Learning to Group Discrete Graphical Patterns

ZHAOLIANG LUN", University of Massachusetts Amherst

CHANGQING ZOU*T, Simon Fraser University and Hengyang Normal University

HAIBIN HUANG, University of Massachusetts Amherst

EVANGELOS KALOGERAKIS, University of Massachusetts Amherst

PING TAN, Simon Fraser University
MARIE-PAULE CANI, LIX, Ecole Polytechnique, CNRS
HAO ZHANG, Simon Fraser University

vY v [[
v v" Jv/" o)
v? " V/v | 4
\v\vv'."v/" QN
v v 0.0
e OAO {
°
< d/\\) °
> S e’e

- vV v o

Fig. 1. We train a deep convolutional neural network which learns to group discrete graphical patterns from a large set of human-annotated perceptual
grouping data. The four grouping results obtained (grouped elements share the same color), while still exhibiting various imperfections, demonstrate that our
learned grouping scheme is able to handle a variety of noise and mixing of element shapes and arrangements.

We introduce a deep learning approach for grouping discrete patterns com-
mon in graphical designs. Our approach is based on a convolutional neural
network architecture that learns a grouping measure defined over a pair of pat-
tern elements. Motivated by perceptual grouping principles, the key feature
of our network is the encoding of element shape, context, symmetries, and
structural arrangements. These element properties are all jointly considered
and appropriately weighted in our grouping measure. To better align our
measure with human perceptions for grouping, we train our network on a
large, human-annotated dataset of pattern groupings consisting of patterns
at varying granularity levels, with rich element relations and varieties, and
tempered with noise and other data imperfections. Experimental results
demonstrate that our deep-learned measure leads to robust grouping results.

CCS Concepts: « Computing methodologies — Shape analysis;

Additional Key Words and Phrases: discrete pattern analysis, perceptual
grouping, supervised learning, convolutional neural networks

ACM Reference Format:
Zhaoliang Lun, Changqing Zou, Haibin Huang, Evangelos Kalogerakis, Ping
Tan, Marie-Paule Cani, and Hao Zhang. 2017. Learning to Group Discrete

“Both authors contributed equally to the paper
fCorresponding author: aaronzou1125@gmail.com

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

0730-0301/2017/11-ART225 $15.00

https://doi.org/10.1145/3130800.3130841

Graphical Patterns. ACM Trans. Graph. 36, 6, Article 225 (November 2017),
11 pages. https://doi.org/10.1145/3130800.3130841

1 INTRODUCTION

Graphical patterns such as 2D vector art, facades, textile or packing
designs, are often encountered in our daily lives. They have also
been the subject of study in computer graphics research, i.e., in
the context of pattern editing [Stava et al. 2010; Zhang et al. 2013],
synthesis [AlHalawani et al. 2013; Bao et al. 2013; Yeh et al. 2013],
exploration [Chen et al. 2016; Guerrero et al. 2016], and layout opti-
mization [Xu et al. 2015], to name a few. Often, the first step towards
any graphical pattern processing task is to algorithmically under-
stand the underlying structure of the input patterns. And in turn,
an understanding of pattern structures often relies on perceptual
grouping [Kohler 1929; Palmer 1992, 1977].

While humans possess an innate ability to perceive forms and
phenomena in this world as organized patterns, the main challenges
in enabling a machine to group graphical patterns like humans are
two-fold. Firstly, the immensely rich variations and complexities of
the set of discernible graphical patterns as well as the noise and im-
perfections which are often associated with them in real-world data
should all be accounted for; see Figure 2 (top). Secondly, and more
subtly, when different perceptual grouping principles [Kohler 1929;
Palmer 1977] such as similarity, proximity, continuity, symmetry,
would lead to conflicting grouping results, there is a need to conjoin
these principles [Kanizsa 1980; Nan et al. 2011]. In such cases, it
remains unclear which grouping principles should take precedence;
see Figure 2 (bottom). Resolving such conflicts is essential to obtain
a high-level understanding of graphical patterns.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 225. Publication date: November 2017.

https://doi.org/10.1145/3130800.3130841
https://doi.org/10.1145/3130800.3130841

225:2 « Lun,Z.etal.

24
o0
24

%

R\ S\'Z "Jr‘- 2N
R~ §2 !3')%(@.‘?) 'r%‘(
)ust
(@) (a1) (a2)

AN

X %
MARXX LN x % % %
%X X x } £ 4 x x } & 4 x X
wYxxx?Vy x % 3% %

<X x

Y

(b2) Similarity rule wins

G

(b1) Symmetry rule wins
Fig. 2. Challenges in graphical pattern grouping. The top row illustrates
the rich variations and complexity found in real-world patterns. (a): Red
element deviating from perfect symmetry. (a1) and (a2): Which grouping is
better? Discerning between complex patterns and groupings is difficult. The
bottom row shows conflicting grouping principles for pattern (b), leading to
different groupings: (b1) and (b2).

In this paper, we develop an algorithm which mimics the human
ability of graphical pattern grouping and apply it to group such
patterns formed by one or more atomic (i.e. indivisible) elements;
see Figure 1. While general grouping models or principles have
been known for a long time [Kohler 1929; Palmer 1977], it remains
unclear how to exactly quantify the various models, how impor-
tant each model is relative to the others, and what the best feature
representation for pattern elements to characterize their similar-
ity is, especially in terms of shape and structural arrangements. In
our work, instead of hand-engineering rules to quantify grouping
models and hand-tuning their relative importance, we resort to a
data-driven approach and develop a deep learning framework.

At the heart of our learning approach is a deep Convolutional Neu-
ral Network (CNN) which is trained to extract a grouping measure
consistent with human perception. Figure 3 provides an illustration
of the CNN architecture. The CNN takes as input graphical pattern
images and produces descriptors encoding element shapes, con-
texts, and structural arrangements, which reflect properties related
to pattern similarity, proximity, continuity, and symmetry princi-
ples observed in the perceptual grouping literature. Then our CNN
computes an element grouping measure as the Euclidean distance
between weighted combinations of the learned descriptors. To allow
our CNN-based grouping scheme to mimic human perception as
well as robustly handle pattern noise and variety, we assembled a
large training set of human-annotated pattern groupings to train
our deep architecture. The training patterns correspond to various
granularity levels, with rich varieties of compositions and variations,
and are contaminated with noise and other data imperfections.

