Graph. 34, 4.

MA, C., HUANG, H., SHEFFER, A., KALOGERAKIS, E., AND
WANG, R. 2014. Analogy-driven 3D style transfer. Computer
Graphics Forum 33, 2.

NORMAN, D. 1988. The Design of Everyday Things. Basic Books.

NUTTING, W. 1928. Furniture Treasury. Gr Macmillan Publish-
ing.

OHTAKE, Y., BELYAEV, A., AND SEIDEL, H.-P. 2004. Ridge-
valley lines on meshes via implicit surface fitting. In Proc. Sig-
graph.

SAVVA, M., CHANG, A. X., HANRAHAN, P., FISHER, M., AND
NIESSNER, M. 2014. Scenegrok: Inferring action maps in 3d
environments. ACM Trans. Graph. 33, 6.

SAVVA, M., CHANG, A. X., HANRAHAN, P., FISHER, M., AND
NIESSNER, M. 2016. PiGraphs: Learning Interaction Snapshots
from Observations. ACM Trans. Graph., to appear.

SCHÖLKOPF, B. 2001. The kernel trick for distances. In Proc.
NIPS.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible sur-
face modeling. In Proc. SGP.

TALTON, J., YANG, L., KUMAR, R., LIM, M., GOODMAN,
N. D., AND MĚCH, R. 2012. Learning design patterns with
bayesian grammar induction. In Proc. UIST, 63–74.

TAMUZ, O., LIU, C., BELONGIE, S., SHAMIR, O., AND KALAI,
A. 2011. Adaptively learning the crowd kernel. In Proc. ICML.

TIBSHIRANI, R. 1996. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society 58.

VAN KAICK, O., ZHANG, H., HAMARNEH, G., AND COHEN-
OR, D. 2011. A survey on shape correspondence. Computer
Graphics Forum 30, 6, 1681–1707.

XU, K., LI, H., ZHANG, H., COHEN-OR, D., XIONG, Y., AND
CHENG, Z.-Q. 2010. Style-content separation by anisotropic
part scales. ACM Trans. Graph. 29, 6.

XU, K., ZHANG, H., COHEN-OR, D., AND CHEN, B. 2012. Fit
and diverse: Set evolution for inspiring 3d shape galleries. ACM
Trans. Graph. 31, 4.

XU, K., KIM, V. G., HUANG, Q., AND KALOGERAKIS, E. 2016.
Data-driven shape analysis and processing. Computer Graphics
Forum, to appear.

YUMER, M., AND KARA, L. 2012. Co-abstraction of shape col-
lections. ACM Trans. Graphics 31, 6, 166:1–166:11.

YUMER, M., AND KARA, L. 2014. Co-constrained handles for
deformation in shape collections. ACM Trans. Graph. 32, 6.

YUMER, M. E., CHAUDHURI, S., HODGINS, J. K., AND KARA,
L. B. 2015. Semantic shape editing using deformation handles.
ACM Trans. Graph. 34, 4.

ZHENG, Y., COHEN-OR, D., AND MITRA, N. J. 2013. Smart vari-
ations: Functional substructures for part compatibility. Comp.
Graph. Forum 32, 2.

ZHOU, K., HUANG, J., SNYDER, J., LIU, X., BAO, H., GUO, B.,
AND SHUM, H.-Y. 2005. Large mesh deformation using the
volumetric graph laplacian. ACM Trans. Graph. 24, 3.

ZHU, C., BYRD, R. H., LU, P., AND NOCEDAL, J. 1997. Algo-
rithm 778: L-bfgs-b: Fortran subroutines for large-scale bound-
constrained optimization. ACM Trans. Math. Softw. 23, 4.

ZHU, Y., FATHI, A., AND FEI-FEI, L. 2014. Reasoning about
object affordances in a knowledge base representation. In Proc.
ECCV.

