
3D Shape Reconstruction from Sketches
via Multi-view Convolutional Networks

Zhaoliang Lun
Matheus Gadelha

Evangelos Kalogerakis
Subhransu Maji

Rui Wang

Hello everyone, my name is Zhaoliang Lun. Today I am going to present our paper on
reconstructing 3D shapes from sketches using multi-view convolutional networks.

1

Image from Autodesk 3D Maya

Creating 3D shapes is not easy

Creating compelling 3D models of shapes is a time-consuming and laborious task,
which is often out of reach for users without modeling expertise and artistic skills.
Existing 3D modeling tools have steep learning curves and complex interfaces for
handling low-level geometric primitives.

2

Goal: 2D line drawings in, 3D shapes out!

ShapeMVDfront view

side view 3D shape

The goal of our project is to make it easy for people to create 3D models. We
designed a deep architecture, called Shape Multi-View Decoder, in short ShapeMVD,
that takes as input one or multiple sketches in the form of line drawings, such as the
ones that you see on the left, and outputs a complete 3D shape that you see on the
right.

3

Why line drawings? Simple & intuitive
medium to convey shape!

Image from Suggestive Contour
Gallery, DeCarlo et al. 2003

Why did we choose line drawings as the input representation? Line drawings is a
simple and intuitive medium for artists and casual modelers. By drawing a few
silhouettes and internal contours, humans can effectively convey shape. Modelers
often prototype their design by using line drawings.

4

Challenges: ambiguity in shape interpretation

?

On the other hand, converting 2D sketches to 3D shapes has a number of challenges.
First, there is often no single 3D shape interpretation given a single input sketch. For
example, given a drawing of a 2D smiley face here, one possible interpretation is a
spherical 3D face you see on the top. Another possible interpretation is the button-
shape head you see on the bottom.

5

?

Challenges: need to combine information
from multiple input drawings

One way to partially disambiguate the output is by using multiple input line drawings
from different views. For example, given a second line drawing, the button-shape
interpretation becomes inconsistent with the input. A technical challenge here is how
to effectively combine information from all input sketches to reconstruct a single,
coherent 3D shape as output.

6

?

Challenges: favor interpretations by learning
plausible shape geometry

One more challenge is that human drawings are not perfect. The strokes might not be
accurate, smooth, or even consistent across views. For example, given these human
line drawings, one possible interpretation could be a non-symmetric, noisy head that
you see on the bottom. [CLICK] A data-driven approach can instead favor more
plausible interpretations by learning models of geometry from collections of plausible
3D shapes. For example, if we have a database of 3D symmetric heads, a learning
approach would learn to reconstruct symmetric heads and favor the top
interpretation, which is far more plausible.

7

Related work

[Igarashi et al. 1999]

[Rivers et al. 2010]

[Xie et al. 2013]

In the past, researchers tried to tackle this problem primarily through non-learning
approaches. However, these approaches were based on hand-engineered pipelines or
descriptors, and required significant manual user interaction. We adopt a neural
network approach to automatically learn the mapping between sketches and shape
geometry.

8

Deep net architecture

ShapeMVD

3D shape

front view

side view

I will now describe our deep network architecture.

9

Deep net architecture: Encoder

Feature representations
capturing increasingly larger
context in the sketches

front view

side view

First, the line drawings are ordered according to the input viewpoint, and
concatenated into an image with multiple channels. This image passes through an
encoder with convolutional layers that extract feature representation maps. As we go
from the left to the right, the feature maps capture increasingly larger context in the
sketch images – the first feature maps encode local sketch patterns, such as stroke
edges and junctions, and towards the end, the last map encodes more global
patterns, such as what type of character is drawn, or what parts it has.

10

Deep net architecture: Decoder

Infer depth and normal maps

Feature representations
generating shape information at
increasingly finer scales

front view

side view

depth map

The second part of the network is a decoder which has a similar but reversed
architecture of the encoder. Going from left to right the feature representations
generate shape feature maps at increasingly finer scales. The last layer of the decoder
outputs an image that contains the predicted depth, in other words, a depth map for
a particular output viewpoint.

