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Abstract

Style transfer aims to apply the style of an exemplar model to a target one, while retaining the target’s structure.
The main challenge in this process is to algorithmically distinguish style from structure, a high-level, potentially
ill-posed cognitive task. Inspired by cognitive science research we recast style transfer in terms of shape analogies.
In 1Q testing, shape analogy queries present the subject with three shapes: source, target and exemplar, and ask
them to select an output such that the transformation, or analogy, from the exemplar to the output is similar to that
from the source to the target. The logical process involved in identifying the source-to-target analogies implicitly
detects the structural differences between the source and target and can be used effectively to facilitate style transfer.
Since the exemplar has a similar structure to the source, applying the analogy to the exemplar will provide the
output we seek. The main technical challenge we address is to compute the source to target analogies, consistent
with human logic. We observe that the typical analogies we look for consist of a small set of simple transformations,
which when applied to the exemplar generate a continuous, seamless output model. To assemble a shape analogy,
we compute an optimal set of source-to-target transformations, such that the assembled analogy best fits these
criteria. The assembled analogy is then applied to the exemplar shape to produce the desired output model. We
use the proposed framework to seamlessly transfer a variety of style properties between 2D and 3D objects and
demonstrate significant improvements over the state of the art in style transfer. We further show that our framework
can be used to successfully complete partial scans with the help of a user provided structural template, coherently
propagating scan style across the completed surfaces.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computer Graphics]: Computational Geometry

and Object Modeling—Curve, surface, solid, and object representations

1. Introduction

Given a target and an exemplar shapes, the goal of style
transfer is to generate an output model that retains the target’s
structure, often linked to its functionality, but reflects the
style characteristics of the exemplar [XLZ"10]. In the teaser
example (Figure 1), the challenge is to generate an output
which retains the structure of the target corner-sofa model,
but has the style elements (back, legs and pillow shape) of the
exemplar armchair. Algorithmically defining style-structure
separation is a context-based, and potentially ambiguous task
[MWZ*13]. To relive this ambiguity, in the context of image
style transfer, researchers proposed using an input source
model which has the same structure as the exemplar and the
style of the target [HJO*01]. The hope is that the source-to-
target relationship will provide insights into the structural
differences between the exemplar and the target. However,
even with this formulation, the computation of a suitable
output remains an open problem and existing style-transfer
research is largely limited to the 2D setup (Section 2). To
enable style transfer between 3D shapes we use insights from
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Figure 1: Our algorithm computes the analogy relationship
between the source armchair and target sofa (top row) and

applies it to the exemplar armchair to synthesize a new corner
sofa (bottom row) in the style of the exemplar.

exemplar
output

cognitive science and cast style transfer in geometric, or
shape, analogy terms.

Shape analogy queries, also referred to as geometric
or proportional analogies, are a standard feature in IQ
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tests [BO00,SGKKO09]. The typical test input consists of three
shapes, a source, a target, and an exemplar. The test subject’s
goal is to select or construct an output shape such that the
same relation, or analogy, holds between the exemplar and
the output as between the source and the target (Figure 2).

transformations, or analogies,
relating the source to the target,
as well as establish a mapping,

‘ ' are then expected to leverage
exemplar Sutput this mapping and apply a similar
Figure 2: Typical analogy transformation to the

| . To obtain the output, test subjects
or correspondence, between the
shape analogy query. exemplar in order to construct

are expected to assemble the
source target

source and the exemplar. They

the missing output.

We believe that the analogies humans perceive implicitly
define structural differences and thus a framework that
mimics analogy query solution can be used to facilitate
algorithmic style transfer. There is a fair amount of research
on dense shape correspondence which can be adapted to
compute source-to-exemplar mappings. Hence the main
challenge in applying the analogy metaphor to shape
synthesis is to mimic the process by which humans select
source-to-target analogies. We speculate that in both 1Q tests
and style-transfer problems the analogies often consists of
several individual partial transforms, e.g., mapping individual
triangle edges to those of the square as shown in Figure 2,
or matching replicating portions of an armchair’s seat and
back, translating and rotating them appropriately, to assemble
a sofa (Figure 4). Different choices of partial transformations,
and the patches that they operate on, would lead to different
outputs. We seek the choice that closely matches human logic.
Based on literature reviews [Eva68, BO00, SGKKO09] and
analysis of typical inputs, we speculate that humans compute
analogies by mentally segmenting the source into a compact
set of patches which map to the target via simple per-patch
transformations, i.e., ones that minimally change the patches
in an effort to fit the target. In the context of shape synthesis,
we additionally prefer analogies that maintain continuity
between transformed adjacent patches on the output model.

