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Thanks for the introduction. Good morning everyone, My name is Changqing Zou, In 
this talk, I will present our work on Grouping Discrete Graphical Patterns. 
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Pattern Grouping Problem: motivation

Pattern Grouping 

Given a set of pattern elements, we seek a grouping based on 
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Pattern Grouping Problem: motivation

Pattern Grouping 

Symmetry

Similarity

Continuity & Proximity

criteria such as symmetry, similarity, continuity and proximity. in many cases these 
criteria are mixed and it is unclear how to select the most appropriate or how to 
properly weight their importance. 
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Input Pattern Symmetry rule wins Similarity rule wins

Challenges (1): conflicting grouping principles

This problem is not easy, even in the case of 2D patterns, there are many challenging 
scenarios. Take this simple and regular pattern as an example, different perceptual 
grouping principles would lead to conflicting grouping results. It is unclear which 
grouping principles should take precedence. 
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Challenges (2):  various noises

In real data, patterns are usually neither regular nor simple, often having various 
degree of noises. For examples,
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Challenges (2):  various noises

Inaccurate Symmetry

Loose Similarity

This pair of bear ears are not accurately symmetrical. And this pair of mouths are only 
roughly similar.   

7



Challenges (3):  Rich Variations and Complexity

There is also a challenge in the variations and complexity of the real data. People 
always say, no two leaves are exactly the same. This also happens to the real world 
cases we are looking at. However, we can still identify the symmetry patterns. We 
would like our algorithm to do the same thing. Despite its challenging, this problem is 
very useful. It can be used in many pattern related applications
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 Pattern Editing

Applications of Pattern Grouping

Inverse Procedural Modeling by Automatic Generation of L-systems. O. Stava, et al. 2010

such as Pattern Editing, Pattern Exploration, and Layout Optimization
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 Pattern Editing

 Pattern Exploration

Applications of Pattern Grouping

PATEX: Exploring Pattern Variations. P. Guerrero, et al. 2016

Pattern Exploration, and Layout Optimization where automatic pattern grouping will 
significantly lessen user’s interactions
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 Pattern Editing

 Pattern Exploration

 Layout Optimization

Applications of Pattern Grouping

GACA: Group-Aware Command-based Arrangement of Graphic Elements. P. Xu, et al. 2015

and Layout Optimization. We are not the first to propose this very useful problem
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Related Work: Model & Rule Driven

 Gestalt-based pattern grouping
➢ Conjoining Gestalt Rules for Abstraction of Architectural Drawings. Nan et al. TOG, 2011.
➢ Perceptual grouping by selection of a logically minimal model, Feldman, ICCV, 2003.
➢ The whole is equal to the sum of its parts: A probabilistic model of grouping by proximity and similarity in regular 

patterns, Kubovy & Berg. Psychological Review, 2008.

 Symmetry-based pattern grouping
➢ Folding meshes: hierarchical mesh segmentation based on planar symmetry. Simari et al. SGP, 2006.
➢ Co-Hierarchical Analysis of Shape Structures. O. Kaick et al. TOG, 2013.
➢ Symmetry Hierarchy of Man-Made Objects. Wang et al. Computer Graphics Forum, CGF, 2011.
➢ Layered Analysis of Irregular Facades via Symmetry Maximization. Zhang et al. TOG, 2013.

Actually, there are two major lines of work on this topic. One direction is to apply 
Gestalt rules, Another direction is to detect symmetries between elements.
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Related Work: Gestalt-Based Pattern Grouping

Conjoining gestalt rules for abstraction of architectural drawings,

Nan et al. TOG, 2011.

Group & Simplify

The most relevant work is Nan’s SIGGRAPH project in 2011. which tries to quantify 
Gestalt rules in an energy-based optimization approach. This approach works well in 
grouping building façade patterns which have lots of perfect symmetries and 
regularities. But the problem we are trying to tackle in this paper has more noisy 
inputs.
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Nan’s Strategy: model-driven

 Hand-engineering rules to quantify grouping models 

 Hand-tuning relative importance of rules

Nan et al ’s strategy

The main characteristics of previous work focus on two aspects: coming up hand-
engineering rules for the task, and hand-tuning the relative importance of rules.
Unfortunately, this strategy is not robust to the noise. Taking this case for example, 
we will expect the elements forming the outer square being grouped together. But a 
direct use of Nan’s strategy fails to achieve the goal. 
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(b)

Generalize

Our Strategy

 Learning to group discrete graphical patterns from human annotations
 Loosely consider Gestalt principles 
 Learn relative importance of features, without hand-engineer rules
 Robust noise handling thanks to learning approach

Instead, we propose a data-driven strategy. We don’t hand-design features and we 
don’t hand-tune the feature weights. We let the machine “see” many synthetic 
patterns with ground-truth grouping information. We expect a grouping strategy can 
be discovered automatically and can be generalized to real data.