11

Deep net architecture: Decoder

Infer depth and normal maps

Feature representations
generating shape information at
increasingly finer scales

front view

side view

+normal map

and also one more image that contains predicted normals, in other words a normal
map, for that particular output viewpoint. The normals are 3D vectors, encoded as
RGB channels in the output normal map.

12

Deep net architecture: Multi-view Decoder

Infer depth and normal maps for several views

output view 1

output view 12

front view

side view

One viewpoint is not enough to capture a surface in 3D. Thus, we output multiple
depth and normals maps from several viewpoints to deal with self-occlusions. We use
a different decoder branch for each output viewpoint. In total we have 12 fixed
output viewpoints placed at the vertices of a regular icosahedron.

13

Deep net architecture: U-net structure
Feature representations in the decoder depend on previous
layer & encoder’s corresponding layer

U-net: Ronneberger et al. 2015,
Isola et al. 2016

front view

side view

output view 1

output view 12

If the decoder relies exclusively on the last feature map of the encoder, then it will fail
to reconstruct fine-grained local shape details. These details are captured in the
earlier encoder layers. Thus, we employed a U-Net architecture. Each decoder layer
processers the maps of the previous layer, and also the maps of the corresponding,
symmetric layer from the encoder.

14

Training: initial loss

U-net: Ronneberger et al. 2015,
Isola et al. 2016

front view

side view

output view 1

output view 12

Penalize per-pixel depth reconstruction error:
& per-pixel normal reconstruction error:

| |pred gt
pixels

d d
(1)pred gt

pixels

n n 

To train this generator network, as a first step, we first employ a loss function that
penalizes per-pixel depth and normal reconstruction loss. This loss function, however,
focuses more on getting the individual pixel predictions correct, rather than making
the output maps plausible as a whole.

15

Checks whether the output depth & normals look real or fake.
Trained by treating ground-truth as real, generated maps as fake.

front view

side view

Generator
Network

output view 1

output view 12

…

Discriminator
Network

Real?
Fake?

Real?
Fake?

front view

side view

output view 1

output view 12

Discriminator
Network

cGAN: Isola et al. 2016

Training: discriminator network

Therefore, we also train a discriminator network that decides whether the output
depth and normal maps, as a whole, look good or bad, in other words, real or fake.
The discriminator network is trained such that it predicts ground-truth maps as real,
and the generated maps as fake.

16

Penalize per-pixel depth reconstruction error:
& per-pixel normal reconstruction error:
& “unreal” outputs:

Training: full loss

front view

side view

Generator
Network

output view 1

output view 12

…
front view

side view

output view 1

output view 12

log ()P real

Discriminator
Network

Real?
Fake?

Real?
Fake?

Discriminator
Network

cGAN: Isola et al. 2016

| |pred gt
pixels

d d
(1)pred gt

pixels

n n 

At the subsequent steps, the generator network is trained to fool the discriminator.
Our loss function is augmented with one more term that penalizes unreal outputs
according to the trained discriminator output. Both the generator and discriminator
are trained interchangeably. This is also known as the conditional GAN approach.

17

Training data

Character
10K models

Chair
10K models

Airplane
3K models

Models from “The Models Resource” &
3D Warehouse

Our architecture is trained per shape category, namely characters, chairs, and
airplanes. We have a collection of about 10K characters, 10K chairs, and 3K airplanes.

18

Synthetic line drawings

Training data

For each training shape, we create synthetic line drawings consisting of a combination
of silhouettes, suggestive contours, ridges and valleys.

19

…

Synthetic line drawings

Training depth and normal maps

12 views

Training data

To train our network, we also need ground-truth, multi-view training depth and
normal maps. We place each training shape inside a regular icosahedron, then place
a viewpoint at each vertex. From each viewpoint we render depth and normal maps.