O::C:)

Lastly, in style transfer, as in 1Q
tests, the target shapes can contain
elements with no appropriate source
counterpart (see Figure 3). Test
subjects are expected to incorporate
these elements as-is into the output.
We apply a similar logic to style-
transfer data (e.g. see Figure 8).

Figure 3: Self-
referencing
analogy.

1Q tests are designed to make the
choice of the analogies clear and
unambiguous by presenting test
subjects with a small set of alternatives. In contrast in the
style transfer setup we search within the exponentially large
set of all possible patches and per-patch transformations.
To make the problem tractable, we restrict the per-patch

Figure 4: The transformations used to assemble the source
to target analogy in Figure 1.

source-to-target transformations that we consider to similarity
transformations, i.e., translations, rotations, and scales that
map source surface patches to corresponding patches on
the target. This assumption is well suited for processing
man-made or engineered shapes where both fine details
and structural elements are typically related to one another
through similarity transforms [WXL*11,LZW*13].

To compute analogies that satisfies our criteria of simplicity,
compactness and continuity, we formulate the search for
the desired piece-wise transformations as a multi-label
optimization problem (Section 5). We apply the resulting
piece-wise analogy transformation to the exemplar using
a source-to-exemplar mapping computed as described in
Section 4. To account for differences in shape between the
exemplar and the source, and avoid discontinuities in the
output we use non-rigid patch alignment (Section 6).

Contributions. We introduce the first style transfer method
capable of transferring diverse style characteristics between
3D shapes, a task no previous method was capable of
achieving. Our approach is based around the shape analogy
metaphor developed in IQ tests. Our main technical
contribution is a new algorithm for computing and assembling
shape analogies suitable for graphics applications in a manner
consistent with human logic, as reflected by these tests,
leading to visually appealing results. We further demonstrate
that our shape analogy framework can be used as-is to
successfully complete partial 3D scans with the help of a
user provided structural template, coherently propagating
scan style across the completed surfaces, improving upon the
state of the art in scan-completion.

2. Related Work

Structure-aware geometry processing and shape synthesis
is an increasingly popular topic in computer graphics, see
[MWZ*13] for a recent review. Below we discuss the works
most relevant to our framework.

Shape Analogy Queries: Shape analogy queries have been
studied extensively in cognitive science, see [SGKKO09] and
the references there in. Our work is inspired by these studies
and aims to apply the analogy metaphor to practical style-
transfer problems. Artificial intelligence research proposes
several symbolic solutions to procedurally described shape
analogy queries [Eva68, BOOO]. In contrast, our method
operates on non-parametric shape representations in an open-
world setup, a significantly harder problem.

Shape Analysis: In recent years, many techniques have
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been proposed to detect the symmetric/repetitive geometric
patterns on models and extract self-similarity transforma-
tions,e.g. [TW05, MGP06, PMW*08, MBB10]. Symmetry
has been used to benefit diverse geometry processing
applications [MWZ* 13, PLR98]. Multiple approaches exist
to compute full or partial mappings between similar shapes
[SAPHO04, vKZHCO11, KLM* 12, HZG*12, SNB*12]. In
particular [ROA*13] use the notion of shape analogies to
retrieve an output shape from a given database that relates
to the exemplar like the target relates to the source. The
source-to-target relationships they handle are expected to be
continuous difference maps, a constraint unsuitable for style
transfer between shapes with different structure. Our method
builds upon this body of work, using analogy computation
to guide the synthesis of new models. Our main challenge,
not addressed by previous work, is to compute the best set
of patch-wise transformations describing the source to target
relationship in a style-transfer setting.

Part-based Shape Synthesis: Our output models are
constructed by assembling patches from the exemplar (and
target) models. The procedure used by our assembly process
is very different from that of previous part-based modeling
frameworks. Many earlier methods rely on users to specify
and edit the assembled parts [FKS*04, CKGK11]. Others
rely on random or user-assisted derivations from shape
grammars learned from a single exemplar [BWS10,TYK"12].
Finally, there are methods that automatically recombine
interchangeable meaningful parts from large databases of
models [KCKK12,XZCOC12,SFCH12]. In contrast, we aim
to assemble the output model by automatically discovering
and replicating the patch-wise analogy transformations
between the source and target. We note that the patches we
seek often do not correspond to model parts as defined in
earlier work (e.g. Figures 4 or 6) but rather follow from the
structural differences between the source and target.

