
3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks

Zhaoliang Lun Matheus Gadelha Evangelos Kalogerakis Subhransu Maji Rui Wang
University of Massachusetts Amherst

Abstract
We propose a method for reconstructing 3D shapes from
2D sketches in the form of line drawings. Our method
takes as input a single sketch, or multiple sketches, and out-
puts a dense point cloud representing a 3D reconstruction
of the input sketch(es). The point cloud is then converted
into a polygon mesh. At the heart of our method lies a
deep, encoder-decoder network. The encoder converts the
sketch into a compact representation encoding shape in-
formation. The decoder converts this representation into
depth and normal maps capturing the underlying surface
from several output viewpoints. The multi-view maps are
then consolidated into a 3D point cloud by solving an op-
timization problem that fuses depth and normals across all
viewpoints. Based on our experiments, compared to other
methods, such as volumetric networks, our architecture of-
fers several advantages, including more faithful reconstruc-
tion, higher output surface resolution, better preservation of
topology and shape structure.

1. Introduction
We consider the problem of 3D shape reconstruction from
sketches. Contours in a sketch convey important charac-
teristics of the underlying shape such as its figure-ground
boundaries, surface curvature, and occlusions [31, 60, 37].
They are also commonly used by artists in the initial stages
of character design and object modeling due to the rela-
tive ease of sketching. However, the process of converting
sketches to a 3D model is time consuming and cumbersome.

We propose an architecture to infer a 3D shape that is con-
sistent with sketches from one or more views of an object.
Our method is based on a Convolutional Network (Con-
vNet) trained to map sketches to 3D shapes. Although Con-
vNets have been successfully applied to a number of im-
age modality transformation tasks [33, 70, 27, 59, 26], their
use for explicit 3D shape generation poses numerous chal-
lenges. Most prior work has used voxel-based representa-
tions for 3D shapes [63, 7, 67]. However, this scales poorly
with the resolution of the voxel grid. 3D shapes can be
instead efficiently represented through surface-based repre-
sentations, such as polygon meshes. However, it is difficult
to parameterize meshes in a consistent manner such that
they are generated by ConvNets, and unlike voxels, they
are not amenable to convolutions over regular grids. Thus,
their applicability has been limited to categories (e.g., faces,
human bodies) where surface elements can be consistently
parameterized through correspondence techniques and gen-
erated through simple generative models [2, 4, 5, 23].

In this work we instead adopt a multi-view architecture
for 3D shape reconstruction inspired by recent work show-
ing that ConvNets have the ability to model geometric and
viewpoint transformations of an object given natural images
[11, 55, 56, 68, 71]. However, unlike prior multi-view syn-
thesis works, we consider the full pipeline of 3D shape re-
construction, and also condition it on line drawings, which
are more challenging inputs than natural images due to the
lack of shading or color information. Our approach is based
on minimizing a joint energy function over input sketches,
multi-view depth and surface normals, and point clouds.
Our inference algorithm obtains a set of depth maps and sur-
face normals of the shape from a collection of viewpoints
using a feed-forward network. We then infer a dense point
cloud that is consistent with the predicted depths and nor-
mals across all the viewpoints by minimizing our energy
function. The point cloud is then converted to a discretized
surface in the form of a polygon mesh and optionally further
optimized to match the input line drawings more precisely.

Our approach appears to be the first that considers a learned,
view-based representation for generating 3D shapes from
sketches. The view-based representation allows us to pro-
cess depth and normals at a considerably higher resolution
and speed compared to voxel-based representations on ex-
isting hardware. Moreover, by incorporating the best of
feed-forward architectures and mesh-based representations
we are able to predict 3D shapes at a significantly higher
quality. Finally, our architecture is trained on automatically
generated, synthetic sketches of 3D shapes without requir-
ing supervision in the form of human line drawings. Once
trained, our method can generalize to reconstruct 3D shapes
from human line drawings that can be approximate, noisy
and not perfectly consistent across different viewing angles.
Finally, as a by-product of our training procedure, our net-
work also provides descriptors that can be used to perform
sketch-based shape retrieval from 3D model collections. On
two qualitatively different datasets (character models and
man-made objects), our proposed approach achieves sig-
nificantly better reconstruction results than alternative ap-
proaches in terms of several metrics (Hausdorff distance,
Chamfer distance, voxel intersection over union, errors in
depth and normal maps) and also based on a user study.

2. Related Work
3D geometric inference from line drawings. Compared
to using natural images, estimating 3D shape from line
drawings is considerably more challenging due to the lack
of shading or texture information. Early works [60, 37, 36,

1

69] formulate the process of inferring a 3D shape based on
reasoning about local geometric properties, such as convex-
ity, parallelism, orthogonality and discontinuity, implied by
lines and their intersections (“junctions”), to find a globally
consistent shape. These approaches produce reasonable ge-
ometry when applied to specific families of polyhedral ob-
jects, but are less effective for organic shapes with smoothly
varying surfaces. For smooth shapes, hand-designed rules
are usually devised to extrude or elevate a 3D surface from
contours [25, 42]. More recent methods enable the cre-
ation of freeform surfaces by exploiting geometric con-
straints present in specific types of line drawings, such as
polyhedral scaffolds, cross-section lines and curvature flow
lines [52, 65, 43]. All these methods derive geometric con-
straints from specific types of lines, require very accurate
input drawings, and can only reconstruct what is drawn.
On the other hand, various studies [32, 9] showed that hu-
mans can consistently interpret 3D shapes from sparse and
approximate line drawings (up to a bas-relief transforma-
tion [3]). Although the exact mechanism of 3D shape per-
ception in humans is not well understood, this indicates that
pure geometric-based methods may not be able to mimic
the human ability of shape understanding from sketches.
Learning-based methods for shape synthesis. In con-
trast to pure geometric methods, learning-based approaches
argue that shape interpretation is fundamentally a learning
problem, otherwise it is highly under-constrained. A large
number of learning-based methods have focused on estimat-
ing 3D shapes from single, natural images that include color
and texture. Early work was based on analyzing shading
and texture cues within image regions [21, 51], while more
recent work has employed ConvNets for predicting surface
depth and normals from real images [12, 62]. Driven by
the success of encoder-decoder architectures [33, 70, 27,
59, 26] that can effectively map inputs from one domain
to another, newer methods use such architectures with con-
volutions in three dimensions to generate 3D shapes in a
voxelized representation [63, 7, 67, 20, 47, 57]. A differ-
ent line of work has employed ConvNets to model geo-
metric transformations of an object to predict novel view-
points [11, 55, 68, 71]. The approach of Tatarchenko et
al. [56] is most related to ours. Their approach takes as in-
put a single natural image and a viewpoint and uses a Con-
vNet to predict the color and depth from the provided view-
point. They show compelling 3D reconstructions for chairs
and cars from a single color image by projecting the depth
maps from multiple views into a 3D space. Our approach is
inspired by this work, but differs in a number of ways. Our
method operates on line drawings, a more challenging type
of input due to the lack of shading or color information. It
predicts both normals and depth across multiple viewpoints,
which are then integrated into a high-quality surface mesh
representation through a joint optimization procedure. It
also adapts a U-net architecture [26] along with multi-view
decoder branches and a structured loss function to resolve
ambiguities in the input line drawing. Finally, we provide a
detailed comparison of view-based and voxel-based recon-
struction approaches in terms of 3D shape evaluation met-

rics and a perceptual user study on various categories.
Sketch-based 3D shape retrieval. Sketch-based retrieval
methods typically transform features of the input sketch and
3D shapes into a common space where comparisons can be
made. Early work was based on hand-engineered descrip-
tors [14, 45, 22, 34, 13, 66, 64, 53, 18], while more recently,
ConvNets have been proposed to learn powerful represen-
tations for sketch-based retrieval [54, 61]. Unfortunately,
these methods only allow retrieval of existing 3D shapes or
parts. They provide no means to synthesize novel shapes
or parts from scratch. A few recent approaches employ
category-specific, predefined parametric models to guide
shape reconstruction through ConvNets [40, 24, 19]. These
methods are only able to recover specific shape parameters
or rules from input sketches. If a drawing depicts a shape
that cannot be described by the parameters of these models,
then the reconstruction fails. In contrast, our method learns
a representation capable of predicting shapes from sketches
without any predefined parametric model. We expect 3D
shape priors to automatically emerge in our deep network.