Our main contributions can be summarized as follows:

e The first data-driven method trained via a deep CNN for
perceptual grouping of discrete graphical patterns.

e Learned shape-, context-, and structure-aware descriptors
encoding graphical elements in pattern designs.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 225. Publication date: November 2017.

o Alarge, annotated dataset of pattern groupings encompassing
rich pattern varieties and relations, which should benefit
future research on pattern analysis and processing.

We used both standard numerical error measures and a perceptual
user study to compare the grouping results produced by our method
with those produced by humans on test pattern images. The com-
parative studies demonstrate that our method is capable of inferring
groupings often consistent with human perception. We also tested
our method against several competing alternatives, and found that
it consistently produces more meaningful grouping results.

2 RELATED WORK

While our work proposes a data-driven approach to learn percep-
tual grouping, it is inspired by previous model-driven approaches,
e.g., those on Gestalt-based perceptual grouping, symmetry-based
grouping, and affinity-based grouping of visual patterns. In this
section, we briefly discuss the related approaches.

Gestalt-based pattern grouping. Gestalt psychologists have tried
to identify principles, or laws, related to perceptual grouping of
organized patterns or objects in general [Palmer 1977; Wertheimer
1938]. For example, patterns tend to be grouped together when
they are similar or proximal to each other, form closed figures, are
continuous or symmetric. Early approaches attempted to quantify
Gestalt laws; see [Desolneux et al. 2002] for a survey. For example,
one could account for the degree of proximity or similarity [Kubovy
and van den Berg 2008], then apply these numerical measures to a
probabilistic model for perceptual grouping. A complication with
Gestalt-based approaches is that different laws may interact and con-
flict with each other on the same stimuli [Kanizsa 1980]. A common
approach to resolve such conflicts is to select a grouping mechanism
based on the “simplest interpretation” [Feldman 2003]. In the context
of discrete graphical patterns, Nan et al. [2011] present an energy
minimization method using graph cuts for conjoining Gestalt laws
of similarity, proximity, and regularity, where the quantification of
these laws and the optimization objective are heuristically defined.
The grouping method with conjoining Gestalt rules is then applied
to the progressive simplification of architectural drawings.

In contrast to Gestalt-based approaches, which are largely model-
driven and hand-engineered, we follow a data-driven, learning ap-
proach towards discrete pattern grouping. We loosely consider the
Gestalt principles of proximity, continuity, symmetry, closure in the
design of our learning architecture, yet we do not explicitly attempt
to quantify them or hand-engineer their conflict resolutions.

Symmetry-based pattern grouping. Symmetry-based grouping has
been a dominant analysis tool for pattern understanding in com-
puter graphics. Many techniques have been developed for exact and
approximate symmetry detection of patterns found in natural im-
ages and shapes, e.g., [Barnes et al. 2010; Graham et al. 2010; Lukac
et al. 2017; Podolak et al. 2006]; see also surveys by [Liu et al. 2010;
Mitra et al. 2012]. Several techniques have also investigated hierar-
chical pattern grouping in images or shapes by building symmetry
hierarchies [Simari et al. 2006; van Kaick et al. 2013; Wang et al. 2011;
Zhang et al. 2013]. Related to structural hierarchy analysis methods
are also inverse procedural modeling techniques that use grammars

Concatenation

256 128 498

28 1 128

Structure Encoder

Learning to Group Discrete Graphical Patterns « 225:3

uoisng ainjeaqy
) |
|sso1 aAIpSEIIU0D |

800 X 800 X 8

Location & Size

Fig. 3. Given an input image of discrete graphical patterns (left), our method processes the image and its elements through a deep CNN to extract shape-,
context-, and symmetry-aware pattern element descriptors. The network is trained to produce a grouping measure that compares pattern elements such that
the produced comparisons agree as much as possible with human-annotated ones, yielding meaningful pattern groupings.

to parse symmetric arrangements of graphical elements [Bokeloh
et al. 2010; Stava et al. 2010; Wu et al. 2014].

In general, these techniques are largely model- or rule-driven, of-
ten with handcrafted precedence rules. Furthermore, while symme-
tries can be classified into a limited number of categories [Conway
et al. 2008; Weyl 1952] and can all be well-defined mathematically,
fluctuating symmetries [Graham et al. 2010], along with other group-
ing criteria such as continuity and proximity, are imprecise and can
result in a much wider variety of pattern variations.

The recent work of Guerrero et al. [2016] on pattern exploration
could account for a rich set of discrete patterns but opted for manual
pattern analysis. It is unlikely that existing model-driven methods
or their variants can cover a close-to-full spectrum of pattern varia-
tions. This has motivated us to develop a data-driven framework to
learn discrete pattern grouping. Instead of hand-crafting rules for
detecting symmetries and determining their precedence, we use a
deep learning architecture that identifies and prioritizes symmetries
for discrete pattern grouping, combining them with other percep-
tual grouping principles into a grouping measure to be learned from
human-annotated data. The basic premise is that deep learning with
rich sets of annotated pattern grouping data can lead to significant
boost in discrete pattern grouping performance.

Affinity-based pattern grouping. The preeminent approach to vi-
sual pattern grouping or segmentation is to define a metric, or in
other words an affinity measure, to compare patterns in the form
of edges, patches, parts, or objects in natural images, then use this
affinity to guide clustering algorithms (e.g., [Arbelaez et al. 2011;
Shi and Malik 2000; Zitnick and Dollar 2014]). These methods typi-
cally rely on hand-engineered grouping cues, and as a result, lack
robustness and generality. They have largely been superseded by
data-driven and machine learning techniques by now.

Learning measures for grouping. Instead of hand-engineering
grouping cues, recent analysis methods have employed deep learn-
ing architectures to group visual patterns appearing in natural im-
ages, in the context of image clustering [Xie et al. 2016; Yang et al.
2016], image classification [Greff et al. 2016], figure-ground seg-
mentation [Maire et al. 2016], and contour detection [Maninis et al.
2016]. Our approach is more related to methods that learn affinities
for comparing image patches, since graphical patterns can be repre-
sented as 2D rasterized image patches (alternatively to vector art).
Several recent methods propose Siamese CNN architectures to learn
patch-based affinities in natural images by training them in a super-
vised manner on patch correspondence datasets [Han et al. 2015;
Simo-Serra et al. 2015; Yi et al. 2016; Zagoruyko and Komodakis
2015]. Isola et al. [2016] instead trains a CNN architecture for patch
similarity in an unsupervised manner by making the CNN predict
whether two visual primitives occur in the same spatial or temporal
context.