Deformation Transfer: Methods, such as [SP04] are
designed to transfer local pose information between models
with similar structures leveraging a structure preserving near-
continuous map between them. Consequently, they are not
designed to perform one-to-many mapping of structural
elements, e.g. map one pillow to two (see Figure 9, target
2). The source-to-target analogies we compute are designed
to relate shapes with drastically different structures and
capture structural differences rather than local shape variation.
They therefore support the use of discontinuous per-patch
correspondences, automatically computing one-to-many as
well as one-to-none matches.

2D Style Transfer: The problem of style transfer for
2D curves has been explored in several pioneering
works [HJIO*01,HOCS02, FTP03]. The shape primitives and
style representations they propose have limited scope and
can not be applied to more general settings, especially when
dealing with 3D shapes. For example, the curve analogies
method of Hertzmann et al. [HOCSO02] constrains the source-
to-target analogies to continuous, arc-length parametrized
‘filter’ transformations. This approach is not applicable to
the many setups handled successfully by our framework,
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Figure 5: Left: Segment-based style transfer [LZW*13]
considers only segment-level source to target transformations,
leading to unnatural results. Right: Our shape analogy
method operates at a finer, point-level granularity producing
a more natural result.

where different partial, patch-wise, transformations need
to be combined together to generate the desired analogy
(e.g. Figure 8). More importantly, the notion of arc-length
parameterization is 2D-curve specific and has no obvious 3D
counterpart. The method of [FTP03] has a similar limitation.
Li et al. [LZW™13] use feature-point based segmentation and
segment-level correspondences to assemble a source-to-target
analogy. This approach fails when segment-level resolution
is too coarse to capture the source-to-target relationships
(Figure 5). Feature-point based segmentation has no 3D
surface equivalent, and generating meaningful segmentations
of 3D shapes is a problem in its own right. By operating
at a finer point-level granularity our method generates
more intuitive solutions on 2D inputs (Figure 6) and, more
significantly, seamlessly extends to the 3D domain.

3D Part-Scale Transfer: Xu et al. [XLZ*10] automate
part-scale transfer, a special case of style-transfer, in 3D.
Given a pre-defined coarse segmentation of the exemplar
and target into one-to-one corresponding parts they use these
correspondences to anisotropically scale exemplar parts to
match the proportions of the matching parts on the target. The
method has limited applicability, as it assumes one-to-one
part level correspondence between the exemplar and target
and cannot handle style properties beyond scale. We transfer
a wide range of style properties between structurally different
shapes by building source-to-target analogies which consists
of multiple patch-wise transformations (Figures 1, 4). See
Section 7 for more examples.

3. Overview
A Our analogy-driven style transfer
S —_— T framework is best-illustrated by
the diagram in Figure 7. Given
Mi _i./\/l* three input shapes: a source S,
a target 7, and an exemplar
(C; > O E, our goal is to synthesize
A* an output model O. We do so
Figure 7: Analogy rela- by leveraging the shape analogy
tionships. setup, which predicts that the
analogy transformations A and A%, relating the source to
the target and the exemplar to the output respectively, are
expected to be very similar (while effectively identical in
the analogy query setup, they may slightly differ for real-life
style transfer scenarios). To perform the style transfer we first
recover the relationships M and A between the input models
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Figure 6: Overview of our method using 2D curve style transfer as an example. We first sample the input curves by uniformly
distributed points, then compute the exemplar-source correspondence (color encodes matched points). Next, we compute
candidate source-to-target transformations (color encodes matched patches). We use multi-label optimization to compute the
best source-to-target analogies, from which we assemble the final output using the exemplar patches.

indicated by the arrows in the diagram (Sections 4 and 5).
Assuming that, as in the traditional shape analogy quiz setup,
M is similar to M, we then approximate the exemplar to
output transformation A* by MAM ™!, and further refine
it using a simultaneous alignment and deformation process
to obtain the desired output model (Section 6).