3. Method
Given a single, or multiple, hand-drawn sketches in the
form of line drawings, our method aims to reconstruct a 3D
shape. Line drawings are made by humans to convey shape
information [10, 9]. They typically contain external con-
tours (silhouettes) and internal contours to underlie salient
shape features. We designed a deep network to automat-
ically translate line drawings into 2D images representing
surface depth and normals across several output viewpoints
(Figure 1). The depth and normal predictions are then fused
into a 3D point cloud, which is in turn converted into a poly-
gon mesh. Although surface normals could be inferred by
depth alone, we found that best reconstructions are achieved
when both depth and normal predictions are made by the
network and coherently fused into the point cloud.

Our network is trained to reconstruct multi-view depth and
normal maps from either a single sketch depicting the shape
from a particular input view (e.g., front, side, or top), or
from multiple sketches depicting the shape from different
views (e.g., front and side). A single sketch may not be suf-
ficient to reconstruct the shape accurately, e.g., the front side
of an airplane does not explicitly convey information about
its back. Hence, we consider the case where users provide
multiple sketches as input at once, or provide them progres-
sively while being guided by the intermediate shape recon-
structions. In the latter case, users draw from one view, then
our network, which is trained to reconstruct from that view,
yields a 3D shape. Users can then draw a second sketch
from another view, on top of the generated shape rendered
semi-transparently from that view, similar to ShadowDraw
[35] (see also our supplementary material for an example).
Given the previous and new sketches as input, our network,
trained to reconstruct from both views, yields an updated
3D shape. The process continues until users are satisfied
with the result, at which point they may edit the mesh di-
rectly. In what follows, we discuss our network architecture

128

128

128

128

128

64

64

64

64

64

64

32

32

32

32

32

32

16

16

16

16

16

8

8

8

8

8

8
4

4
4

4
4

4
2

216
128

64

128
256

512
512

512

64

128

256

512

512
512

512

input sketches

side view

encoder multi-view decoder
multi-view depth &

normal maps

output view 1
front view

output view 12

optimized 3D
point cloud

surface
reconstruction

surface
�ne-tuning

Figure 1. Our method takes line drawings as input and converts them into multi-view surface depth and normals maps from several output
viewpoints via an encoder-multi-view-decoder architecture. The maps are fused into a coherent 3D point cloud, which is then converted
into a surface mesh. Finally, the mesh can be further fine-tuned to match the input drawings more precisely through geometric deformations.

(Section 3.1) and training (Section 3.2). Then we discuss
our optimization step to fuse the multi-view depth and nor-
mal maps into a single, coherent 3D point cloud and its con-
version to a polygon mesh (Section 3.3).

3.1. Network Architecture
Our ConvNet takes as input line drawings from particular
views of an object and outputs depth and normal maps in
several, uniformly sampled output viewpoints (Figure 1).
Our implementation uses 12 output viewpoints located at
the equidistant vertices of a regular icosahedron. A camera
is placed at each icosahedron vertex looking towards the
center of the object and oriented towards the upright axis.
All our training shapes are normalized such that they fit in-
side the icosahedron and are also consistently oriented.

Input. The input to our network are 256 × 256 inten-
sity images representing the line drawings. When C input
sketches are available, they are concatenated as channels re-
sulting in 256× 256×C dimensional input. For each input
view configuration, we train a different network i.e., given
a sketch representing the front of the object, we use the net-
work trained to reconstruct the 3D shape from the front; or
given two sketches representing the front and the top of the
object, we use the network trained to reconstruct from the
front and top (in this case, the two sketches are concatenated
in this order). At first, this might seem restraining, yet we
note that in many traditional CAD systems, it is common
for users to use canonical views [48], and that better recon-
struction results are achieved when the network is trained to
reconstruct from specific rather than arbitrary views.

Encoder. The encoder network consists of a series of con-
volutional layers, all using kernel size of 4 and stride of 2.
The filter size and number per layer is shown in Figure 1.
All layers use batch normalization and leaky ReLUs (slope
= 0.2) as activation functions. The output of the encoder
is a 2 × 2 × 512 representation, which encodes shape in-
formation based on the input sketch(es). We note that this
representation can be used for sketch-based shape retrieval.

Decoder. The decoder consists of 12 branches, each con-
taining a series of upsampling and convolutional layers. The

branches have the same layer structure but do not share pa-
rameters. Each branch takes as input the encoder’s repre-
sentation and outputs a 256 × 256 × 5 image for a corre-
sponding output viewpoint. The 5-channel image includes
a depth map (1 channel), a normal map (3 channels con-
strained to be unit norm) and a foreground probability map
for that viewpoint. All pixels with probability more than
50% for foreground yield a binary mask indicating the pro-
jected surface area under that viewpoint. The output depth
and normal maps are masked using this binary mask. Fol-
lowing the U-net architecture [49], the input to each convo-
lutional layer is formed by the concatenation of the previ-
ous layer output in the decoder, and a corresponding layer
output in the encoder (see Figure 1). The upsampling lay-
ers of the decoder upsample their input with a factor of 2.
The convolutional layers use kernel size of 4 and stride of
1. Each convolutional layer is followed by batch normal-
ization and leaky ReLU (slope = 0.2) as activation function.
The first 3 layers in each decoder branch use dropout for
regularization. The number and size of filters per layer in
the decoder are shown in Figure 1. The output layer uses
the tanh activation function since depths and normals lie in
range [−1, 1]. Finally, the normal maps pass through an `2
normalization layer that ensures they are unit length.

3.2. Training
To train our network, we need a dataset that includes 3D
shapes along with corresponding training sketches. To cre-
ate such dataset, one option would be to ask human sub-
jects to provide us with line drawings depicting training 3D
shapes. However, gathering human line drawings is labor-
intensive and time-consuming. In contrast, we generated
synthetic line drawings that approximate human line draw-
ings based on well-known principles. Below we discuss the
procedure we followed for sketch generation, then we dis-
cuss the objective used for training our network.

Generating training sketches. Non-photorealistic ren-
dering algorithms can be used to create synthetic line draw-
ings of 3D shapes. First, contours, or silhouettes, can be
estimated by finding and connecting the set of points on the
surface whose normal vector is perpendicular to the viewing
direction [10]. Second, suggestive contours are extensions

of contours that can be used to draw internal feature curves
in shapes. These are found from zero-crossings of the radial
curvature (surface curvature along viewing directions) [10].
Other types of internal feature curves include ridges and
valleys, which are formed by the minima or maxima of the
surface principal curvature values [41], or view-dependent
curvature (in this case, the lines are called “apparent” ridges
[28]). Another type of line drawings can be created through
edge-preserving filtering [16] applied on images of shapes
rendered under a simple shading scheme (e.g., Phong shad-
ing) [44]. All these feature curve definitions do not nec-
essarily coincide each other [8]. We use a combination of
these techniques to create several variants of line drawings
per input shape. This also serves as a form of data augmen-
tation. Specifically, for each shape and input view, we cre-
ate 4 synthetic sketches by using: (i) silhouettes alone, (ii)
silhouettes and suggestive contours, (iii) silhouettes, sug-
gestive contours, ridges, valleys and apparent ridges, (iv)
and edge-preserving filtering on rendered images of shapes.
All training sketches and corresponding ground-truth depth
and normal maps are rendered under orthographic projec-
tion according to our output viewpoint setting. Using per-
spective projection could also be an option, however, since
depth has a relatively short range for our rendered objects,
the differences in the resulting images tend to be small.
Loss function. Given training sketches of shapes along
with the corresponding foreground, depth and normal maps
for our output viewpoints, we attempt to estimate the net-
work parameters to minimize a loss function. Our loss
function consists of four terms penalizing (a) differences
between the training depth maps and predicted depth maps,
(b) angle differences between the training normal maps and
predicted normal maps, (c) disagreement between ground-
truth and predicted foreground masks, (d) large-scale struc-
tural differences between the predicted maps and the train-
ing maps. Specifically, given T training sketches along with
ground-truth foreground, depth and normal maps for our V
output viewpoints, our loss function is a combination of the
following terms described in the following paragraphs:

L=
T∑

t=1

(λ1Ldepth(t)+λ2Lnormal(t)+λ3Lmask(t)+λ4Ladv(t))

where λ1 = 1.0, λ2 = 1.0, λ3 = 1.0, λ4 = 0.01 are
weights tuned in a hold-out validation set.
Per-pixel depth and normal loss. The first two terms con-
sider per-pixel differences in the predicted depths and nor-
mals with respect to ground-truth. Specifically, we use `1
distance for depths and angle cosine differences for normal
directions. The depth and normal differences are computed
only for pixels marked as foreground in the ground-truth:

Ldepth(t) =
∑
p,v

(
|dp,v(St)− d̂p,v,t|

)
f̂p,v,t

Lnormal(t) =
∑
p,v

(1− np,v(St) · n̂p,v,t) f̂p,v,t

where St is a training sketch, d̂p,v,t and n̂p,v,t are ground-
truth depth and normal for the pixel p in viewpoint v. Each
pixel has a ground-truth binary label f̂p,v,t, which is 1 for

foreground, and 0 otherwise. The depth and normal predic-
tions for the sketch St are denoted as dp,v(St) and np,v(St)
respectively. We note that all training depths are normal-
ized within the range [−1, 1] while predicted depths are also
clamped in this range. Thus both terms above have compa-
rable scale (i.e., both range between [0, 2] per pixel). We
also note that we tried `2 distance for penalizing depth dif-
ferences but this tended to produce less sharp maps.
Mask loss. Penalizing disagreement between predicted and
ground-truth foreground labeling can be performed via the
cross-entropy function commonly used in classification.
Adversarial loss. We also penalize structural differences
in the output maps with respect to ground-truth through an
“adversarial” network. This has been shown to serve as
an effective prior for various image-to-image transforma-
tion tasks [26]. The adversarial loss term takes as input a
5-channel image I that concatenates the depth channel, the
3 normal channels, and foreground map channel produced
by the decoder per viewpoint, and outputs the probability
for these maps to be “real”: Ladv = −

∑
v logP (“real”|I).