20

Predict multi-view depth and normal maps!

output view 1

output view 12

front view

side view

Test time

At test time, given the input line drawings, we generate multi-view depth and normal
maps based on our learned generator network.

21

Multi-view depth
& normal maps

Consolidated
point cloud

output view 1

output view 12

Multi-view depth & normal map fusion

At test time, the output maps are not perfect, meaning that the depths across
different viewpoints might not agree on the output surface. The depth derivatives
might also be slightly inconsistent with the predicted normals. Thus, we follow an
optimization procedure that fuses the depth and normal maps into a coherent point
cloud.

22

• Depth derivatives should be
consistent with normals

Multi-view depth
& normal maps

Consolidated
point cloud

output view 1

output view 12

Optimization problem

Multi-view depth & normal map fusion

The optimization corrects depths under the following two objectives. First, the depth
derivatives, which correspond to surface tangent directions should be as-
perpendicular-as-possible to the predicted normals.

23

• Depth derivatives should be
consistent with normals

• Corresponding depths and
normals across different
views should agree

Optimization problem

Multi-view depth
& normal maps

Consolidated
point cloud

output view 1

output view 12

Multi-view depth & normal map fusion

Then the depths across different viewpoints should agree. For example, let’s say that
we take a pixel from one viewpoint, and map it to a 3D point according to the
predicted depth. Then if we project the 3D point onto another viewpoint, then the
resulting depth should agree as much as possible with the predicted depth from that
viewpoint. This optimization problem can be solved through a linear system – more
details in the paper.

24

Multi-view depth
& normal maps

Consolidated
point cloud

Surface
reconstruction

[Kazhdan et al. 2013]

output view 1

output view 12

Surface Reconstruction

Given the resulting point cloud with normals, we perform surface reconstruction – we
use the standard screened Poisson surface reconstruction that yields a polygon mesh.

25

Multi-view depth
& normal maps

Consolidated
point cloud

Surface
“fine-tuning”
[Nealen et al. 2005]

output view 1

output view 12
Surface

reconstruction
[Kazhdan et al. 2013]

Surface deformation

The output mesh tends to lose details in the sketch for various reasons: training is
approximate, output resolution is limited to 256x256, or there is no unique surface
that is consistent with the input drawings, and so on. To add details, we take each
input line drawing.

26

Multi-view depth
& normal maps

Consolidated
point cloud

Surface
“fine-tuning”

[Nealen et al. 2005]

output view 1

output view 12
Surface

reconstruction
[Kazhdan et al. 2013]

Surface deformation

and apply surface deformations, namely laplacian deformations, so that the
silhouette, ridges, and valleys of the surface agree with the strokes of the input
sketches. We refer you to the paper and previous work on sketch-driven surface
deformations for more details.

27

Experiments

We now discuss our experiments to evaluate our method and alternatives.

28

reference
shape

reference
shape

Qualitative Results

To evaluate different methods, we showed reference shapes to a few volunteers who
participated in an informal user study. We asked them to provide line drawings. The
goal of the evaluation is to compare how well reconstructed shapes from line
drawings match the reference shapes.

29

Qualitative Results

reference
shape

reference
shape

nearest
retrieval

nearest
retrieval

A simple baseline method is to recover the nearest training through sketch-based
retrieval. Nearest sketch retrieval might find a shape that looks plausible, since it is
modeled by an artist. However, it will often not match the input sketch – for example,
the back and seat of the retrieved chair are similar to the back and seat of the
reference shape, however their legs are different.

30

Qualitative Results

reference
shape

reference
shape

nearest
retrieval

nearest
retrieval

our
result

our
result

volumetric
net

volumetric
net

Here is the output reconstruction from a method that outputs voxels in a
128x128x128 binary voxel grid. The volumetric method is trained on the same
training data, and a loss function that incorporates cross-entropy for voxel prediction.
We tried to keep the comparison fair by matching the number of layers and
parameters of the volumetric network with the ones in our network, and optimizing
all hyper-parameters similarly. The method tends to produce shapes whose topology,
part proportions, and structure do not match well with the reference shape.