These patch-based learning methods compare natural image pat-
terns only based on their local appearance, since their CNNs exclu-
sively operate on local patches around these patterns. Our method
instead groups pre-segmented graphical elements based on their
local appearance, context, and most importantly, global structures
(e.g., symmetries, layouts) that are often present in graphical de-
signs. For example, similar elements placed on four corners of the
image are less likely to form a group in image segmentation tasks,
while in our case they will be grouped due to the pattern regularity.
As we discuss in our experiment section, existing CNNs for group-
ing patches in natural images do not generalize well to discrete
graphical patterns.

3 GROUPING MEASURE

Overview. Given an input image of discrete graphical patterns,
our method applies a learned CNN-based measure that compares
atomic elements in the image, then clusters them into pattern groups.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 225. Publication date: November 2017.

225:4 « Lun,Z.etal.

Our CNN architecture is visualized in Figure 3. It is composed of
two “sub-networks”. The top sub-network, which we call atomic
element encoder (in orange color), takes as input a pair of atomic
elements and for each element, it extracts a learned descriptor en-
coding its overall shape and local context. We refer to this descriptor
as shape- and context-aware element descriptor. The bottom sub-
network, which we call structure encoder (in green color) takes as
input the whole image, and attempts to detect structural arrange-
ments in it, such as the presence of symmetries or figures. It then
outputs a per-pixel descriptor that encodes where extracted struc-
tural arrangements are located in the input image. We refer to this
descriptor as structure-aware descriptor.

To compare a pair of atomic elements, we consider (a) their shape-
and context-aware descriptors extracted by the atomic element en-
coder (orange-colored vectors in Figure 3), (b) the structure-aware
descriptors encoding the presence of structural arrangements within
their area, as extracted by the structure encoder (green-colored vec-
tors), and finally (c) their location in the image and size, which we ex-
plicitly provide as additional inputs to our architecture (grey-colored
vectors). From our experiments, we found that all the descriptors,
and in turn, both sub-networks are important so as to compute an
accurate similarity measure between atomic elements. In addition,
we found that the relative importance of the descriptors in our mea-
sure should not be the same, instead, they should be learned from
training data. This is not surprising based on the perceptual pattern
grouping literature [Palmer 1977], which indicates that different
grouping principles do not necessarily share the same priority. Thus,
our CNN architecture incorporates a linear transformation layer
that re-weights the above descriptors before computing the final
measure. Mathematically, given a pair of atomic elements (E, E’),
our measure is evaluated as the Euclidean distance between their
weighted descriptors f(E), f(E’):

D(E.E') = ||W(f(E) - f(E")II 1

where W represents a learned diagonal weight matrix used in our
transformation layer. The element descriptor f(E) is produced by
fusing its shape- and context-aware descriptor f,(E) (32-D), its
structure-aware descriptor fs(E) (8-D), and its location and size
descriptor f;(E) (5-D) into a single column vector (45-D); f(E’) is
similarly defined. In the rest of this section, we describe how these
different descriptors are computed through our architecture, then
the learning method is discussed in Section 4.

Atomic element encoder. The element encoder aims to extract a
shape- and context-aware representation capturing an atomic ele-
ment along with its context at multiple scales. The architecture of
this encoder is a modified version of the widely popular image-based
CNN, known as AlexNet [Krizhevsky et al. 2012] (see also Figure 3,
in orange color). The original AlexNet consists of two convolutional
layers, followed by two pooling layers, then three additional convo-
lutional layers and three fully connected layers. The convolutional
layers apply a set of learned convolution filters to produce “feature
maps” that are further non-linearly transformed through rectified
linear units (ReLUs). The pooling layers employ max-pooling units
that summarize the feature maps through subsampling, while the
fully connected layers apply non-linear transformations operating
on the whole feature maps produced in the previous layer. The

ACM Transactions on Graphics, Vol. 36, No. 6, Article 225. Publication date: November 2017.

last fully connected layer (called “fc8”) outputs image classification
probabilities related to categorization in ImageNet, thus we exclude
it from our architecture.

We further modified AlexNet to process individual elements and
local multi-scale context around them. Specifically, we first compute
the oriented bounding box around the element, then crop the input
image at 100%, 200%, 300%, and 400% of its box size. The resulting
crops are resized to images of size 227x227 pixels, which is the input
image resolution used in AlexNet. The four images are processed
through four identical branches of AlexNet (without “fc8”), which
in turn produce four 4,096-dimensional features. These feature
representations are concatenated into a single, multi-scale 16, 384-
dimensional pattern representation. The representation is extremely
high-dimensional, which can lead to unreliable distances when
comparing elements [Zimek et al. 2012]. In addition, individual
features encoded in this representation can have varying importance
in evaluating atomic element and context similarity. Thus, we reduce
the dimensionality and re-weight these features through a linear
transformation, implemented as an additional layer after AlexNet.

Given the above-mentioned 16, 384-dimensional feature repre-
sentation g(E) for an element E, our architecture outputs a compact
32-dimensional representation f,(E) by applying the transforma-
tion f;(E) = P - g(E), where P is a weight matrix learned during
the CNN training. We experimented with different dimensionalities
for the output representation (4, 8, 16, 32, 64) - we found that 32
dimensions yielded highest agreement with ground-truth groupings
in a hold-out validation set in our experiments. The output repre-
sentation f;(E) is the shape- and context-aware element descriptor
used in the fused descriptor of Equation (1). In Section 5, we discuss
results when this descriptor is omitted from our measure, and we
also provide visualizations that indicate that the atomic element
encoder captures useful shape information about pattern elements.

Structure encoder. In contrast to the atomic element encoder that
focuses on representing individual elements and their local neigh-
borhood, the structure encoder attempts to capture large-scale struc-
tures in the pattern. For example, if a set of elements form a heart-
shaped figure, or are related under a global rotational symmetry,
then these non-local structures provide strong cues to aggregate
these elements into a single group, rather than splitting them into
smaller groups. To capture a structure-aware element representa-
tion, one option would be to provide the atomic element encoder
with very large input neighborhoods, e.g., including the whole pat-
tern image (global context) around each element. However, such
strategy would result in a highly redundant representation, since all
elements would share the same global context. Instead, our struc-
ture encoder takes as input the whole image, and yields a single
intermediate representation encoding the presence of large-scale
structures in the input image.