The probability is estimated using the “adversarial” net-
work trained to discriminate ground-truth (“real”) maps Î
from generated (“fake”) maps I. Both networks are trained
alternatively using the technique of [17]. The adversarial
network architecture is the same as the encoder except the
last layer that maps the output to probabilities via a fully-
connected layer followed by a sigmoid activation.

3.3. Point Cloud and Mesh Generation
Given multi-view depth and normal maps produced by our
network at test time, our next goal is to consolidate them
into a single, coherent 3D point cloud. The depth and nor-
mal predictions produced by the network are not guaran-
teed to be perfect or even consistent i.e., the derivatives of
the predicted depth might not entirely agree with the pre-
dicted normals, or the predicted depths for common surface
regions across different viewpoints might not yield exactly
the same 3D points. Below we discuss an optimization ap-
proach to fuse all multi-view depth and normal map predic-
tions into a coherent 3D point cloud, then we discuss mesh
generation and post-processing to match the input sketches
more precisely. Our optimization approach shares similar-
ities with bundle adjustment and multi-view reconstruction
[58, 15]. In our case, our output viewpoints are fixed and we
use the normal maps in our energy minimization to promote
consistency between depth derivatives and surface normals.
Multi-view depth and normal map fusion. The first step
of the fusion process is to map all foreground pixels to 3D
points. Each pixel is considered foreground if its predicted
probability in the foreground map is above 50%. Given the
depth dp,v of a foreground pixel p with image-space coor-
dinates {px, py} in the output map of a viewpoint v, a 3D
point qp,v can be generated according to the known extrin-
sic camera parameters (coordinate frame rotation Rv and
translation ev in object space). Under the assumed ortho-
graphic projection, the point position is computed as:

qp,v = Rv [κpx κpy dp,v]
T

+ ev

where κ is a known scaling factor, representing the distance
between two adjacent pixel centers when their centers are
mapped to object space. Each point is also equipped with a
normal np,v based on the predicted normal map. The result
of this first step is a generated point set per view. In a second
step, we run ICP [50] to rigidly align all-pairs of point sets,
which helps dealing with inconsistencies in the predicted
depth maps.

with optimizationwithout optimization

Figure 2. Without optimization the noisy point cloud will lead to
misaligned regions in the reconstructed shape.

A naive reconstruction method would be to simply concate-
nate all aligned point sets from all output views into a single
point cloud. However, such approach often results in a noisy
point cloud with misaligned regions due to the remaining
depth map inconsistencies not handled by ICP. The effect
of these inconsistencies tends to be amplified during mesh
generation, since a smooth surface cannot pass through all
the misaligned regions (Figure 2). Our optimization proce-
dure aims to deal with this problem. Specifically, we treat
the depths of all pixels as variables we want to optimize for.
The pixel depths are optimized such that (a) they are close
to the predicted (approximate) depths produced by the net-
work, (b) their first-order derivatives yield surface tangent
vectors that are as-orthogonal-as-possible to the predicted
normals, (c) they are consistent with depths and normals
of corresponding 3D points generated in other viewpoints.
These requirements are expressed in a single energy over
all pixel depths D = {dp,v} with terms imposing the above
three conditions, as explained in the next paragraphs:

E(D) = Enet(D) + Eorth(D) + Econs(D)

Network prediction term. The term Enet(D) penalizes
deviation from the approximate depths d̃p,v(St) produced
from the network at each pixel p and viewpoint v:

Enet(D) = w1

∑
p,v

(dp,v − d̃p,v(St))
2

where w1 weights this term (set to 1.0 through hold-out val-
idation). We use `2 norm here so that the energy minimiza-
tion yields a linear system that can be solved efficiently.

Orthogonality term. The term Eorth(D) penalizes devi-
ation from orthogonality between surface tangents, approx-
imated by first-order depth derivatives, and predicted sur-
face normals ñp,v(St). Given a 3D point qp,v generated for
pixel p and viewpoint v, we estimate two surface tangent
directions based on first-order depth derivatives [39]:

t(x)
p,v =

[
κ 0

∂dp,v
∂x

]T
, t(y)

p,v =

[
0 κ

∂dp,v
∂y

]T
The derivatives can be approximated with a horizontal and
vertical gradient filter that is convolved with depths in a 3×3
neighborhood around p. The energy term is expressed as:

Eorth(D) = w2

∑
p,v

[(t(x)
p,v · ñp,v(St))

2 + (t(y)
p,v · ñp,v(St))

2]

wherew2 is a weight (set to 1.0 through holdout validation).
Since the derivatives are unreliable near the shape silhou-
ette, we omit silhouette points for each view from this term.

View consistency term. Given a 3D point qp,v generated
from pixel p at viewpoint v, we can calculate its depth with
respect to the image plane of another viewpoint v′ as well
as the pixel that it is projected onto as: p′ = Πv′(qp,v),
where Πv′ denotes orthographic projection based on the pa-
rameters of viewpoint v′. When the 3D point is not oc-
cluded and falls within the image formed at viewpoint v′,
the calculated depth dv′(qp,v) of that point should be in
agreement with the depth dp′,v′ stored in the correspond-
ing pixel p′ of the viewpoint v′. Similarly, the normal of
that point nv′(qp,v) relative to the viewpoint v′ should be
as-orthogonal-as possible to the surface tangent vector, ap-
proximated by the derivative of the depth stored in the corre-
sponding pixel p′. The view consistency term penalizes: (a)
squared differences between the depth at each pixel and the
calculated depth of all 3D points projected onto that pixel,
(b) deviation from orthogonality between the surface tan-
gent vector at each pixel and the normal of all 3D points
projected onto that pixel. The term is expressed as follows:

Econs(D) = w3

∑
p,v,p′,v′:

p′=Πv′ (qp,v)

(dp′,v′ − dv′(qp,v))2+

+ w4

∑
p,v,p′,v′:

p′=Πv′ (qp,v)

(t
(x)
p′,v′ · nv′(qp,v))2 + (t

(y)
p′,v′ · nv′(qp,v))2

wherew3 andw4 are weights both set to 0.3. We note that if
a 3D point is projected onto a pixel that is masked as back-
ground (thus, its depth is invalid), then we exclude that pixel
from the above summation. If the 3D point is projected onto
background pixels in the majority of views, then this means
that the point is likely an outlier and we remove it from the
point cloud. As a result, there are few (p, p′) pixel pairs
in the above equation: each foreground pixel often has 3-4
corresponding pixels in other views.

Energy minimization. The energy is quadratic in the un-
known pixel depths, thus we can minimize it by solving
a linear system. Due to the orthogonality term, which
involves a linear combination (filtering) of depths within
a pixel neighborhood, the depth of each pixel cannot be
solved independently of the rest of the pixels. The solution
can be computed through a sparse linear system - we pro-
vide its solution in our supplementary material. When we
compute the pixel depths, the corresponding 3D point po-
sitions, generated by these pixels, are updated. Given new
3D point positions, the consistency term also needs updat-
ing since the points might now be projected onto different
pixels. This gives rise to an iterative scheme, where at each
step we estimate pixel depths by solving the linear system,
then update the 3D point positions. We observed that the
depth estimates become increasingly consistent across dif-
ferent views at each iteration and practically convergence is

achieved after 3-5 iterations. As shown in Figure 2, the re-
sulting point cloud yields a smoother reconstructed surface.