31

Qualitative Results

reference
shape

reference
shape

nearest
retrieval

nearest
retrieval

our
result

our
result

volumetric
net

volumetric
net

Our reconstruction is shown in the middle. Even if our result tends to miss details, or
does not have the quality of shapes modeled by artists, our result approximates the
reference shape much better in terms of structure, topology, part style and
proportions, compared to nearest retrieval or volumetric reconstruction.

32

reference
shape

reference
shape

nearest
retrieval

nearest
retrieval

our
result

our
result

volumetric
net

volumetric
net

Qualitative Results

These are the results for characters. Again nearest retrieval can give a shape which
might not have the parts or style depicted in the input sketches.

33

reference
shape

reference
shape

nearest
retrieval

nearest
retrieval

our
result

our
result

volumetric
net

volumetric
net

Qualitative Results

The volumetric reconstruction is overly too coarse.

34

reference
shape

reference
shape

nearest
retrieval

nearest
retrieval

our
result

our
result

volumetric
net

volumetric
net

Qualitative Results

Our result captures the parts and overall shape depicted in the input drawings better.

35

Quantitative Results

Our
method

Volumetric
decoder

Nearest
retrieval

Hausdorff distance 0.120 0.638 0.242
Chamfer distance 0.023 0.052 0.045
normal distance 34.27 56.97 47.94
depth map error 0.028 0.048 0.049

volumetric distance 0.309 0.497 0.550

Character (human drawing)

Quantitatively, we can compare the reconstructed shapes and the reference shapes,
using various metrics, such as Hausdorff distance, Chamfer distance, angles between
normals, depth map error, voxel-based intersection over union. These are the results
for character models. According to all metrics, our reconstruction errors are much
smaller compared to nearest retrieval and the volumetric network.

36

Quantitative Results

Our
method

Volumetric
decoder

Nearest
retrieval

Hausdorff distance 0.171 0.211 0.228
Chamfer distance 0.028 0.032 0.038
normal distance 34.19 48.81 43.75
depth map error 0.037 0.046 0.059

volumetric distance 0.439 0.530 0.560

Man-made shape (human drawing)

Here are the results for man-made models. Again we observe the same trend – our
methods yields much lower errors.

37

Single vs two input line drawings

Single sketch

Two sketches

Resulting shape

Resulting shape

Note that even with a single sketch, our method often outputs a plausible shape –
obviously, there is lots of missing information in the input sketch from a single view,
for example, the hair ponytail, thus more input sketches help towards creating the
desired shape.

38

More results

Here we show more results for a sofa, airplane, and a character. As you see here, our
results preserve small structures such as thin legs of the sofa, engines of the airplane,
or the ears and fingers for the monster.

39

Summary

• A multi-view net for 3D shape synthesis from sketches

• Trained on synthetic sketches; generalizes well to
human-drawn sketches

• View-based reconstruction predicts shape structure &
geometry more accurately than voxel-based methods

To summarize, we presented an approach for 3D shape reconstruction from sketches.
Our framework is trained on synthetic sketches and we showed that it generalized
well to human-drawn sketches. We evaluated our method both qualitatively and
quantitatively. Our results indicate that view-based reconstruction is significantly
more accurate than a voxel-based reconstruction.

40

Thank you!

Project page: people.cs.umass.edu/~zlun/SketchModeling
Code & data available!

Acknowledgements: NSF (CHS-1422441, CHS-1617333,
IIS- 1617917, IIS-1423082), Adobe, NVidia, Facebook.
Experiments were performed in the UMass GPU cluster
(400 GPUs!) obtained under a grant by the MassTech
Collaborative

Here is a link to our project page. All the codes and data are available to download.
Thank you!

41