We expect the source-exemplar mapping M to be dense
and continuous and compute it as described in Section 4. To
compute the source to target analogy .4, we first extract the set
of all plausible similarity transformations between the source
and the target. This computation typically results in multiple
alternative transformations for each source or target sample
points. To assemble an analogy, we select the most suitable
transformation for each target sample using a multi-label
optimization procedure that balance our criteria of simplicity,
compactness and output continuity (Section 5). In some cases,
a target sample may have no corresponding transformation or
source sample (e.g. the ‘hat” above the circle in Figure 3 ). To
handle such cases, we use a self-referencing transformation,
which transfers target geometry to the output as-is.

Pre-Processing Our framework is designed to work on a
variety of data sources, including scanned point clouds,
meshes, and polygon soups. To unify the handling of
heterogeneous data we represent all input shapes using point-
sample sets. Specifically, for each input model we create a
point set {s} by uniformly sampling the model surface via
Poisson Disk sampling. The sampling density reflects the
level of detail of the input models. In addition, we make
sure that the number of source samples is no less than the
number of exemplar samples. For each sample s, we store its
position p(s) and normal n(s). We assume all input models
are consistently scaled and aligned.

4. Source-Exemplar Correspondence

Given a source and an exemplar model, we search for dense
point-to-point correspondences between them. This is a
problem that had been extensively investigated, see [SPRO6,
vKZHCO11] for related surveys. Our solution follows the
spirit of the correspondence methods of [ACP03, SP04]
aiming for correspondences that minimally deform the
exemplar when mapping it to the source.

We leverage the initial compatible alignment of the two

models and initialize the correspondence by computing a
point-to-point exemplar to source matching that minimizes
the sum of squared distances between the paired samples. We
define a pair-wise distance between a source sample s5 and
an exemplar sample s, using their positions and normals:

d(ss, se) = |B(ss) — P(se)|* +A-cos ™" (n(sy)-n(se)) (1)

where P is the relative position of each sample with respect
to the bounding box of the shape it belongs to. A is
set to the average squared distance between neighboring
sample points. This minimization can be formulated
as an assignment problem, efficiently solved via the
Hungarian algorithm [Kuh55]. We then iteratively improve
the correspondences, alternating between an assignment step
and a deformation step that follows Sumner et al. [SP04].
Since the models are a priori reasonably well aligned, we
typically require only a handful of iterations to converge.
Finally, we ensure that each source point has a corresponding
exemplar one (recall that the source sampling is enforced
to be at least as dense as that of the exemplar). Given an
unmatched source sample, we find its nearest matched sample
on the source. We then match it to the corresponding exemplar
sample of this matched neighbor. See Figures 6 and 9 for
matching visualizations in 2D and 3D.

We support manual specification of sparse pair-wise
correspondences between samples on the two models to guide
the matching. In this case we use the correspondences as
constraints for the deformation step above. See Figure 8 for
an example.

5. Source to Target Analogy Assembly

After computing the source-exemplar correspondence M,
our algorithm proceeds with the assembly of the analogy .A,
the key technical component of our method. We first compute
an initial large set of candidate patch-wise transformations
(Section 5.1). We then employ a labeling step to assign each
target sample the best possible transformation in terms of the
criteria in Section 1 (Section 5.2).

5.1. Transformation Selection

To compute the initial candidate set of transformations, we
consider all pairs of one source and one target samples, and
have each pair vote for a transformation that best aligns their

(© 2014 The Author(s)
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local coordinate systems. The local coordinate system of each
point is determined by its normal and its principal curvature
directions. These directions are optimized to “fill in” the
curvature field in areas where it is poorly defined (umbilical
regions) based on the optimizing technique of [HZ00]. Our
subsequent clustering step filters out any local noise that may
be present in this raw data.

Following [MGPO6], each pair of local coordinate systems
define a unique rotation, translation, and uniform scale, thus
forming transformation votes in a six-dimensional space. We
perform mean-shift clustering of the votes to find the cluster
centers indicating the strongest modes of source-to-target
transformations.

The result of this procedure is an initial candidate set of
transformations Q corresponding to the detected modes
(cluster centers) in the above transformation space. Each
transformation Q € Q is associated with a subset of samples
on the target surface {s;} C T, where each target sample s;
can be matched to a source sample s; € S with consistent
surface normal and principal curvature magnitudes under the
transformation Q:

|Q(p(sr)) —p(ss) < 8p, Q(n(sr)) -m(ss) > (2)

Here 8p = 20 where o is the average distance of source and
target samples to their nearest neighboring sample and 8y =0
(i.e., maximum accepted angle difference between normals is
90 degrees).

For target samples not associated with any transformation, we
add to the candidate set the self-referencing transformation,
mapping the sample to itself.