Mesh reconstruction and fine-tuning. We apply the
screened Poisson Surface Reconstruction algorithm [29] to
convert the resulting point cloud and normals to a surface
mesh. Our method can optionally further “fine-tune” the
generated mesh so that it matches the input contours more
precisely. To do this, for each input line drawing we first ex-
tract its external contours and discretize them into a dense
set of 2D points. Then for each input view, we render the
mesh under the same orthographic projection, and find near-
est corresponding mesh points to each contour point under
this projection. Then we smoothly deform the 3D mesh
such that the projected mesh points move towards the con-
tour points under the constraint that the surface Laplacians
[38], capturing underlying surface details, are preserved.
We also deform the mesh so that it better matches the inter-
nal contours of the sketch. This is done by finding nearest
corresponding mesh points to each internal contour point
and scaling their Laplacian according to the scheme pro-
posed in [38]. Mesh deformation is executed by solving a
sparse linear system involving all constraints from all inter-
nal and external contours across all input views. Figure 1
shows a reconstructed mesh before and after fine-tuning.

Implementation. The network is implemented in Tensor-
flow [1]. Training takes about 2 days for 10K training
meshes (40K training sketches) on a TitanX GPU. We use
the Adam solver [30] (hyperparameters β1 and β2 are set
to 0.9 and 0.999 respectively). At test time, processing
input sketches through the network takes 1.5 sec on a Ti-
tanX GPU, fusing the depth and normal maps takes 3 sec,
mesh reconstruction and fine-tuning takes 4 sec (fusion and
mesh reconstruction are implemented on the CPU - running
times are reported on a dual Xeon E5-2699v3). In total,
our method takes about 10 seconds to output a shape. Our
source code and datasets are available on our project page:
https://people.cs.umass.edu/˜zlun/SketchModeling

4. Evaluation
We now discuss the experimental evaluation of our method.
Datasets. To train our network, we gathered three collec-
tions of 3D shapes along with their synthetic sketches. Each
of the collections included shapes belonging to the same
broad category. The categories were 3D computer charac-
ters, airplanes, and chairs. To create the 3D computer char-
acter collection, we downloaded freely available 3D mod-
els of characters from an online repository (“The Models
Resource” [46]). The collection contained humanoid, alien,
and other fictional 3D models of characters. The airplanes
and chairs originated from 3D ShapeNet [6]. We used these
particular categories from ShapeNet because the shapes in

#training shapes view A view B
Character 10000 front side
Airplane 3667 top side

Chair 9573 front side
Table 1. Training dataset statistics.

these categories have large geometric and structural varia-
tion. Table 1 reports the number of training shapes and view
setting used to generate the training sketches.

Test dataset. To evaluate our method and compare it with
alternatives, we created a test dataset of synthetic and hu-
man line drawings for each of the above categories. Each
line drawing was created according to a reference test
shape. The goal of the evaluation was to examine how
well the reconstructed 3D shapes from these test line draw-
ings matched the reference test shapes. To execute a proper
evaluation, the reference test shapes should be sufficiently
different from all training shapes. Otherwise, by overfit-
ting a network to the training dataset or by simply using a
nearest neighbor sketch-based retrieval approach, one could
perfectly reproduce the reference shapes. To create the test
dataset of reference shapes, one option would be to ran-
domly split the above collections into a training and test
part. However, a problem with this strategy is that several
test shapes would be overly similar to one or more train-
ing shapes because of duplicate, or near-duplicate, 3D mod-
els that often exist in these collections (i.e., models that are
identical up to an affine transformation, having tiny part dif-
ferences or different mesh resolution). To create our test
dataset, we found 120 shapes (40 per category) in our col-
lections that we ensured to be sufficiently different from the
shapes used for training by performing two checks. First,
for each shape, we aligned it to each other shape in the col-
lection through the best matching affine transformation and
compute their Chamfer distance. The Chamfer distance is
computed by measuring the distance of each of the points
on one shape to the nearest surface point on the other shape,
then the average of these distances is used (we sampled 10K
points uniformly per shape). We verified that the Cham-
fer distance between each test shape and its nearest training
shape is well above a threshold. Second, we rendered syn-
thetic sketches for each shape based on the input views per
category and extracted the representation from our encoder
for these sketches. We then retrieved the nearest other shape
based on Euclidean distance over the sketch representations.
We verified that the distance is well above a threshold. We
also visually confirmed that test and training shapes were
different and the selected thresholds were appropriate.

For our 120 test shapes, we produced synthetic sketches
for 90 of them (30 per category), and gathered human line
drawings for the remaining 30 shapes (10 per category).
Synthetic sketches were produced from the test shapes us-
ing the line rendering techniques described in Section 3.2
based on the input views A and B per category (Table 1).
The human sketches were produced by asking two artists to
provide us with hand-drawn line drawings of reference test
shapes. The test shapes were presented to the artists on a
computer display and were rendered using Phong shading.
Their views were selected to approximately match the input
views A and B per category. We asked the artists to create
on paper line drawings depicting the presented shapes based
on the selected views. We then scanned their line drawings,
cropped and scaled them so that the scanned drawn area

https://people.cs.umass.edu/~zlun/SketchModeling

synthetic sketch human sketchShapeMVD volumetric
decoder

Tatarchenko
et al.

nearest
retrieval ShapeMVD volumetric

decoder
Tatarchenko

et al.
nearest
retrieval

Figure 3. Comparisons of shape reconstructions from sketches for our method and baselines.

Figure 4. Gallery of results. Blue shapes represent reconstructions produced by our method from the input sketches. Orange shapes are the
nearest shapes in the training datasets retrieved via sketch-based retrieval.

matches the drawing area of training sketches on average.
In contrast to synthetic sketches, human line drawings tend
to be noisy and inconsistent across different views.
Evaluation measures. Given the above test sketches as
input, the goal of our evaluation is to measure how well
the 3D shapes reconstructed by various methods, includ-
ing ours, matched the reference test shapes used to produce
these sketches. Our method and the alternatives, listed in
the following paragraphs, were trained and tested separately
on each category using the same splits. We used five eval-
uation measures to compare the reconstructed shapes to the
reference ones: Chamfer distance, Hausdorff distance, sur-
face normal distance, depth map error, volumetric Jaccard
distance. The Hausdorff distance is computed by measuring
the distance of each surface point on the reconstructed shape
to the nearest surface point on the reference shape, then
computing the maximum of these distances. The surface
normal distance is computed by measuring the angle be-
tween the normal at each surface point on the reconstructed
shape and the normal at the nearest surface point on the ref-
erence shape, then computing the mean of the angles. The
depth map error is computed by measuring the absolute dif-
ferences between pixel depths in each of the output depth
maps produced by our network and the corresponding depth
maps of the reference shape, then computing the average
depth differences. To compute the volumetric Jaccard dis-
tance, we voxelized the reconstructed and reference shapes
in a 128×128×128 binary grid and measured the number of
voxels commonly filled in both shapes (their volume inter-
section) divided by the number of their filled voxels (union
of their volumes) - this is the Intersection over Union (IoU).
We use 1− IoU as the volumetric Jaccard distance.
Comparisons. We tested the reconstructions produced by
our method (called “ShapeMVD”) versus the following

methods: (a) a network based on the same encoder as
ours but using a volumetric decoder baseline instead of our
multi-view decoder, (b) a network based on the same en-
coder as ours but with the Tatarchenko et al.’s view-based
decoder [56] instead of our multi-view decoder, (c) the
convolutional 3D LSTM architecture (R2N2) provided by
Choy et al. ’s implementation [7], and (d) nearest sketch-
based shape retrieval. For the volumetric decoder baseline
(a), we used a 128×128×128 output binary grid (the max-
imum we could fit in 12GB GPU memory). To make sure
that the comparison is fair, we set the number of parameters
in the volumetric decoder such that it is comparable to the
number of parameters in our decoder. The volumetric de-
coder consisted of five transpose 3D convolutions of stride
2 and kernel size 4×4×4. The number of filters starts with
512 and is divided by 2 at each layer. Leaky ReLU functions
and batch normalization were used after each layer. We note
that we did not use skip-connections (U-net architecture) in
the volumetric decoder because the size of the feature rep-
resentations produced in the sketch image-based encoder is
incompatible with the ones produced in the decoder. For
Tatarchenko et al.’s method, the viewpoint is encoded into a
continuous 64×1 representation passed as input to the view-
based decoder described in [56] without separate branches.
To ensure a fair comparison, we increased the number of
filters per up-convolutional layer by a factor of 3 so that the
number of parameters in their and our decoder is compara-
ble. We also train it with the same loss function as ours.
We additionally implemented a variant of Tatarchenko et
al.’s decoder by adding U-net connections between the en-
coder and their decoder. We report the evaluation measures
on this additional variation. For the nearest-neighbor base-
line, we extract the representation of the input test sketches
based on our encoder. This is used as a query representation