User study style functionality element
similarity compatibility

total users 155 341 140
reliable users 140 268 139
rejected users 15 73 1

male 83 175 78
female 72 165 62

unknown gender 0 1 0
age 18-35 103 221 84
age 36-50 40 86 42
age > 50 12 33 14

unknown age 0 1 0
no post-secondary education 17 30 14
yes post-secondary education 138 307 125

other education level 0 4 1

Table 4: Participant statistics

Appendix

Study Format

All three studies were conducted via Mechanical Turk. Each ques-
tionnaire contained 25 unique queries. For studies with triplet
based questions (style and compatibility) each question was re-
peated twice, with B and C flipped, to measure participant persis-
tence. For the functionality questionnaire, we similarly repeated the
same query twice. To collect a diverse set of answers per query and
avoid any individual bias, we allowed each participant to complete
only one questionnaire. Participants were rewarded $0.75 for each
completed questionnaire with a triplet based question, and $0.5 for
filling the functionality questionnaire. Since any large-scale, study
faces the risk of attracting unreliable respondents, we detected and
discarded outlier responses using a two stage filter. Participants
who gave two different answers to more than 8 out of the 25 unique
queries in the questionnaire, or took less than 3 minutes for triplet
based questioners and 2 minutes for the functionality one to com-
plete it, were classified as unreliable and all their answers were
discarded. For the functionality questionnaire we also classified
as unreliable participants who picked the same yes/no answer for
20 queries or more. For all other participants, we ignored non-
persistent answers, where a participant answered the same question
differently. We gathered answers to each query from 10 different,
reliable users.

Extra Study Statistics

Table 4 shows statistics about the participants in each user study,
including gender, age and education level. The number of reliable
participants and rejected participants are also listed. The number of
raw votes in each user study are shown in Tables 5, 6 and 7.

Descriptors

In this section we described the descriptors used in the element
compatibility formulation in section 5.1.

Per-Element descriptors. In total, we have 13 element descrip-
tors yielding 13 distance measures. The first set of descriptors cap-
ture the relative location of the markers on an element, including its
centroid, its centroid projected on the ground plane, then its high-
est point, lowest point, and its centroid projected onto the upright
axis (i.e., representing height from the ground plane). When com-
paring nodes in our graph, element locations are expressed with
respect to the object’s coordinate system. When comparing edges
in our graph, element locations are expressed with respect to the
local corresponding system of its neighboring element in the graph
(the local coordinate system is formed by the neighboring element’s
corresponding marker locations and object’s axes). Each of the

majority raw votes
B C both neither draw B C both neither

top (B) vs target (C) 126 0 0 0 0 1174 5 6 75
top (B) vs third (C) 56 1 7 4 3 487 39 107 77

top (B) vs original (C) 26 18 13 1 9 262 218 142 48

Table 5: Detailed style similarity study results.

majority raw votes
yes no draw yes no

different class 14 99 2 196 954
original target 121 2 3 1131 129

top ranking 116 4 6 1092 168
third ranking 64 5 2 613 97

lax compatibility 88 29 9 862 398
Laga et al. 79 36 6 789 421

Table 6: Detailed functionality study results.

majority raw votes
ours 280 2755

Laga et al. 15 245
draw 5

Table 7: Detailed element compatibility study results.

five relative locations yields a Euclidean distance when compar-
ing two elements. The next three descriptors store the proportions
of the element’s axis-aligned bounding box, relative to the object’s
bounding box proportions when comparing nodes, and relative to
the neighboring element’s bounding box proportions when com-
paring edges. These proportions (one per each axis) yield three
more distances. The next three descriptors are similar to the pre-
vious three, but instead of the bounding box proportions, we use
the variance of the element point positions along the object’s axes.
The next descriptor stores the major orientation of the element es-
timated via PCA. When comparing nodes, we measure the angle
difference between the major orientations of the two corresponding
elements. When comparing edges, we measure the relative angle
difference between the major orientations of the two correspond-
ing elements with respect to their neighboring elements major axes.
The last descriptor is a histogram that approximately captures the
distribution of point samples in an element. We build a 4 × 4 × 4
grid and compute a histogram by counting how many sample points
on the element surface are inside each bin. When comparing nodes,
we compute the euclidean distance between the histograms for the
corresponding elements. When comparing edges, we compute a
histogram for each edge measuring the absolute difference of bin
values between the corresponding histograms of neighboring ele-
ments, then measure the euclidean distance between the resulting
histograms.

Curve descriptors. In total, we get 3 distance measures between
curve descriptors. The first one represents distance between cen-
troids of the two curves and the second one represents differences
between their arc lengths. The last one represents the average point-
to-point distance after aligning the two input curves via ICP.