The architecture of the structure encoder is shown in Figure 3 (in
green color). It receives the whole input pattern image at 800x800
resolution and processes it through a series of convolution and
pooling layers. Specifically, the structure encoder consists of two
convolutional layers, followed by ReLU transformations and two
pooling layers, which provide invariance to small perturbations
of elements in the input image (similarly to AlexNet). Then the
structure encoder includes five more convolutional layers followed

by ReLUs. Each convolutional layer applies a set of local filters in the
feature map produced at the previous layer, resulting in feature maps
of increasingly smaller size, yet encoding increasingly larger-scale
structures in the input image. The output of the last convolutional
layer is a set of 256 feature maps with size 13 X 13. Once the filters
are trained on our dataset, we observed that the resulting feature
map values are correlated with the presence of global symmetries
or forms in the image (see Section 5 for related visualizations). Yet,
these feature maps do not readily provide information on where
exactly in the input image these large-scale structures exist, or which
elements participate in these large-scale structures. As a result,
we cannot use these maps as-is to extract element-level structure
descriptors.

To extract these descriptors, our architecture employs seven “de-
convolutional” layers consisting of convolution filters and ReLus
that progressively transform and upscale the feature maps towards
the original image resolution. As in the case of other deep archi-
tectures for image-to-image translation tasks [Isola et al. 2017], the
configuration of the deconvolution layers, i.e., the size and number
of their filters, is symmetric with the configuration of the corre-
sponding convolutional layers. For example, the first deconvolu-
tional layer produces feature maps of the same size and number
as the sixth convolutional layer, the second deconvolutional layer
produces feature maps of the same size and number as the fifth
convolutional layer, etc. In addition, similarly to image-to-image
translation architectures [Isola et al. 2017], we observed that better
performance is achieved when each deconvolution layer receives
as input the feature maps produced by the immediately previous
layer in the architecture as well as the feature maps produced in its
corresponding symmetric convolutional layer (see Figure 3, grey
connections). This is due to the potential loss of fine-grained struc-
ture information in the produced 13 X 13 X 256 feature map of the
the last convolutional layer.

The output of our structure encoder is a set of 8 feature maps of
size 800x800 that provide information on which and where large-
scale structures are present in the input pattern image at the pixel
level (see Section 5 for related visualizations). To compute the
structure-aware descriptor fs(E) for an element E in the input image,
we find each pixel p € E covered by the element, and average the
pixel feature values hy,(p) per each output map m (m = 1...8):

fs.,m(E) = avg hm(p) @)

PEE

The resulting 8-dimensional descriptor is incorporated into the fused
descriptor used in Equation (1). We employed an aggregate function
(averaging) here since each element has a different number of pixels
and pixel ordering. A general learnable function cannot be readily
applied to such unordered input. Instead of using the average feature
values, we also tried using the maximum, but yielded slightly poorer
performance. We also experimented with different number of output
feature maps (4, 8, 16, 32, 64) as well as different number of layers
and filters in the structure encoder, at the end, the architecture of
Figure 3 offered the best performance in a hold-out validation set.
Note also that producing 8 feature maps does not mean that up to
8 layouts are encoded; the features are continuous and can jointly
encode a larger number of layouts. Finally, one might argue that
the structure encoder may also capture information relevant to the

Learning to Group Discrete Graphical Patterns « 225:5

shape or context of each element. Based on the visualizations of the
output feature maps (Section 5), we found that structure encoder
mainly captures large-scale structures and arrangements of elements
rather than element shape or contexts. Using the structure encoder
alone without the atomic element encoder significantly degraded
the grouping performance (and vice versa).

Element location and size descriptors. Motivated by the “proxim-
ity” principle that states that nearby elements tend to be grouped
together, we incorporated the location (x,y) of each element in
the input pattern image as an additional 2-dimensional element de-
scriptor. Computing this descriptor is straightforward and does not
require any particular “hand-engineering”; we simply compute the
centroid coordinates of each element in the image and normalize
them between [0, 1]. Also motivated by observations in the per-
ceptual pattern grouping literature stating that size influences the
perception of pattern similarity [Palmer 1977], we incorporate the
radius of the element bounding sphere with the width w and height
h of the element’s axis-aligned bounding box (relative to image
size) into an additional descriptor, which is also straightforward to
compute. Concatenating location and size yields the 5-dimensional
descriptor f;(E) used in the fused descriptor of Equation (1).

It is worth noting that the atomic element encoder is agnostic
to element location or size, since the input elements are re-scaled
and centered in the pattern image crops fed into it. Similarly, the
structure encoder focuses on capturing large-scale structures rather
than fine-grained location and size information. We found that
explicitly incorporating location and size in our measure improved
the grouping performance, as discussed in Section 5.

Clustering. The last step in our analysis pipeline is to apply a clus-
tering technique to group patterns based on the measure of Equation
(1). In general, given our distance measure between element pairs,
one can apply any clustering technique which relies on element
distances or similarities based on transformations of these distances,
as input. We experimented with several clustering techniques in-
cluding k-means, Gaussian Mixture Models, normalized cuts [Shi
and Malik 2000], affinity propagation [Frey and Dueck 2007], as
well as agglomerative clustering variants [Hastie et al. 2001] (see
Section 5 for comparisons and parameter discussion). We found that
affinity propagation offered the best grouping results.

4 LEARNING

Our learning procedure aims to produce a grouping measure that is
consistent with human perception. To this end, all the parameters of
our grouping measure, including the diagonal entries w = diag(W)
of the descriptor weight matrix W, as well as all the CNN parameters
v (including the convolution/deconvolution filter parameters and
the dimensionality reduction parameters) are learned from a training
set of procedurally generated pattern images with human-annotated
groupings. Below we explain our objective function used to train
our network, the optimization procedure, and finally the training
set.

Objective function. Our network parameters are learned by mini-
mizing an objective function defined over a training set of element
pairs. We use a function, known as contrastive loss [Hadsell et al.
2006], commonly used for learning distance functions. The loss

ACM Transactions on Graphics, Vol. 36, No. 6, Article 225. Publication date: November 2017.

225:6 « Lun, Z.etal.