16



Our Solution: learn features for clustering

 Learned feature descriptor for each elements

 Clustering in learned feature space

In a nutshell, we are trying to learn a feature descriptor for each element such that 
this feature descriptor is suitable for grouping. As long as we have established a 
feature space for the elements, any clustering strategy can be applied for the
grouping task. 
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 Learned feature descriptor for each elements

 Clustering in learned feature space

 Not optimize the clustering algorithm itself

 Learn a feature space suitable for clustering

Our Solution: learn features for clustering

Again, I would like to emphasize that we are not optimizing the clustering algorithm 
itself. Our goal is trying to learn a feature descriptor for each element, or in other 
words we are trying to learn a representation space for those elements such that 
doing clustering in this space can yield better grouping results
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Feature Learning: how do human group

Before teaching machine to learn grouping. Let's first manually do the grouping on 
this teddy bear. Then we can see if human experience could migrate to machine.  
Through this, we hope to find which learning model is most suitable for capturing 
each principle.
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Feature Learning: how do human group

Similar & close-by

We can see these little toes in this teddy bear are similar and close to each other. It’s 
intuitive to group them together. 
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Feature Learning: how do human group

Horizontal Alignment

Also for the bodies of those 3 little bears, they are forming a horizontal alignment. 
Thus it also makes sense to make them a group.
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Feature Learning: how do human group

How can we migrate human 

experience into machine learning?

For the two arms of the two big bears, although they are pretty far away, they show 
some kind of symmetry and can be group together. That is how we human will think 
about grouping. How can we migrate this human experience into machine learning?

24



Feature Learning: local Information

 Similarity

 Continuity

 Proximity

----- Shape-Aware 

Context-Aware

Local Information

We can see that the 'similarity' principle is related to element's shape while the 
proximity and continuity principle is related to element's context. They only capture 
the local information on individual elements so here we only need a model that can 
learn from local information
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 Similarity

 Continuity

 Proximity

----- Shape-Aware 

Context-Aware

Local Information

 Symmetry ----- Structure-Aware 

Global Information

Feature Learning: global Information

On the other hand, the symmetry principle is related to the overall structure so here 
we will need another learning model that can integrate the global information. 
Therefore we tackle this grouping problem using two different neural network models 
simultaneously.
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Local feature: Atomic Element Encoder

The first network is called Atomic Element Encoder which captures the local context 
of the elements. The input to this network contains 4 different scale of contexts 
around the element we are looking at. The network has a structure following Alex-
Net. 
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Local feature: Atomic Element Encoder

The first network is called Atomic Element Encoder which captures the local context 
of the elements. The input to this network contains 4 different scale of contexts 
around the element we are looking at. The network has a structure following Alex-
Net. 
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Global feature: Structure Encoder

The other network is called Structure Encoder which captures the global information. 
It feeds the entire image to the network. The network has an encoder-decoder 
structure with U-Net connection. The network outputs feature maps that have the 
same resolution as the input. These feature maps are able to integrate global 
information.
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Atomic element 

Encoder

Structure 

Encoder

Location & Size

45

45

8M 
training pairs

Network Architecture

The entire network architecture is like this. Besides the features extracted from the 
Atomic Element Encoder network and the Structure Encoder Network, we also fuse 
the location and size information directly into the final feature vector.
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Atomic element 

Encoder

Structure 

Encoder

Location & Size

45

45

Network Architecture

8M 
training pairs

To train this network, we use a contrastive loss: it tries to pull two elements having 
the same group labels closer in the feature space, and push away two elements with
different group labels.
The next question is how do we gather training data.
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Data Collection: Lack of suitable patterns on the web

Black & White Color Gradient Lack Structural Variety

This task is not trivial. First, on the web, a great proportion of graphical patterns are 
binary images.  Second, some patterns on the web have no flat colorized regions. In 
other word, in some regions, there is color gradient. It is hard to get the GT from 
these kinds of data. Lastly, although we can obtain the GT from some colorized 
patterns like this mondala from the web without much effort . However, this kind of 
data usually only have a small range of structural variety.
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Layout Templates Based Training Data Collection

Layout Template Pattern Examples 

Manually Creating patterns with GT is impractical. We turn to a semi-automatic way. 
We first manually created pattern layout templates , and then generated pattern 
examples from these layout templates by inserting various elements
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Training Data: element collection

Basic atomic elements

deforming

complexing

adding noises

We collected 86 basic atomic elements. To augment the elements, we produced new 
atomic elements by deforming these basic atomic elements.
We also turned the Atomic elements into more complex elements procedurally. 