Man-made objects (synthetic) Character models (synthetic)
nearest Tatarchenko [56]+ volumetric R2N2 nearest Tatarchenko [56]+ volumetric R2N2

ShapeMVD retrieval et al.[56] U-net decoder [7] ShapeMVD retrieval et al.[56] U-net decoder [7]
Hausdorff distance 0.092 0.165 0.142 0.121 0.113 0.144 0.089 0.200 0.119 0.092 0.152 0.148
Chamfer distance 0.015 0.025 0.022 0.017 0.021 0.026 0.015 0.036 0.025 0.016 0.026 0.032
normal distance 30.66 42.57 35.58 32.32 49.40 48.78 30.61 44.93 34.98 31.00 53.84 53.13
depth map error 0.026 0.049 0.039 0.030 0.038 0.045 0.018 0.040 0.030 0.019 0.031 0.036

volumetric distance 0.344 0.501 0.442 0.374 0.432 0.512 0.313 0.541 0.428 0.329 0.437 0.493
Man-made objects (human drawing) Character models (human drawing)
nearest Tatarchenko [56]+ volumetric R2N2 nearest Tatarchenko [56]+ volumetric R2N2

ShapeMVD retrieval et al.[56] U-net decoder [7] ShapeMVD retrieval et al.[56] U-net decoder [7]
Hausdorff distance 0.116 0.176 0.153 0.153 0.130 0.149 0.117 0.188 0.139 0.136 0.178 0.168
Chamfer distance 0.017 0.031 0.024 0.025 0.022 0.028 0.021 0.036 0.025 0.024 0.032 0.036
normal distance 27.04 40.96 32.40 30.45 48.32 48.12 33.44 43.81 36.11 34.74 54.91 54.29
depth map error 0.021 0.042 0.033 0.032 0.032 0.042 0.026 0.040 0.031 0.027 0.037 0.040

volumetric distance 0.311 0.544 0.405 0.403 0.405 0.500 0.298 0.458 0.342 0.307 0.420 0.436
Table 2. Comparisons of our method with baselines based on our evaluation measures (the lower the numbers, the better)

to retrieve the training shape whose sketches have the near-
est encoder representation based on Euclidean distance. All
methods had access to the same training dataset per cate-
gory and were evaluated on the same test set.
Table 2 reports the evaluation measures for all competing
methods based on both synthetic and human line drawings.
We include evaluation separately for organic shapes (3D
character collection) and man-made shapes (measures are
averaged over airplanes and chairs). We also include stan-
dard deviations in our supplementary material. Our method
produces much more accurate reconstructions than the com-
peting methods in all cases. We note that mesh fine-tuning
was not used here for any of the methods. The reason was
to evaluate the methods by factoring out the post-processing
effects of fine-tuning. Fine-tuning is optional and does not
significantly affect the errors. It is used only to add details
(“stylize”) the produced meshes based on the input contours
when these are precisely drawn, and if users desire so (we
provide more discussion regarding the effects of fine-tuning
on the evaluation measures in the supplementary material).
With respect to Tatarchenko et al.’s method, we find that its
enhancement with U-net connections improves its perfor-
mance, but still performs worse than our method, especially
for man-made objects. This implies that U-net is a signifi-
cant enhancement. We finally observe that the R2N2 does
not perform better than our volumetric decoder baseline.
Figure 3 shows representative input test sketches, and out-
put meshes for competing methods (again, no fine-tuning
is used here). In general, the nearest neighbor results look
plausible because retrieval returns human-modeled training
shapes with fine details (e.g., facial features). Such details
are not captured by any of the methods, including ours. On
the other hand, as shown in the figure, and confirmed by nu-
merical evaluation, compared to nearest neighbor retrieval
and other methods, ours produces shapes that better match
the input sketch. The main reason is that our method better
preserves the shape structure, topology and coarse geometry
depicted in the input sketch. From this aspect, we believe
that the shapes reconstructed by our method may serve as
better starting “proxies” for artists to further improve upon.
We also conducted an Amazon Mechanical Turk user study
to perceptually evaluate the results of the methods. Specif-

ically, we asked human subjects to compare the produced
shapes from different methods and select the one that best
matches the input sketch. Our method was chosen by hu-
man participants to be the one producing shapes that best
match the input sketches most of the time compared to the
other methods including nearest retrieval (see supplemen-
tary material for results and more details on our user study).
More results. The supplementary material includes all re-
constructed test shapes for our method, nearest neighbors
and competing methods (fine-tuning is not used on any of
these results). We also include evaluation of our method
against degraded variants (e.g., using depth only, skipping
the fusion step or GAN), and results using two sketches ver-
sus one sketch as input. Figure 4 shows shapes produced by
our method for various input synthetic and human sketches.
Fine-tuning was used for the meshes of this figure.

5. Conclusion
We presented an approach for 3D shape reconstruction from
sketches. Our method employs a ConvNet to predict depth
and normals from a set of viewpoints, and the resulting in-
formation is consolidated into a 3D point cloud via energy
minimization. We evaluated our method and variants on two
qualitatively different categories (characters and man-made
objects). Our results indicate that view-based reconstruc-
tion of a 3D shape is significantly more accurate than voxel-
based reconstruction. We also showed that our method can
generalize to human-drawn sketches. We believe that there
is significant room for improving our method in the future.
For example, it would be interesting to explore the possibil-
ity of incorporating the fusion process in the network, and
modifying its architecture such that reconstruction is done
from arbitrary viewpoints. Our reconstructed shapes often
lack fine details that users would prefer to see in production-
quality 3D models. We believe that these shapes can serve
as starting “proxies” for artists to improve upon through
modeling interfaces. From this aspect, it would be useful to
integrate interactive modeling techniques into our method.
Acknowledgements. We acknowledge support from NSF
(CHS-1422441,CHS-1617333,IIS-1617917,IIS-1423082),
Adobe, NVidia, Facebook. We acknowledge the MassTech
Collaborative grant for funding the UMass GPU cluster.

References
[1] TensorFlow: Large-scale machine learning on heteroge-

neous systems, 2015. Software available from tensor-
flow.org. 6

[2] B. Allen, B. Curless, and Z. Popović. The space of hu-
man body shapes: reconstruction and parameterization from
range scans. In Proc. SIGGRAPH, 2003. 1

[3] P. N. Belhumeur, D. J. Kriegman, and A. L. Yuille. The bas-
relief ambiguity. International journal of computer vision,
35(1), 1999. 2

[4] V. Blanz and T. Vetter. A morphable model for the synthesis
of 3d faces. In Proc. SIGGRAPH, 1999. 1

[5] T. J. Cashman and A. W. Fitzgibbon. What shape are dol-
phins? building 3d morphable models from 2d images. IEEE
transactions on pattern analysis and machine intelligence,
35(1), 2013. 1

[6] A. X. Chang, T. A. Funkhouser, L. J. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
J. Xiao, L. Yi, and F. Yu. Shapenet: An information-rich 3d
model repository. In arXiv, abs/1512.03012. 2015. 6

[7] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-
r2n2: A unified approach for single and multi-view 3d object
reconstruction. In Proc. ECCV, 2016. 1, 2, 7, 8

[8] F. Cole, A. Golovinskiy, A. Limpaecher, H. S. Barros,
A. Finkelstein, T. Funkhouser, and S. Rusinkiewicz. Where
do people draw lines? ACM Trans. Graph., 27(3), 2008. 4

[9] F. Cole, K. Sanik, D. DeCarlo, A. Finkelstein, T. Funkhouser,
S. Rusinkiewicz, and M. Singh. How well do line drawings
depict shape? ACM Trans. Graph., 28(3), 2009. 2

[10] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and A. San-
tella. Suggestive contours for conveying shape. ACM Trans.
Graph., 22(3), 2003. 2, 3, 4

[11] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox. Learn-
ing to generate chairs with convolutional neural networks. In
Proc. CVPR, 2015. 1, 2

[12] D. Eigen and R. Fergus. Predicting depth, surface normals
and semantic labels with a common multi-scale convolu-
tional architecture. In Proc. ICCV, 2015. 2

[13] M. Eitz, R. Richter, T. Boubekeur, K. Hildebrand, and
M. Alexa. Sketch-based shape retrieval. ACM Trans. Graph.,
31(4), 2012. 2

[14] T. Funkhouser, P. Min, M. Kazhdan, J. Chen, A. Halderman,
D. Dobkin, and D. Jacobs. A search engine for 3d models.
ACM Trans. Graph., 22(1), 2003. 2