= EFE o,

¢ S
S ': H
4
-".."0 Sty
*it ‘."
+ e
.‘“..:%: . V + z “ (X}
+;):C ¥ : ‘
m Sl
+ +
e
+
R +
. o
[X XK X X J
ANA AAN

Fig. 4. Anexample of a layout template (left) and the pattern (right, in black)
instantiated from it. The template is drawn using shape or curve primitives
and annotated with desired element, orientation, size, spacing, symmetries,
and stochastic parameters. The pattern is procedurally generated based on
the layout and given specifications. Each colored primitive in the template
corresponds to a different group.

function is composed of the following terms. The first term penal-
izes large distance values for elements that should be aggregated
according to the training data, i.e., they belong to the same (human-
annotated) group. We call these “positive” pairs. The second term
penalizes small distance values for conflicting elements, i.e., ones
that should not belong to the same group according to the training
dataset. These are called “negative” pairs. Finally, we include a reg-
ularization term that prevents the parameter values from becoming
arbitrarily large, which often happens when the learned function
overfits the training dataset, thus has less chance to generalize to
new inputs. The objective function is formulated as follows:

C(w,v)= Z D*(P,P") + Z max(margin — D(P, P’),0)% (3)
P,P'eP P,PPeN

+aallwll? + 2zlIvIl,

where P, N are sets containing positive and negative pairs of ele-
ments or groups, respectively. The regularization parameters A1, A3
are set to 1072 and 1073 respectively through cross-validation. The
margin value is set to 1 — its absolute value does not affect the
learned parameters, but only scales distances such that negative
pairs tend to have a margin of at least one unit distance.

Initialization and optimization. We initialize the feature weights
w and structural encoder parameters to small random values. The
parameters of the atomic element encoder are initialized based on
the AlexNet parameters pre-trained on ImageNet [Russakovsky et al.
2015]. The convolution filters trained on ImageNet already partially
capture useful shape information [Su et al. 2015], thus starting our
optimization based on this initialization helps it converge to a better
local minimum resulting in improved grouping performance. To
minimize the cost function, we use batch gradient descent based on
the Adam update rule [Kingma and Ba 2014] to iteratively optimize
the parameters. To compute the required analytic gradients with
respect to all the parameters, we use standard backpropagation.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 225. Publication date: November 2017.

E XA RN AN
| LV ¥ Qe RAALH
SANRIE® . yve_
LR K T X I ae” JCN e

Fig. 5. We collected 86 atomic elements (some of them shown on the left)
for pattern generation. During generation, the elements can undergo various
affine deformations or symmetry transformations (right: @ — @ shows
deformation; D — @ and @ — @ show different reflectional symmetry
transformations), among others.

Training dataset. To train our network, we produced an image
dataset containing a variety of 2D discrete graphical pattern arrange-
ments. To create this dataset, we first collected 820 pattern layout
templates drawn by 11 designers we hired. An example of such a
template is shown in Figure 4. Each layout template consists of a set
of primitives such as hexagons, rectangles, circles, and parametric
curves. Each primitive is filled with atomic elements, randomly se-
lected from a collection of icons containing various shapes (Figure
5). The atomic elements are placed following a stochastic procedure,
which takes as input element placement attributes specified by the
users, including element size, spacing, and orientation. For addi-
tional variety, in our procedural generation step we introduce noise
on element placement including stochastic perturbations on input
attributes, random occlusions between elements, and random affine
transformations on the element shapes.

The ground-truth groups are specified by users through a simple
Ul where users simply assign different colors to primitives to indi-
cate grouping. Each unique color corresponds to a different pattern
group. Each time the stochastic procedure is executed, different
pattern images with annotated groups are generated arising from
the randomly selected element types, deformations, and perturbed
orientation, size, and spacing attributes. Given the initial 820 pat-
tern layouts, our procedure yielded 7, 891 pattern images, which are
provided in the supplementary material. We believe that the 820
templates contain interesting varieties and that our method was able
to generalize well from those to different patterns, including real
designs (see Section 5). From each of these images, we sampled 500
positive and 500 negative pairs of elements, which in total yielded a
dataset of ~8M training pairs used to train our network.

5 RESULTS AND VALIDATION

We validated our method on a test dataset of graphical patterns
mined from the web, through both a perceptual user study and
standard numerical error measures. In what follows, we discuss the
test dataset, show pattern grouping results obtained by our method,
provide comparisons with alternative methods, present an analysis
of the representations learned by the network, and report timings.

Test dataset. Graphical patterns are commonly encountered in
coloring books for kids. Thus, we mined graphical pattern designs
from the web using google and bing image search based on the
phrase “coloring page”. We note that we skipped coloring page im-
ages containing only organic shapes without any regularity. Each

preset #group auto #group
Rand index purity||Rand index purity
geometry distance 77.62% 73.13%|| 76.47% 76.64%
AlexNet 76.60% 70.96%|| 74.41% 71.16%
fine-tuned AlexNet 77.72% 73.12%|| 77.59% 80.21%
element encoder 78.34% 74.59%|| 77.72% 78.82%
structure encoder 78.79% 73.24%|| 77.35% 74.68%
element+structure enc| 80.28% 75.75%|| 80.03% 81.84%
our full measure 83.05% 80.24%| 83.58% 85.76%

Table 1. Purity and Rand index values for different measures.

contiguous region in these images often corresponds to a discrete
graphical element. We then hired 8 human subjects (adults) to pro-
vide groupings for the downloaded images by using a “paint bucket”
tool to flood image regions over elements belonging to the same
perceived group with the same color. The resulting test set contains
214 images of annotated graphical pattern groups, which is provided
in our supplementary material. The images in this test set frequently
contain noise, such as occasional text on elements (e.g. “ENT” in
Fig 1, left), element occlusions, or missing elements in a conjoining
group.