5.2. Analogy Optimization

For most target samples the candidate set of transforma-
tions Q, described above, contains multiple alternative
transformations. To assemble the desired analogy, we
perform an optimization step to obtain a compact subset
of transformations and their associated regions of influence
on the target shape that are as simple as possible and preserve
continuity on the output model.

We formulate the analogy computation as a multi-label
optimization problem. Each transformation in our candidate
set is associated with a label. Our goal is to compute the
most probable configuration of labels on the target surface
so that each target sample s; is associated with the most
plausible onto transformation (label) from our candidate set.
To compute the labels we minimizing the following objective
function:

E(C:{s}) = YE(Cis)+ Y
t 1’ €N (1)

+ ), E3q(0) 3)
QeQ

Ez(chct' ;st,s[/)

where C = {C;} is the set of random variables representing
the label per target sample s;. £ is an unary energy term
that assesses the consistency of each target sample with each
label individually, evaluating how well the transformation

(© 2014 The Author(s)
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aligns the particular sample with the source surface. E; is
the pairwise energy term that measures the consistency of
joint label assignments to pairs of neighboring target samples
(st,57) (t' € N(¢) are the neighboring points of s; ), promoting
compactness. Lastly, E3 ¢, is a regularization term which
gives preference to simpler transformations and penalizes
the existence of each individual transformation Q; in the
output analogy, thus forcing the solution to have as few
unique transformations as necessary. Below we explain our
formulation for each energy term.

Unary term The unary term evaluates the probability of
a target sample s; belonging to each of the candidate
transformations. The probability per label is converted to
an energy value through its negative logarithm:

E\(Crist) = —1ogP(C; | 51) 4)
The above conditional probability is evaluated as follows:

Qi (p(s) —p(s)II? } _

2
203

exp{in (n(s0) 'n(ss)} ®)

ca

P(Cr =l|s) x exp{

where Q is the transformation associated with label /, and
ss is the closest compatible point on the source shape for
the target sample s; under the transformation Q;. Here, the
first factor uses a Gaussian function on distances between
samples, while the second factor adopts an angular Gaussian
function (as used in the von Mises distribution) on angles
between normals. The larger the distance (or the angular
distance of normals) between the target sample and its
nearest corresponding source point under the transformation
Qy, the smaller the probability is for assigning that label
[ to this target sample. The standard deviation parameters
are set to op = 0.1a (o is the average distance of source
and target samples to their nearest neighboring sample),
and oy = 0.1(7/2). The above unary term probabilities are
normalized so that their sum over the labels per sample is
equal to one.

Pairwise term The pairwise term penalizes neighboring
samples being assigned different labels {/,1’}, minimizing
the number of output transformations and preferring more
compact labelings with shorter boundaries. We consider a
target sample to be a neighbor to another sample, if the
geodesic distance between them is less than 5o and their
normals are compatible (i.e., differ less than 90 degrees). The
pairwise term is expressed as follows:

ExC =1,Cp=1'ss1,50) =
[1# 1] (—1ogP(Ci =1,Cr =1" | st,50) + 1) (6)

where the u parameter penalizes the length of boundaries
between regions with different labels [KHS10]. In our
experiments, we set u = 0.5. The term P(C; = [,Cy =1' |
st,5p) expresses the probability for assigning the labels
{1,I'} to the neighboring samples {s;,s;}. This term also
favors continuity on the output shape when the corresponding
transformations {Qy,Q;} are applied to these neighboring
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samples:
P(C=1,Cp=1"|s1,57)= 1.0 —
exp{ _ || [p(SD,Q[) - (p(so’,Qy ))] -

2
20

XP{M} )

ca

[P(St) _p(st’)] ||2 } )

where s, q, is the output sample produced by applying
the transformation QflMQl to the target sample s;, and
similarly s,/ ,, is the output sample produced by applying
the transformation Q;, — 1MQI/ to the target sample s;/. The
angle ¢ is the angle between the normals of the target samples
sy and s and O is the angle between the normals of the
corresponding output samples.

The factors in this term follow the Gaussian functions as
above. The probability for assigning a pair of labels {/, U } to
neighboring target samples is higher when the position and
normal differences of the resulting output samples is similar
to the ones of the corresponding target samples after applying
the corresponding transformations {Q;,Qy }, promoting
output continuity. The standard deviation parameters have
the same values as the ones in the unary term.