[15] S. Galliani and K. Schindler. Just look at the image:
viewpoint-specific surface normal prediction for improved
multi-view reconstruction. In Proc. CVPR, 2016. 4

[16] E. S. L. Gastal and M. M. Oliveira. Domain transform
for edge-aware image and video processing. ACM Trans.
Graph., 30(4), 2011. 4

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Proc. NIPS, 2014. 4

[18] X. Guo, J. Lin, K. Xu, S. Chaudhuri, and X. Jin. Custom-
Cut: On-demand Extraction of Customized 3D Parts with 2D
Sketches. Computer Graphics Forum, 2016. 2

[19] X. Han, C. Gao, and Y. Yu. Deepsketch2face: A deep learn-
ing based sketching system for 3d face and caricature mod-
eling. ACM Transactions on Graphics, 36(4), 2017. 2

[20] C. Häne, S. Tulsiani, and J. Malik. Hierarchical sur-
face prediction for 3d object reconstruction. In arXiv,
abs/1704.00710. 2017. 2

[21] D. Hoiem, A. A. Efros, and M. Hebert. Geometric context
from a single image. In Proc. ICCV, 2005. 2

[22] S. Hou and K. Ramani. Sketch-based 3d engineering part
class browsing and retrieval. In Proc. SBIM, 2006. 2

[23] H. Huang, E. Kalogerakis, and B. Marlin. Analysis and syn-
thesis of 3d shape families via deep-learned generative mod-
els of surfaces. Computer Graphics Forum, 34(5), 2015. 1

[24] H. Huang, E. Kalogerakis, E. Yumer, and R. Mech. Shape
synthesis from sketches via procedural models and convolu-
tional networks. IEEE Transactions Visualization and Com-
puter Graphics, 2017. 2

[25] T. Igarashi, S. Matsuoka, and H. Tanaka. Teddy: A sketching
interface for 3d freeform design. In Proc. SIGGRAPH, 1999.
2

[26] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image
translation with conditional adversarial networks. In Proc.
CVPR, 2017. 1, 2, 4

[27] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for
real-time style transfer and super-resolution. In Proc. ECCV,
2016. 1, 2

[28] T. Judd, F. Durand, and E. H. Adelson. Apparent ridges for
line drawing. ACM Trans. Graph., 26(3), 2007. 4

[29] M. Kazhdan and H. Hoppe. Screened poisson surface recon-
struction. ACM Trans. Graph., 32(3), 2013. 6

[30] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. In arXiv, abs/1412.6980. 2014. 6

[31] J. J. Koenderink. What does the occluding contour tell us
about solid shape? Perception, 13(3), 1984. 1

[32] J. J. Koenderink, A. J. Van Doorn, and A. M. Kappers. Sur-
face perception in pictures. Attention, Perception, & Psy-
chophysics, 52(5), 1992. 2

[33] G. Larsson, M. Maire, and G. Shakhnarovich. Learning
representations for automatic colorization. In Proc. ECCV,
2016. 1, 2

[34] J. Lee and T. Funkhouser. Sketch-based search and compo-
sition of 3d models. In Proc. SBM, 2008. 2

[35] Y. J. Lee, C. L. Zitnick, and M. F. Cohen. Shadowdraw:
Real-time user guidance for freehand drawing. ACM Trans.
Graph., 30(4), 2011. 2

[36] H. Lipson and M. Shpitalni. Optimization-based reconstruc-
tion of a 3d object from a single freehand line drawing.
Computer-Aided Design, 28, 1996. 1

[37] J. Malik. Interpreting line drawings of curved objects. Inter-
national Journal of Computer Vision, 1(1), 1987. 1

[38] A. Nealen, O. Sorkine, M. Alexa, and D. Cohen-Or. A
sketch-based interface for detail-preserving mesh editing.
ACM Trans. Graph., 24(3), 2005. 6

[39] D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi.
Efficiently combining positions and normals for precise 3d
geometry. ACM Trans. Graph., 24(3), 2005. 5

[40] G. Nishida, I. Garcia-Dorado, D. G. Aliaga, B. Benes, and
A. Bousseau. Interactive sketching of urban procedural mod-
els. ACM Trans. Graph., 2016. 2

[41] Y. Ohtake, A. Belyaev, and H.-P. Seidel. Ridge-valley lines
on meshes via implicit surface fitting. ACM Trans. Graph.,
23(3), 2004. 4

[42] L. Olsen, F. F. Samavati, M. C. Sousa, and J. A. Jorge.
Sketch-based modeling: A survey. Computers & Graphics,
33(1), 2009. 2

[43] H. Pan, Y. Liu, A. Sheffer, N. Vining, C.-J. Li, and W. Wang.
Flow aligned surfacing of curve networks. ACM Trans.
Graph., 34(4), 2015. 2

[44] B. T. Phong. Illumination for computer generated pictures.
Commun. ACM, 18(6), 1975. 4

[45] J. Pu, K. Lou, and K. Ramani. A 2d sketch-based user inter-
face for 3d cad model retrieval. Computer-Aided Design and
Applications, 2(6), 2005. 2

[46] T. M. Resource. https://www.models-resource.com/, 2017. 6
[47] G. Riegler, A. O. Ulusoy, H. Bischof, and A. Geiger. Oct-

netfusion: Learning depth fusion from data. In arXiv,
abs/1704.01047. 2017. 2

[48] A. Rivers, F. Durand, and T. Igarashi. 3d modeling with
silhouettes. ACM Trans. Graph., 29(4), 2010. 3

[49] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In Proc.
Medical Image Computing and Computer-Assisted Interven-
tion (MICCAI), volume 9351, 2015. 3

[50] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp
algorithm. In Proc. 3D Digital Imaging and Modeling, 2001.
5

[51] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3d
scene structure from a single still image. IEEE transactions
on pattern analysis and machine intelligence, 31(5), 2009. 2

[52] R. Schmidt, A. Khan, K. Singh, and G. Kurtenbach. Analytic
drawing of 3d scaffolds. ACM Trans. Graph., 28(5), 2009. 2

[53] R. G. Schneider and T. Tuytelaars. Sketch classification
and classification-driven analysis using fisher vectors. ACM
Trans. Graph., 33(6), 2014. 2

[54] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller. Multi-
view convolutional neural networks for 3d shape recognition.
In Proc. ICCV, 2015. 2

[55] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Single-view
to multi-view: Reconstructing unseen views with a convolu-
tional network. In arXiv, abs/1511.06702. 2015. 1, 2

[56] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Multi-view 3d
models from single images with a convolutional network. In
Proc. ECCV, 2016. 1, 2, 7, 8

[57] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree gen-
erating networks: Efficient convolutional architectures for
high-resolution 3d outputs. In arXiv, abs/1703.09438. 2017.
2

[58] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgib-
bon. Bundle adjustment - a modern synthesis. In Proc. ICCV
Workshop on Vision Algorithms: Theory and Practice, 2000.
4

[59] D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Tex-
ture networks: Feed-forward synthesis of textures and styl-
ized images. In Proc. ICML, 2016. 1, 2

[60] D. Waltz. Understanding line drawings of scenes with shad-
ows.” the psychology of computer vision. patrick henry win-
ston, ed, 1975. 1

[61] F. Wang, L. Kang, and Y. Li. Sketch-based 3d shape retrieval
using convolutional neural networks. In Proc. CVPR, 2015.
2

[62] X. Wang, D. Fouhey, and A. Gupta. Designing deep net-
works for surface normal estimation. In Proc. CVPR, 2015.
2

[63] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum.
Learning a probabilistic latent space of object shapes via 3d
generative-adversarial modeling. In Proc. NIPS, 2016. 1, 2

[64] X. Xie, K. Xu, N. J. Mitra, D. Cohen-Or, W. Gong, Q. Su,
and B. Chen. Sketch-to-Design: Context-Based Part Assem-
bly. Computer Graphics Forum, 2013. 2

[65] B. Xu, W. Chang, A. Sheffer, A. Bousseau, J. McCrae, and
K. Singh. True2form: 3d curve networks from 2d sketches
via selective regularization. ACM Trans. Graph., 33(4),
2014. 2

[66] K. Xu, K. Chen, H. Fu, W.-L. Sun, and S.-M. Hu.
Sketch2scene: Sketch-based co-retrieval and co-placement
of 3d models. ACM Trans. Graph., 32(4), 2013. 2

[67] X. Yan, J. Yang, E. Yumer, Y. Guo, and H. Lee. Perspective
transformer nets: Learning single-view 3d object reconstruc-
tion without 3d supervision. In Proc. NIPS, 2016. 1, 2