Grouping results. Figure 6(a-h) displays groupings produced by
our method for a variety of procedurally generated pattern images
(not included in our training dataset), while Figure 6(i-p) displays
produced groupings for downloaded pattern images belonging to
our test set (see also Figure 1 for more test cases). In the last row,
we show corresponding human-annotated groupings for several
challenging cases (m-p). Plausible groupings are achieved under
various scenarios: elements under rotational symmetries (a-b, f-g,
i-j, 1, etc.), translational symmetries (a, c-e, g-h, n, etc.), reflectional
symmetries (a, d, e-f, h, k, m, etc.), elements laid out along various
continuous curves (b-c, g-h, etc.) or geometric primitives (a, d-e),
element occlusions (d, f, 1, o, etc.), and graphical element designs
depicting organic (i, m, p, etc.) or man-made objects (m-n). There are
also imperfections in our groupings especially for organic objects
(e.g., bears), which are challenging for our method since it was
trained on non-organic-like shapes. Imperfections also exist when
graphical elements do not strictly form contiguous regions (church
entablature) or incur significant occlusion (e.g., ferris wheel, bear).

Clustering evaluation measures. Pattern grouping is an instance
of clustering, i.e., each group of patterns corresponds to a distinct
cluster. Thus, to numerically evaluate our method and alternatives
against human-annotated groupings on our test set, we used two
standard numerical error measures commonly used in clustering
analysis: purity and Rand index. To compute clustering purity, each
cluster produced by a grouping method under evaluation is assigned
to the human-annotated cluster with the largest number of common
atomic elements. Then we count the number of common atomic
elements across all produced clusters divided by the total number
of elements. The Rand index is an alternative measure of clustering
similarity. We count the number of element pairs that are either
in the same group or in different groups in both the produced and
human-annotated groupings, divided by the total number of pairs.

Comparisons with alternative grouping measures. We compared
our method with the following grouping measures based on prior
work and “weaker” versions of our architecture:

Learning to Group Discrete Graphical Patterns « 225:7

Rand index purity

affinity propagation 83.05% 80.24%
agglomerative (average linkage) 75.93% 71.13%
agglomerative (single linkage) 71.11% 68.38%
agglomerative (complete linkage) 76.76% 71.79%
k-means 80.85% 75.58%

Gaussian Mixture Models 80.92% 74.91%
normalized cuts 77.48% 71.72%

Tagger [Greff et al. 2016] 66.54% 55.21%

Table 2. Purity and Rand index for different clustering techniques.

e geometric distance: a first simple baseline is to define a geometric-
based distance between two elements by first aligning them
through the best rigid transformation, then measure the aver-
age Euclidean distance between nearest corresponding element
silhouette points. Elements that are identical under translational,
rotational, or reflective translation symmetry (isometries) have
zero distance.

o AlexNet distance: a CNN-based baseline is to compute Euclidean
distances between raw AlexNet features of two elements. To do
this, we extract the image patch containing each element, resize
these patches to 227 X 227 resolution, pass them through AlexNet
trained on ImageNet (i.e., natural images), then extract the 4,096-
dimensional feature vector per element based on its penultimate
layer “fc7”; this layer offered best performance.

o fine-tuned AlexNet distance: as confirmed from our experiments,
using raw AlexNet features trained on natural images does not
generalize well to comparing discrete graphical patterns. A better
CNN-based baseline is to instead compute Euclidean distances
between their AlexNet “fc7” features fine-tuned on our training
dataset under the same siamese configuration and objective.

o element encoder distance: a “weaker” version of our architec-
ture is to use the atomic element encoder alone (i.e., AlexNet
branches operating on multi-scale patches together including the
dimensionality reduction layer). We compute Euclidean distances
between the element 32-dimensional descriptors, as extracted by
our atomic element encoder trained alone on our dataset.

e structure encoder distance: an alternative “weaker” version of
our architecture is to use the structure encoder only. We compute
Euclidean distances between the 8-dimensional element descrip-
tors, as extracted by the structure encoder trained alone on our
dataset.

o structure+element encoder distance: another “weaker” version of
our architecture is to compute distances between the 40-dimensional
element descriptors extracted by using both the structure and ele-
ment encoder trained on our dataset. The difference from our full
method is that we do not use here the element size and location.

The above competing measures are used by the affinity propaga-
tion clustering technique [Frey and Dueck 2007] to produce element
groupings under two modes: (a) “preset #group” mode: we provide
the affinity propagation technique with the desired (ground-truth)
number of groups and force it to produce the same number of clus-
ters per test case (using the implementation from [Wang 2010]), (b)
“auto #group” mode: the default mode of affinity propagation works
without specifying the target number of clusters, but uses instead
an internal “preference” parameter, which controls the granular-
ity of clustering and affects the resulting number of clusters. We

ACM Transactions on Graphics, Vol. 36, No. 6, Article 225. Publication date: November 2017.

225:8 « Lun, Z.etal.

Xz ALAARAAARAAA
("] } 23 X s+t
. Y s I Y Y Y X)
v, I el F e e A _XEXXXIXX)
"'v' x TIx g *e g .. ++ : o0 00 ®e0 4
.
o '."- b4 a F
£ ’ i xx i
) P+ e
Beed # # RASALY S0
L4 °
@)l (d)f
."n.’. eox .‘.n’..
A y X ')y
n)»: .x ‘)lbbb’
A“AA “A‘,x“l“ ‘A“A
“A“AAA“.x“A“““‘
X

|
) g) D\
< (Ssdml =
22
NN A A

g
s
1N

—
—

'
'

R

i

(m)

‘

2

(mO0) (n0) (00) (p0)

Fig. 6. Gallery of grouping results obtained by our method on procedurally generated patterns (a-h) and downloaded images (i-p). Results obtained with
preset group counts include (m), (n), and (0); the rest was automatic. Some human-annotated groupings are shown (m0-p0).

greedily select the preference value that yields the highest Rand preference value is used for clustering in our entire test set. We
index on our hold-out validation set using grid search. The same also tried other clustering techniques (see next paragraph) - we

ACM Transactions on Graphics, Vol. 36, No. 6, Article 225. Publication date: November 2017.

(i) A-40%
(i) B-0%
Nt
- % : (i) Both - 60%
CA D)
A (iv) Neither - 0%
A B

Fig. 7. Query layout shown to participants of our user study.

preset #groups 49%

auto #groups 52%

ground truth [l both [l our result

Fig. 8. Distribution of participant answers comparing human-annotated
grouping versus different algorithmic choices.

similarly provided them with the target number of groups, or tuned
their internal parameters on our validation set. Affinity propaga-
tion yielded the best performance. Table 1 reports purity and Rand
index for our measure and alternatives under both “preset #group”
and “auto #group” modes. Our full measure yielded better grouping
performance compared to alternatives under both modes according
to Rand index and purity. The performance differences between the
“preset #group” and “auto #group” mode are subtle indicating that
providing the desired number of clusters as additional input is not
crucial.