Regularization term The regularization term penalizes
solutions based on the set of labels appearing in them,
encoding a preference for explaining the structural differences
between the source and target with as few transformations
as necessary, further reinforcing compactness. In addition,
the term encodes a preference for simpler transformations
including the identity transformation I, translations, and
rotations with angles k(m/2) (x is an integer) along the x-
, y-, z-axes. Following [DOIB12], we introduce label costs in
this regularization term:

B _NlogP(Elzl) lfﬂlC[:l
E3q (C) _{ 0 otherwise ©

where E; is a binary variable representing whether the
transformation Q; is used, and N is the number of target
samples. The probability that the transformation Qy is used is
equal to 1 when / corresponds to the identity transformation.
For the rest of the transformations:

exp (cos(4R; ;) _exp (cos(4R,y)) .

P(E,=1)= 0.5

exp(1) exp(1)
exp (COS(4R[11))
T ep() -exp(—(s; — 1)2) 9

where R; ., Ry, R; ; are the rotation angles along the x-, y-
, z-axis respectively, and s; is the uniform scale associated
with the transformation Q;. Transformations with rotations
angles 0, 90, 180, or 270 degrees and with unit scale have
50% probability. Otherwise, their probability decreases.

Optimization The above objective function E(C;{s;}) is
optimized using graph-cuts with label costs [DOIB12].
Although the algorithm is not guaranteed to find a global
minimum (since the problem is NP-hard [DOIB12]), it
practically reaches a good solution with low total energy

value. The solution implicitly defines a segmentation of the
target shape into labeled regions - each region is associated
with a transformation Q; based on its estimated label /. Due
to the greedy nature of the optimizer, the estimated labeling
may sometimes contain isolated small patches of points with
different label from their neighbors. In a post-processing step,
our algorithm finds target samples whose label disagrees with
more than 90% of the labels assigned to their neighbors inside
the above defined geodesic rings , and switches their label to
the most common label inside these geodesic rings.

6. Output Synthesis

Given the analogy transformation A and the source-to-
exemplar mapping M, we first approximate the exemplar-
to-output transformation .A* by applying MAM ~! to each
exemplar sample independently. The resulting outputs are
typically continuous within the source patches operated
on by the analogies, but may exhibit discontinuities along
boundaries, as real data doesn’t perfectly comply with the
strict shape analogy assumptions. We eliminate the disconti-
nuities through a combination of rigid transformations and
local deformation. We first extend each patch to generate
overlapping regions by adding to each the samples in the
geodesic neighborhood of the patch boundary samples. We
then locate all sample pairs across different patches which
after applying the associated transformations, are placed
close to one another in terms of positions and normals.
Our deformation framework aims to align the patches so
as to minimize the distance between these samples along
the normal direction. To preserve patch geometry, we also
consider pairs of adjacent samples inside each patch and
seek to maintain their relative locations. We formulate patch
alignment as a least-squares problem and simultaneously
solve for the positions of all the output samples by minimizing
the following energy function:

E({p(s)}) = ¥ [((s0)+n(s0)) - (ps0) —P(s0))]’

Mo F#m,,
+ :Z [1(P(s0) = P(s07)) — (B(s0) — D50 )|
+ v- Y l[(0(s0) — Bso))II (10)

where s, and s,/ are adjacent samples, p(so) are the sample
positions to be determined, p(s,) are the sample position
before alignment, and m, and m,  are the patch segments
associated with s, and s,/ respectively. The first term aims to
align nearby samples on adjacent patches while the second
aims to preserve the relationships between adjacent points in
the same patch. These two terms alone yield an under-defined
system as they only involve relative locations, allowing the
solution to translate arbitrarily. To stabilize the solution, we
add a third term aiming to minimize the changes in the
sample positions assigning it a very small weight v = 0.01.
Minimizing this quadratic functional amounts to solving for
the positions that satisfy VE(p(s;)) = 0, a standard linear
system solved using Modified Cholesky Decomposition. The
input and output of this stage are shown in Figure 13e.

(© 2014 The Author(s)
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Figure 8: 2D style transfer:

Post-Processing When the input exemplar is provided as a
triangle mesh, we aim for a similarly defined output model.
Reconstructing the output from the sample points would not
achieve this goal as it will not preserve exemplar features. To
transfer the exemplar triangulation, we first associate each
exemplar triangle with the closest exemplar sample. For each
synthesized output sample s,, we track the corresponding
exemplar sample s, and apply the sample transformation to
all the triangles associated with it. The result of this step is
an imperfectly aligned triangle soup. To improve alignment
we we minimize the energy described by Equation 10, this
time with mesh vertex positions as variables. The result is not
guaranteed to be a closed mesh, but neither are most of our
inputs.