[68] J. Yang, S. E. Reed, M.-H. Yang, and H. Lee. Weakly-
supervised disentangling with recurrent transformations for
3d view synthesis. In Proc. NIPS, 2015. 1, 2

[69] R. C. Zeleznik, K. P. Herndon, and J. F. Hughes. Sketch:
An interface for sketching 3d scenes. In Proc. SIGGRAPH,
1996. 1

[70] R. Zhang, P. Isola, and A. A. Efros. Colorful image coloriza-
tion. In Proc. ECCV, 2016. 1, 2

[71] T. Zhou, S. Tulsiani, W. Sun, J. Malik, and A. A. Efros. View
synthesis by appearance flow. In Proc. ECCV, 2016. 1, 2

3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks
Supplementary Material

Zhaoliang Lun Matheus Gadelha Evangelos Kalogerakis Subhransu Maji Rui Wang
University of Massachusetts Amherst

{ zlun, mgadelha, kalo, smaji, ruiwang } @cs.umass.edu

1. Workflow for users
Our method can take a single or multiple sketches as input.
In the case of a single sketch, our method generates the 3D
shape based on the input sketch alone. Alternatively, users
can provide multiple sketches as input at once, or provide
them progressively while being guided by the intermediate
shape reconstructions. In the latter case, illustrated in Fig-
ure 1, the workflow for users is the following: they draw
from one view, then our network, which is trained to recon-
struct from that view, yields a 3D shape. Users can then
draw a second sketch from another view, on top of the gen-
erated shape rendered semi-transparently from that view,
similar to ShadowDraw [2]. Given the previous and new
line drawing as input, our network, trained to reconstruct
from both views, yields an updated 3D shape. The pro-
cess can continue until users are satisfied with the result, at
which point they may edit the mesh directly.

(a) (b) (d) (e)(c)

Figure 1. (a) The user can provide a front view sketch as input;
(b) our network trained on a single input sketch generates an inter-
mediate shape; (c) the user can further draw a sketch from the side
view using the rendered shape as a guide; (d) & (e) our network
trained on inputs from both views yields an updated 3D shape.

2. User study
In addition to the numerical evaluation measures in Section
4, we also performed a perceptual user study to compare our
method with the volumetric decoder, view-based decoder
based on Tatarchenko et al. [4] and the nearest neighbor
sketch-based retrieval. The user study was executed through
the Amazon Mechanical Turk (MTurk) service. Each ques-
tionnaire included 30 queries. Each query showed: (a) a
pair of synthetic or human line drawings depicting a test
shape from two different views, (b) a rendered image of
the 3D surface mesh reconstructed using our method given
these two input line drawings, (c) another rendered image
of the 3D surface mesh reconstructed using one of the al-
ternative methods. The images were laid out as shown in
Figure 2. Queries were shown at a random order, while
each page was repeated twice (i.e., 15 unique queries), with
the two rendered mesh images randomly flipped, to detect

A B

(i) A - 100%

(ii) B - 0%

(iii) Both - 0%

(iv) Neither - 0%

Figure 2. Query layout shown to participants of our user study.

unreliable users giving inconsistent answers. Each query in-
cluded the following question: “Which of the two 3D mod-
els on the bottom (A or B) is MORE similar to the object
depicted by the line drawings on the top? ”. Participants
were asked to pick one of the following answers: “(i) A,
(ii) B, (iii) can’t tell - Both A and B look equally similar
to the line drawings, (iv) can’t tell - Neither A nor B looks
similar to the line drawings”. To avoid any individual bias,
we allowed each participant to complete only one question-
naire per category. Participants were rewarded $1 for each
questionnaire completion. Each query was answered by 5
different, reliable MTurk participants. We filtered out un-
realiable MTurk participants who gave two inconsistent an-
swers to more than 7 out of the 15 unique queries in the
questionnaire, or took less than 2 minutes to complete it.
Participants agreed with each other 92.0% of the times, in-
dicating a high degree of consistency across participants.

In total, we gathered 1800 consistent responses from re-
liable users: 600 responses comparing the reconstructions
of our method with the ones from the volumetric decoder,
600 responses comparing our method with sketch-based re-
trieval, and 600 responses comparing our method with the
alternative view-based decoder based on [4]. The 600 query
responses were gathered for all 120 human and synthetic
test sketches in all our 3 categories (as explained above,
each test sketch pair and resulting reconstructions was ex-
amined by 5 different, reliable MTurk participants).

Table 1 shows demographic statistics about the participants.
Table 2 reports the results of the user study. We report
the percentage of plurality responses per-query (plurality
is formed by the 5 reliable users per query). We also re-

1

Additional supplementary material / results are provided on our project page:
http://people.cs.umass.edu/~zlun/papers/SketchModeling/

mailto:zlun@cs.umass.edu
mailto:mgadelha@cs.umass.edu
mailto:kalo@cs.umass.edu
mailto:smaji@cs.umass.edu
mailto:ruiwang@cs.umass.edu

total users 167
reliable users 157 94.0%
rejected users 10 6.0%

male 104 62.3%
female 61 36.5%

unknown gender 2 1.2%
age 18-35 117 70.1%
age 36-50 33 19.8%
age > 50 17 10.2%

unknown age 0 0.0%
without post-secondary education 26 15.6%

with post-secondary education 141 84.4%
other education level 0 0.0%

Table 1. Participant statistics.

port the raw vote percentages by simply aggregating all the
votes from reliable users. Table 3 shows the corresponding
number of votes. Our method was found to produce shapes
that look much more similar to the depicted shapes in the
line drawings.

3. Additional evaluation
Comparisons with variants of our method. In addition
to the evaluation described in Section 4 of our paper, we
also evaluated the reconstructions produced by our method
against degraded variants of it. Table 4 reports the results.
Specifically, we tested the following variants: (a) we do
not use the optimization procedure of Section 3.3 (‘no fu-
sion’ column), (b) we set the output of our network to depth
alone (‘no normal’ column) - since Poisson reconstruction
requires both points and normals as input, we produce nor-
mals by least-squares plane fitting for each generated 3D
point in this case, (c) we skip the adversarial loss term dur-
ing training (‘no GAN’ column). For all these variants, the
network uses two input sketches based on views A and B of
Table 1. We also tested the reconstructions produced by our
method when it uses a single sketch as input (view A, ‘sin-
gle input’ column in Table 4) versus two sketches as input.
We note that mesh fine-tuning was not used for any of these
variants. Based on the resulting numbers, our full method
tends to produce lower errors than its degraded variants, es-
pecially for man-made objects that often have more struc-
tural and geometric variability than character models. We
also observe that using two sketches significantly improves
the reconstructed shapes. This is not surprising since two
input sketches contain more shape information than one.

Evaluation with fine-tuning. After obtaining a recon-
structed mesh as described in Section 3.3, our method can
further “fine-tune” the generated mesh so that it matches the
input contours more precisely. We note that fine-tuning is
optional, used only to add details, or “stylize”, the produced
meshes based on the input contours when these are precisely
drawn, and if users desire so. “Fine-tuning” can be applied
not only to the reconstructed meshes of our method but also
to the resulting meshes of the other competing methods.
Thus, we also experimented when fine-tuning is applied to
the results of all methods. We found that the effect on eval-
uation measures tends not to be significant and our method

has still much smaller errors than the others also in this case.
The reason is that the mesh deformation applied during fine-
tuning works well only if the produced shape matches the
drawn shape in terms of structure and topology (e.g., lay-
out and number of parts). While this is mostly true for our
method, it is often not the case for shapes produced by vol-
umetric decoders and nearest retrieval. For example, given
the line drawing of a chair with a vertical middle bar on its
back (Figure 4, left), the chair returned by nearest retrieval
has a horizontal bar instead. Fine-tuning cannot add or re-
move parts, but instead deforms irrelevant surface points
on the retrieved chair back towards the silhouette points of
the vertical bar, yielding a largely implausible shape. Due
to such mismatches, fine-tuning the retrieved shapes can
slightly amplify errors with respect to ground-truth shapes.
For example, for human line drawings, Hausdorff distance
is further increased by 10% for nearest retrieval when fine-
tuning is applied to the retrieved shapes. In contrast, for our
method after fine-tuning, the error drops by a tiny amount
(< 1%) i.e., deformation adds small details, like the alien’s
eyes of Figure 1, without causing implausible deformations.

Standard deviations. In Table 5 and 6 we additionally
provide the standard deviation of the errors for all compet-
ing methods and degraded variants of our method .