Different clustering techniques. Table 2 reports purity and Rand
index for alternative clustering techniques using our full measure,
including k-means, Gaussian Mixture Models (initialized with k-
means), normalized cuts [Shi and Malik 2000], and agglomerative
clustering variants [Hastie et al. 2001]. We report performance under
the “preset #group” mode, where we provide all techniques access
to the target number of clusters. We also tried to tune the internal
parameters (stopping criteria) of agglomerative clustering and nor-
malized cuts using grid search on our validation set (“auto #group”
mode), yet this resulted in slightly lower grouping performance for
these techniques. Thus, we report results for these methods under
the “preset #group” mode only.

In addition, we compared to Tagger [Greff et al. 2016], a deep
neural network that jointly learns image representations and per-
forms perceptual grouping. Tagger does not use our measure; it
learns to group patterns based on its own internal representation.
We trained it on the same training data as our method using their
publically available implementation. The training and test images
were down-sampled into the largest possible size 120 X 120 (6 times
larger than the size of images used in the original implementation)
so that we can fit their network in our GPU (12GB memory). We
also tuned Tagger’s hyper-parameters in our hold-out validation
set. Tagger infers pixel-level probabilities for group assignments,
thus for the test images, pixel-level probabilities were up-sampled
to 800 X 800, and element-level group assignments were computed
through averaging the probabilities of pixels they contained, then
selecting the most likely group assignment. Table 2 shows that affin-
ity propagation using our measure yielded the best performance

Learning to Group Discrete Graphical Patterns « 225:9

in terms of purity and Rand index compared to other techniques,
including Tagger.

User study. We also validated our method through a perceptual
user study executed using the Amazon MTurk service. Each ques-
tionnaire included 50 queries, each showing three images originat-
ing from our test set: an image with the patterns on top, an image
with the human-annotated groups (image A), an image produced
using our measure based on affinity propagation under either the
“preset #group” or “auto #group” mode (image B). The images were
laid out as shown in Figure 7. Queries were shown at a random
order, while each page was repeated twice (i.e., 25 unique queries),
with A and B randomly flipped, to detect unreliable users giving
inconsistent answers. Each query included the following question:
“Which of the two groupings (A or B) seems more plausible to you?”.
Participants were asked to pick one of the following answers: “(i) A,
(ii) B, (iii) can’t tell - Both A and B are equally plausible, (iv) can’t
tell - Neither A nor B is plausible”. To avoid any individual bias, we
allowed each participant to complete only one questionnaire per
category. Each query was answered by 5 different, reliable MTurk
participants. We filtered out unreliable MTurk participants who
gave two different answers to more than 8 out of the 25 unique
queries in the questionnaire, or took less than 3 minutes to complete
it.

Figure 8 demonstrates how frequently participants selected the
human-annotated grouping versus our method in either of the two
modes, and vice versa, on average. We also demonstrate how fre-
quently they found both displayed groupings to be equally plausible
(we do not show the option “none is plausible” since it represented
less than 1% of the answers). For 26% of the comparisons, partici-
pants found that the human-annotated groupings were as plausible
as the groupings produced by our measure in the “preset #group”
mode. For 24% of the pattern comparisons, the produced groupings
were found to be better than the human-annotated ones in this
mode. In contrast, for 49% of the pattern comparisons, the human-
annotated groupings were found to be better than the groupings
of our method. Participants found the groupings produced by the
automatic stopping mode of our method (“auto #groups”) a bit worse
than groupings produced when the desired number of groups is
given (“preset #groups). In the ideal scenario, an algorithm should
produce groupings that are exactly as plausible as human groupings.
The results of our user study indicate that there is still room for

improvement. A * C
I+@
4 - O
@ W
4 -+ 2N

Fig. 9. Elements giving
strongest feature responses
at different descriptor en-
tries of the learned CNN
representation. Each column
corresponds to a different
descriptor dimension.

Learned representations. Finally,
we looked more closely on the
feature representations learned
by our CNN. We found that
after training, the element en-
coder network becomes sensitive
to particular element styles or
types. For example, the columns
of Figure 9 show the top-5 el-
ements that cause highest fea-
ture responses for particular en-
tries (dimensions) of its learned 32-
dimensional representation. For
example, we found that the 5th

ACM Transactions on Graphics, Vol. 36, No. 6, Article 225. Publication date: November 2017.

225:10 « Lun, Z. et al.

feature is sensitive to triangle-based element inputs (first column),
the 8th feature is sensitive to star- or cross-like elements (second col-
umn), and the 15th feature is more sensitive to spider-like elements
(third column). Interestingly, the elements that strongly activate
these feature responses lie in various orientations, indicating that
the learned CNN representation is likely to be invariant to rotations
of the pattern elements.

Figure 10 visualizes output feature maps produced by the struc-
ture encoder network for various input pattern images. We noticed
that the feature maps have similar values in areas where certain
structural arrangements of elements exist. Elements with similar
values in these areas will be favored to be grouped together by our
measure. More specifically, the feature map shown in Figure 10(a)
reveals which elements are related under a certain rotational sym-
metry, the one in Figure 10(b) reveals which elements are related
under a reflectional symmetry, and the one in Figure 10(c) reveals
which elements are layout according to a closed form (e.g., heart).

Running times. CNN training on our dataset took 30 hours using
a TitanX GPU and a Xeon E5-2620 CPU. Once trained, at test time,
our method computes the descriptors for all elements within an
image in ~3 seconds. Computing distances for all pairs of elements
and applying affinity propagation clustering needed about a second
to produce the grouping per test image.

6 DISCUSSION AND LIMITATIONS

The ability to discern patterns of varying forms and complexity is
one of the most fundamental human capabilities. We have developed
what we believe to be the first data-driven, deep learning based
approach to discrete graphical pattern grouping, enabling us to
better understand the way such patterns are perceived. In particular,
we learn a grouping measure from human-annotated pattern data,
which allows us to produce meaningful graphical pattern groupings.
Extensive experiments and validation demonstrate that within the
realm of reasonable expectation of a data-driven approach, our
method is able to produce robust grouping results.

Figure 6 also shows various grouping imperfections produced
by our method, such as in the tree and bears images. These input

Wiad 4 b ady
-

Fig. 10. Feature maps produced by the structure encoder network revealing
(a) rotational symmetry, (b) reflectional symmetry, (c) closed form (heart
shape).