Gradient for learning

Learning the compatibility metric requires computing the analytic
gradient of our objective function (Equation 13) with respect to our
parameters. The loss function evaluates the compatibility metric,
which is defined through the recursive formula of Equation 1. In-
terestingly, it turns out that the gradient also follows a similar re-
cursive definition, which makes it possible to compute it efficiently.
For clarity, we provide here the formulas that evaluate the partial
derivatives of our objective function with respect to the node ker-
nel parameters {wk}k=1...K and RBF variances {σk}k=1...K . The

partial derivatives for the rest of the parameters follow a similar re-
cursive computation. We begin by computing the gradient of the
loss function with respect to the node kernel parameters:

∂L(w,σ)

∂wk
= −λ · sign(wk) +

T∑
t=1

∂ lnP (pq[t] . pr[t])

∂wk
(14)

The gradient of the log likelihood per training example t can be
expressed as:

∂ lnP (pq[t] . pr[t])

∂wk
=
(
1− σ

(
Dfunc(p, r)−Dfunc(p, q)

))
·

·
(∂Dfunc(p, r)

∂wk
− ∂Dfunc(p, q)

∂wk

)
The partial derivatives of the distance function Dfunc(p, r), and
similarly for Dfunc(p, q), are in turn computed as:

∂Dfunc(p, q)

∂wk
=

(∂K(n)(p,p)
∂wk

− 2 ∂K(n)(p,q)
∂wk

+ ∂K(n)(q,q)
∂wk

)
2Dfunc(p, q)

The above formula requires computing partial derivatives of our
graph-based compatibility function. The derivatives also follow a
recursive definition :

∂K(n)(p, q)

∂wk
=
∂Knode(p, q)

∂wk
·
∑

p′∈N (p)

q′∈N (q)

Kedge(epp′ , eqq′) ·K(n−1)(p′, q′)

+Knode(p, q) ·
∑

p′∈N (p)

q′∈N (q)

Kedge(epp′ , eqq′) ·
∂K(n−1)(p′, q′)

∂wk

To evaluate the above formula, the partial derivatives of the node
similarity functions with respect to the kernel node parameters are
required. These are computed as follows:

∂Knode(p, q)

∂wk
= exp

{
− D2

k(p, q)

2σ2
k

}
Computing the partial derivatives of our objective function with re-
spect to the RBF variances follow the same procedure as above with
only two differences: the sign term in Equation 14 is omitted (no
L1-norm regularization is used for variances since sparsity is not
required for them) while the partial derivatives of the kernel node
functions are instead expressed as follows:

∂Knode(p, q)

∂σk
=
wkD

2
k(p, q)

σ3
k

exp

{
− D2

k(p, q)

2σ2
k

}

Framework Pseudocode

For clarity we include the detailed pseudocode of the tabu search
algorithm described in Section 3.

input : Exemplar shape E in class c′, Target shape T in class c
output: An output list O of new shapes
Initialize search list L = {T}
repeat

Choose shape S = argmin
T ′∈L

Dstyle(E, T
′)

Remove shape S from search list L

// Search for element substitutions
for each element (or symmetric group of elements) GS in S do

Find elements GE in shape E with Dfunc(GE , GS) < εc,c′
for each retrieved element GE do

if replacing GS with GE drops Dstyle(E,S) then
Construct new shape S′ by aligning GE

if Dfunc(S
′, T) < εc,c and alignment is successful

then
insert shape S′ in search list L and output list O
(unless a copy of S′ already exists in the output list)

end
end

end
end

// Search for curve-based deformation
for each curve (or symmetric group of curves) CS in S do

Find curve CE in shape E with Dcurve(CE , CS) < εcurvec,c′

for each retrieved curve CE do
Construct new shape S′ by deforming S to align with CE

if the constructed new shape S′ drops Dstyle(E,S) then
if Dfunc(S

′, T) < εc,c then
insert shape S′ in search list L and output list O
(unless a copy of S′ already exists in the output list)

end
end

end
end

// Search for element additions
for each non-used element (or group) GE in E do

if adding GE to S drops style distance then
Construct new shape S′ by aligning GE with S
if Dfunc(S

′, T) < εc,c and alignment is successful then
insert shape S′ in search list L and output list O
(unless a copy of S′ already exists in the output list)

end
end

end

// Search for element removals
for each non-substituted/added element (or group) GS in S do

if removing GS from S drops style distance then
Construct new shape S′ by removing GS

if Dfunc(S
′, T) < εc,c then

insert shape S′ in search list L and output list O
(unless a copy of S′ already exists in the output list)

end
end

end
until search list L is empty

Figure 14: Tabu search pseudo-code.