Moreover,  we also introduced various noises into the synthesized patterns.
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Training Data Collection

 ~800 pattern layout templates

 ~8K pattern images

 500 positive and 500 negative pairs of elements

 ∼8M training pairs

We finally collected ~800 pattern layout templates, almost 8K pattern images, We 
totally collected nearly 8M training pairs. Next we show results of our work. 
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Results on synthesized patterns

We first tested our method on the synthesized data. We got good results on most of 
those examples.
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Grouping Results on synthesized patterns 

Clover

Arrow

Let us see the result of this pattern, Our method can group these arrows with Clovers 
even a long path of the circle has no element. 
Although the cross in the middle of this pattern is very similar with these crosses on 
the pentagram path. Our model separates them into two groups, which is consistent 
with human conception
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Results on synthesized patterns

Noise level increase  

Even we increased the noise level.  The results were still good. 
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Results on downloaded patterns

We also tested our modal on about 200  binary image patterns searched from the 
google and bing image by the keyword “coloring pages”.  See this peacock，our 
model can get reasonable groupings on most elements. There are also several 
grouping errors like this small, occluded,  piece of feather. It was grouped with other 
small piece of feather. 
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Results on downloaded patterns

Here are results of some other relatively regular patterns . Most the results are 
reasonable. 
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Results on downloaded Challenging patterns

Some of our test patterns like this tree pattern are very Organic, having strong noises.   
Here we can see the out grouping results of this tree pattern are consistent with 
human perception on most elements. But there are still some failed cases. Our 
method did not group these two small twigs with the trunk of the tree. 
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Results on downloaded Challenging patterns

Here are grouping results of some challenging examples
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Quantitative Results with various measures and alternatives

Greater score mean better grouping results

Here we show the evaluation results on different variations of network architectures. 
It’s not surprising that our full network performs the best. For more details, please 
read the paper.
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Quantitative Results with various Clustering Strategies

Here is a comparison of different clustering algorithms. The best performance goes to 
the affinity propagation algorithm. Please read our paper for more details.
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Results of User Study

We have also conducted a user study comparing our grouping results with the 
ground-truth labeling. We showed those two groupings side by side, randomly flipped 
the order, and asked users which grouping is better. The statistics show that our 
grouping result is almost as good as the ground-truth labeling result. Next, we discuss 
the limitation of our method. 
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Limitation on model

No Semantic knowledge

Unreasonable grouping results 

Unreasonable grouping results 

The major limitation is related to our model. Currently, our model does not 
incorporate “semantic” knowledge, that is why these twigs have not been grouped 
with the trunk.
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Limitation on input data

Edge

Regions

1. Another major limitation is about the input data range. Our current method only 
handle region-based elements. However, in real data. Graphical patterns often 
have various element types. For examples, this butterfly has edges of different 
thicknesses. Some are thick regions，while other are thin edges.
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Future work: Unified Framework for Various types of Input Data

We hope our future method can well handle the input pattern with edges  of various 
thicknesses. 
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Other Future Directions: learn to rank grouping results

Which Grouping Results is better?

Input Grouping (a) Grouping (b)

Apart from the above future direcitons, Iearning to rank grouping results is another 
potential direction. For example, like this regular pattern,  there are many reasonable 
grouping
Results like these two: a) and (b). I believe most human would prefer (a) to (b). 
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Ranking order Changed 

Input Grouping (a) Grouping (b)

Other Future Directions: learn to rank grouping results

However, just move some elements’ position a little, most human would prefer 
grouping (b ) to (a).  How to model a grouping ranking preference consistent with the 
statistics of human perception will be another interesting and potential problem. 
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Conclusion

 First (data-driven + deep CNN) for discrete 2D patterns.

 Learned shape-, context-, and structure-aware descriptors for graphical elements.

 A large, annotated dataset is provided online. 
http://people.cs.umass.edu/~zlun/papers/PatternGrouping/

Let’s sum up our paper, Our work is the first data-driven method trained via a deep 
CNN for perceptual grouping of discrete graphical patterns. 
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Conclusion

 First (data-driven + deep CNN) for discrete 2D patterns.

 Learned shape-, context-, and structure-aware descriptors for graphical elements.

 A large, annotated dataset is provided online. 
http://people.cs.umass.edu/~zlun/papers/PatternGrouping/

Our work proposed a model to Learn shape-, context-, and structure-aware 
descriptors encoding graphical elements. 
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Conclusion

 First (data-driven + deep CNN) for discrete 2D patterns.

 Learned shape-, context-, and structure-aware descriptors for graphical elements.

 A large, annotated dataset is provided online. 
http://people.cs.umass.edu/~zlun/papers/PatternGrouping/

Moreover, Our work contributes A large, annotated dataset of pattern which should 
benefit
future research on pattern analysis and processing. All the source code and data is 
open on the project page.

56



 Dr. Ke Li for the help on experimental data preparation.

 The Science and Technology Plan Project of Hunan Province.

 The Massachusetts Technology Collaborative grant for funding the UMASS GPU cluster. 

 NSERC Canada.

 Gift funds from Adobe Research.

Acknowledgements

We akownledge all the helps, comments, and fundings for this project. 

57



Thanks!

Q&A 
http://people.cs.umass.edu/~zlun/papers/PatternGrouping/
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