4. Solution to the linear system for point cloud
optimization

To minimize the energy E(D) we formulated in Section
3.3, we set its derivatives with respect to the unknown pixel
depths D to zero, which in turn leads to a sparse linear
system in the form of Ax = b. Here the unknown vec-
tor x consists of all pixel depths dp,v we wish to solve for.
The system is solved using the conjugate gradient method
in least-squares sense. Equation 1 shows the linear system
along with the sparse matrix A and the constant vector b.
In the following paragraphs, we explain how to derive the
system based on the linear constraints originating from each
of the energy terms explained in Section 3.3.

w1I
...(

w2 · n(z)
p,v

)
L(x)

...(
w2 · n(z)

p,v

)
L(y)

...
w1I
...(

w2 · n(z)
v′ (qp,v)

)
L(x)

...(
w2 · n(z)

v′ (qp,v)
)
L(y)

...

[D] =

w1 · d̃p,v(St)
...

−w2 · κ · n(x)
p,v

...

−w2 · κ · n(y)
p,v

...
w1 · dv′(qp,v)

...

−w2 · κ · n(x)
v′ (qp,v)

...

−w2 · κ · n(y)
v′ (qp,v)

...

(1)

plurality raw votes
A B both neither draw A B both neither

ours (A) vs Tatarchenko et al. (B) 99.2% 0.8% 0.0% 0.0% 0.0% 94.7% 2.5% 1.5% 1.3%
ours (A) vs volumetric decoder (B) 96.7% 1.7% 0.0% 0.0% 1.7% 92.8% 2.0% 3.0% 2.2%

ours (A) vs nearest retrieval (B) 87.5% 12.5% 0.0% 0.0% 0.0% 81.2% 14.7% 1.0% 3.2%
Table 2. Perceptual user study results comparing our method with baseline methods: per-query plurality responses (left) and raw vote
percentages (right).

plurality raw votes
A B both neither draw A B both neither

ours (A) vs Tatarchenko et al. (B) 119 1 0 0 0 568 15 9 8
ours (A) vs volumetric decoder (B) 116 2 0 0 2 557 12 18 13

ours (A) vs nearest retrieval (B) 105 15 0 0 0 487 88 6 19
Table 3. Perceptual user study votes.

Man-made objects Character models
full method no fusion no normal no GAN single input full method no fusion no normal no GAN single input

Hausdorff distance 0.092 0.102 0.108 0.107 0.134 0.089 0.090 0.088 0.098 0.113
Chamfer distance 0.015 0.015 0.017 0.016 0.020 0.015 0.015 0.016 0.016 0.021
normal distance 30.66 30.78 31.22 30.89 34.49 30.61 30.84 30.85 30.72 34.15
depth map error 0.026 0.027 0.029 0.028 0.035 0.018 0.019 0.020 0.019 0.026

volumetric distance 0.344 0.356 0.354 0.347 0.428 0.313 0.318 0.323 0.320 0.396
Table 4. Comparisons with variants of our method based on our evaluation measures (the lower the numbers, the better).

Network prediction term. It is easy to see that this term
leads to constraints dp,v = d̃p,v(St) weighted by the param-
eter w1. Therefore we can fill the matrix A with w1’s and
the vector b with w1 · d̃p,v(St), as shown in Equation 1.

Orthogonality term. Considering the two orthogonality
terms separately, we have two linear constraints weighted
by the parameter w2:

n(z)
p,v ·

∂dp,v
∂x

= −κ · n(x)
p,v

n(z)
p,v ·

∂dp,v
∂y

= −κ · n(y)
p,v

Here the superscripts (x), (y) and (z) of the normal np,v in-
dicate its x, y, or z component respectively. The first-order
derivatives of the depth are approximated with a gradient
filter [3], which is convolved with depths in the 3×3 neigh-
borhood per pixel:

∂D

∂x
≈ L(x)D = D ∗ 1

12

-1 0 1
-4 0 4
-1 0 1

∂D

∂y
≈ L(y)D = D ∗ 1

12

1 4 1
0 0 0

-1 -4 -1

where L(x) and L(y) are matrices which implement the
above convolution. Therefore for each pixel we can fill the
corresponding columns in the sparse matrix A and entries
in b, as shown in the linear system of Equation 1 above.

View consistency term. The view consistency terms
yield similar linear constraints as above. The only dif-
ference is that they use the projected depths dv′(qp,v)
and transformed normals nv′(qp,v) (instead of the depths
d̃p,v(St) and normals np,v).

By combining all linear constraints, weighted by their cor-
responding weights, we form the overconstrained, sparse
linear system of Equation 1.

5. More results
Our supplementary material includes rendered images of
all 3D reconstructed shapes in our test data set based on our
method and its degraded variants for human and synthetic
line drawings in our 3 categories (‘variant-chair.pdf’,
‘variant-character.pdf’, ‘variant-plane.pdf’).
In addition, we include rendered images of all 3D recon-
structed shapes in our test data set based on our method and
the alternative methods (volumetric decoder, nearest neigh-
bor sketch-based retrieval, the view-based decoder based on
Tatarchenko et al. and R2N2) for human and synthetic line
drawings in our 3 categories (‘baseline-chair.pdf’,
‘baseline-character.pdf’,‘baseline-plane.pdf’).
Finally, we include the MTurk participant votes for each
query included in our user study (‘user-study.pdf’).

References

[1] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3d-
r2n2: A unified approach for single and multi-view 3d object
reconstruction. In Proc. ECCV, pages 628–644, 2016. 4

[2] Y. J. Lee, C. L. Zitnick, and M. F. Cohen. Shadowdraw: Real-
time user guidance for freehand drawing. ACM Trans. Graph.,
30(4), 2011. 1

Man-made objects (synthetic) Character models (synthetic)
nearest Tatarchenko [4]+ volumetric R2N2 nearest Tatarchenko [4]+ volumetric R2N2

ShapeMVD retrieval et al.[4] U-net decoder [1] ShapeMVD retrieval et al.[4] U-net decoder [1]
Hausdorff distance 0.039 0.064 0.054 0.060 0.038 0.073 0.035 0.091 0.039 0.033 0.059 0.049
Chamfer distance 0.006 0.009 0.007 0.007 0.006 0.011 0.005 0.016 0.008 0.006 0.007 0.010
normal distance 6.54 7.54 7.63 7.00 5.02 4.92 6.32 7.45 7.64 6.61 2.14 2.43
depth map error 0.012 0.018 0.013 0.014 0.011 0.014 0.008 0.015 0.011 0.008 0.009 0.010

volumetric distance 0.145 0.173 0.154 0.160 0.137 0.134 0.202 0.203 0.207 0.207 0.210 0.190
Man-made objects (human drawing) Character models (human drawing)
nearest Tatarchenko [4]+ volumetric R2N2 nearest Tatarchenko [4]+ volumetric R2N2

ShapeMVD retrieval et al.[4] U-net decoder [1] ShapeMVD retrieval et al.[4] U-net decoder [1]
Hausdorff distance 0.081 0.063 0.054 0.061 0.039 0.046 0.061 0.070 0.062 0.061 0.054 0.048
Chamfer distance 0.006 0.013 0.008 0.007 0.006 0.007 0.007 0.014 0.007 0.007 0.010 0.012
normal distance 5.53 5.59 4.26 4.24 2.28 4.10 6.46 8.72 4.49 5.96 2.39 2.39
depth map error 0.009 0.014 0.011 0.010 0.009 0.013 0.010 0.014 0.011 0.010 0.012 0.011

volumetric distance 0.095 0.182 0.124 0.091 0.118 0.112 0.146 0.189 0.122 0.140 0.159 0.132
Table 5. Comparisons of our method with baselines based on our evaluation measures in terms of standard deviation.

Man-made objects Character models
full method no fusion no normal no GAN single input full method no fusion no normal no GAN single input

Hausdorff distance 0.039 0.046 0.049 0.053 0.062 0.035 0.036 0.036 0.040 0.044
Chamfer distance 0.006 0.005 0.008 0.006 0.008 0.005 0.005 0.006 0.005 0.009
normal distance 6.54 6.43 6.97 6.68 6.88 6.32 6.85 6.45 6.70 8.04
depth map error 0.012 0.012 0.013 0.013 0.013 0.008 0.009 0.010 0.009 0.011

volumetric distance 0.145 0.166 0.147 0.149 0.162 0.202 0.211 0.204 0.209 0.213
Table 6. Comparisons with variants of our method based on our evaluation measures in terms of standard deviation.

[3] D. Nehab, S. Rusinkiewicz, J. Davis, and R. Ramamoorthi.
Efficiently combining positions and normals for precise 3d ge-
ometry. ACM Trans. Graph., 24(3), 2005. 3

[4] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Multi-view 3d
models from single images with a convolutional network. In
Proc. ECCV, 2016. 1, 4