7. Results and Applications

Throughout the paper we show numerous examples of style
transfer performed using our framework.

2D Style Transfer. To compare our results against previous
2D curve style transfer approaches and to validate the analogy
assembly criteria we used we applied the method to a number
of 2D inputs with varying complexity (Figures 2, 6 and 8).
Figure 2 mimics a classical analogy IQ test input. Figure 8
(left) shows an example of transferring the drawing style of a
flower. Note the different patch-wise transformations applied
to the petals and leaves. Figure 8 (right) shows a challenging
example of transferring a font style from the letter ‘E’ to
two other letters. While the ‘F’ may appear like a simple
subset of ‘E’, the challenge is to complete its leg realistically
and maintain the collinearity along it. The ‘D’ is particularly
challenging as it contains elements not present in the source-
exemplar pair. Our method accomplishes the task using a set
of transformations that includes self-referencing, indicated
with gray color in the color-coded analogy transformations
visualization (Figure 8).

The transfers we have accomplished cannot be computed
by earlier methods. Arc-length parameterization based
approaches [HOCS02, FTP03] would require the user to
specify the pairs of matching curve segments manually for
each input. While the more recent approach of [LZW ™ 13]
may succeed on inputs such as the flower or letters (Figures 8)
with a sufficiently fine-tuned segmentation step, it fails on
inputs like the square-to-rectangle style transfer in Figure 5
where the patches defining the analogy do not naturally align

(© 2014 The Author(s)
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with segments on the source and target models. In contrast
our method is able to produce the expected result.

3D Style Transfer. The 3D soft-furniture results (Fig-
ures 1, 9) demonstrate style transfer for complex 3D shapes.
As highlighted by the analogy visualizations (Figure 9, 4), the
transformations required for relating the input sources and
targets are quite complex, containing a mixture of translations
and rotations. The assembled analogies are successfully
used to generate two series of furniture from two different
exemplars. Our method is the first to transfer style properties
that go beyond part scale ( [XLZ"10]) in 3D (see Figure 10).
Below we show more examples of applying our style-transfer
technique in the context of different applications.

Computation Time. The 2D results shown in this paper are
all generated within seconds. The computation time for 3D
results, depending on input complexity, ranges from seconds
to several minutes on a PC with Intel Core-i7 3.2GHz CPU
and 8GB memory. See Table 1 for typical statistics.

In addition to style transfer our framework can be used, with
minor changes, for template based scan-completion and style
exchange.

Scan Completion. Completion methods aim to plausibly fill
in the missing regions in input partial range scans. When
the holes are large (e.g. Figure 13) a common approach is
to employ a template shape whose structure is similar to
the scan to aid the completion process [KS05, PMG*05].
These methods compute a mapping between the partial
scan and the template shape, and then blend them together,
generating hybrid models that fill the gaps and holes in
the scan with suitably deformed template geometry. While
the results have the overall desired structure, they do not
account for fine-level differences between the exemplar
and the template (Figure 11, mid-right). Specifying high
level template symmetries [PMG*05] can improve the
results, but cannot account for more complex self-similarities.
With minimal changes, our framework can be used to
improve completion results, propagating scan details and
style across the completed areas (Figure 11, right). To solve
scan completion via the shape analogy framework, we first
compute a mapping from the scan to the template, and then
treat the scan as the exemplar, the image of the computed
mapping on the template as the source, and the entire template
as the target. The rest of the processing remain unchanged.

We tested our framework on several complex partial scans.
The chair and arc (Figure 12) showcase our method on single-
view scans generates using a synthetic scanner. The input
exemplars consequently lack all the back-facing and occluded
surfaces. For the chair we miss its backside, the bottom of the
seat and back sides of all four legs. The template chair we use
has different leg shape (square instead of round) and different
back dimensions. The completion uses only data present in
the scan itself, without blending in any template geometry.
To control for the difference in chair back dimensions, we
specify four pairs of point-to-point correspondences between
the chair backs - two on the top corners and two on the bottom
corners as input to help the correspondence computation in
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target 1

exemplar A output 1A

output 1B
Figure 9: Style transfer for soft furniture. Given a source armchair and a series of other soft furnishings as targets, we successfully

transfer two different exemplar styles to each item in the series, a task that would be tedious and cumbersome to perform manually.
Top row shows the analogy transformations for each computed target. Left column shows the source-exemplar correspondences.

exemplar B

source

mg

exemplar target

X ‘u &

[XLZ* 2010] our result

Figure 10: Comparison with anisotropic part scaling.

our result

exemplar

template

blending result

Figure 11: Template-based scan completion. Left to right:

partial scan, input template, scan-template correspondence
followed by blending [KS05], and our result.

Section 4. The template for the arc is very simple compared
to the scan. Using the assembled analogy we are able to
convincingly complete both scans, replicating scan style
details across the completed regions.

The last example, a vase shown in Figure 13, is particularly
challenging. Here the scanned data come from a commercial

hand-held scanner and consist of two small vase fragments.

Given a basic cylinder as a template, our method

output 2B I output 3B I

target 2 target 3

output 2A output 3A

automatically recovers the analogy between the fragment’s
image on the cylinder and the entire cylinder and applies it to
the exemplar, generating a convincing output.

Style Exchange. In some situations, a user may want to
transfer a style from an exemplar to a target, but may not
have an appropriate source model, facilitating style-structure
separation. While shape analogies are ill-defined when no
source is provided, Figure 14 demonstrates a user-assisted
variation of our method that successfully tackles this setup
through the use of box-like source/target models computed
semi-automatically. In both figures, the input models are
three exemplars shown in green and our goal is to exchange
their styles with the other inputs. We first segment the
exemplar models into meaningful components, and compute
the axis-aligned bounding box of each component. We use
the combination of the boxes (shown in the first row) as either
source or target depending on the context. Specifically, for
each green exemplar model, the corresponding blue model
above in the first row is the source, and the other two blue
models serve as the targets. With this box representation,
the candidate set of transformations can be reduced to all
possible transformations between pairs of boxes, including
translation, rotation and non-uniform scaling. From this set of
candidate transformations, our analogy assembly algorithm
automatically computes the optimal box-wise transformations
between the source and target models. This construction leads
to the desired style transfer results, shown in light blue.

(© 2014 The Author(s)
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template view 1

output view 2

analogy transformations  output samples

(a) template

(b) exemplar {0 output
Figure 12: Scan completion of single-view chair and arc
scans. Both templates have very different style from the
scanned models (e.g., different leg shape). The zoomed-in
views on the right show details of the scanned data and the
reconstructed model.

(d) analogy transformations

(f) final output

(b) exemplar

(a) template
Figure 13: Scan completion of a vase: Exemplar to template
mapping shown in (c) - the image of the mapping defines the
source; (d) computed analogy transformations (identity in
red, self-similarity in gray); (e) output samples before and
after alignment; (f) final reconstructed output.

8. Conclusions
We presented a new style transfer method suitable for both 2D
and 3D data. While previously work on 3D styles was limited

(© 2014 The Author(s)
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Figure 14: Style exchange between a set of castles.

number of samples runtime
demo .
source target exemplar output (min)
corner sofa 7600 14566 3938 14373 3
chair 2781 11740 3577 8659
arc 10442 30543 11974 41546 5
vase 1094 5206 1739 4803 1

Table 1: Typical algorithm statistics.

to transferring parts scales between co-segmented shapes
[XLZ*10], our method is capable of capturing fine-level style
features, such as part shapes or geometric textures and can
process source and target models with different structure. We
achieve our goal by computing source-to-target analogies
which define in geometric terms the structural differences
between them. Applying a computed analogy to the exemplar
effectively substitutes is structure with that of the target, while
retaining the exemplar details, achieving the desired style
transfer effect.

Limitations and future work. In our current implemen-
tation, the per-patch transformations used to assemble the
analogies are restricted to rigid similarity transformations.
However, one can think of setups where the source and
target are related via more complex, free-form deformations
commonly found in organic shapes. It would be interesting
to investigate how our method can be extended to handle
these more general setups. In addition, our method assumes
consistent alignment and orientations of the input models, a
task that we currently do manually but that can be automated
using shape matching and analysis tools. In some cases the
shape analogy problem is ill-posed in that there may be
multiple possible analogy transformations and thus multiple
solutions. We are aimed at proposing one reasonable output
and leave enumerating all the solutions as future work.
Finally, the most intriguing future research direction is
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inferring a source shape given only the target and exemplar
shape.
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