ACM Transactions on Graphics, Vol. 36, No. 6, Article 225. Publication date: November 2017.

images mainly consists of many organic patterns, which are stylisti-
cally quite different from the ones in our training data. Our CNN
was trained on a synthetic dataset of 8K images with 86 unique
elements, most of which represent non-organic-like patterns. Thus,
it is not expected to generalize well to organic-like patterns or nat-
ural image patches. We expect that enriching our training dataset
with organic-like patterns can help learn descriptors more suited
for such elements, thus improving the generality of our algorithm.
Another limitation is that our method assumes that elements are
pre-segmented or form contiguous regions in the input images.
Jointly segmenting an image into pattern elements and grouping
them deserves future investigation, which may also be useful for
natural image segmentation tasks.

In addition, our method does not incorporate explicit part labels,
or “semantic” knowledge, which could help disambiguate such cases.
It is also not designed to produce hierarchical groupings. Collecting
hierarchical grouping data to train our network is significantly more
involved than collecting “flat” grouping results. The downside is
that our grouping measure leads to a single grouping, without any
assurance of it being the most reasonable one. A true hierarchical
grouping measure would require a global foresight when organiz-
ing a set of patterns in a top-down fashion. How to collect the
appropriate data and learn such a measure is an intriguing question.
Finally, our grouping measure is formulated as a weighted linear
combination of shape-, context- and structure-aware descriptors,
yet linearity is only a simplifying assumption. It would be interest-
ing to enforce inherent non-linearity in the weighting mechanism
through additional fully connected layers and non-linearities in our
network.

7 ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their comments and Dr. Ke
Li for the help on experimental data preparation. Zou acknowledges
support from the Science and Technology Plan Project of Hunan
Province (Grant NO.: 2016TP1020) and the Program of Key Disci-
plines in Hunan Province. Kalogerakis acknowledges support from
NSF (Grant NO.: CHS-1422441 and CHS-1617333), and the Mas-
sachusetts Technology Collaborative grant for funding the UMass
GPU cluster. Tan acknowledges support from NSERC Canada (Grant
NO.: 31-611663 and 31-611664). Zhang acknowledges support from
NSERC Canada (Grant NO.: 611370 and 611649), and gift funds from
Adobe Research.

REFERENCES

Sawsan AlHalawani, Yongliang Yang, Han Liu, and Niloy J. Mitra. 2013. Interactive
Facades: Analysis and Synthesis of Semi-Regular Facades. Computer Graphics Forum
(Eurographics) (2013), to appear.

Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. 2011. Contour
detection and hierarchical image segmentation. IEEE transactions on pattern analysis
and machine intelligence 33, 5 (2011), 898-916.

Fan Bao, Michael Schwarz, and Peter Wonka. 2013. Procedural facade variations from
a single layout. ACM Trans. on Graph 32, 1 (2013).

Connelly Barnes, Eli Shechtman, Dan B. Goldman, and Adam Finkelstein. 2010. The
Generalized Patchmatch Correspondence Algorithm. In Proc. of ECCV.

M. Bokeloh, M. Wand, and H.-P. Seidel. 2010. A Connection between Partial Symmetry
and Inverse Procedural Modeling. ACM Trans. on Graph 29, 4 (2010), 104:1-104:10.

Yilan Chen, Hongbo Fu, and Kin Chung Au. 2016. A Multi-level Sketch-based Interface
for Decorative Pattern Exploration. In SSIGGRAPH ASIA 2016 Technical Briefs (SA
’16). Article 26, 4 pages.

John H. Conway, Heidi Burgiel, and Chaim Goodman-Strauss. 2008. The Symmetries of
Things. A K Peters/CRC Press.

Agné Desolneux, Lionel Moisan, and Jean-Michel Morel. 2002. Gestalt theory and
computer vision. Springer.

Jacob Feldman. 2003. Perceptual grouping by selection of a logically minimal model.
Proc. of ICCV 55 (2003), 5-25.

Brendan J. Frey and Delbert Dueck. 2007. Clustering by passing messages between
data points. Science 315 (2007), 2007.

John H. Graham, Shmuel Raz, Hagit Hel-Or, and Eviatar Nevo. 2010. Fluctuating
Asymmetry: Methods, Theory, and Applications. Symmetry 2, 2 (2010), 466—540.

Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hao, Harri Valpola, and Juergen
Schmidhuber. 2016. Tagger: Deep Unsupervised Perceptual Grouping. In Advances
in Neural Information Processing Systems. 4484-4492.

Paul Guerrero, Gilbert Bernstein, Wilmot Li, and Niloy J. Mitra. 2016. PATEX: Ex-
ploring Pattern Variations. ACM Trans. on Graph 35, 4, Article 48 (July 2016),
48:1-48:13 pages.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality Reduction by
Learning an Invariant Mapping. In Proc. CVPR.

Xufeng Han, T. Leung, Y. Jia, R. Sukthankar, and A. C. Berg. 2015. MatchNet: Unifying
feature and metric learning for patch-based matching. In Proc. of CVPR.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2001. The Elements of Statistical
Learning. Springer New York Inc., New York, NY, USA.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-Image
Translation with Conditional Adversarial Networks. CVPR (2017).

Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H Adelson. 2016. Learning
visual groups from co-occurrences in space and time. International Conference on
Learning Representations, Workshop paper (2016).

Gaetano Kanizsa. 1980. Grammatica del Vedere. 11 Mulino.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
CoRR abs/1412.6980 (2014).

W. Kohler. 1929. Gestalt Psychology. Liveright, New York.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classification
with deep convolutional neural networks. In Proc. NIPS.

Michael Kubovy and Martin van den Berg. 2008. The whole is equal to the sum of
its parts: A probabilistic model of grouping by proximity and similarity in regular
patterns. Psychological Review 115, 1 (2008), 131-154.

Yanxi Liu, Hagit Hel-Or, Craig S. Kaplan, and Luc]J. Van Gool. 2010. Computational
Symmetry in Computer Vision and Computer Graphics. Foundations and Trends in
Computer Graphics and Vision, Vol. 5. 1-195.

Michal Lukac, Daniel Sykora, Kalyan Sunkavalli, Eli Shechtman, Ondrej Jamriska,
Nathan Carr, and Tomas Pajdla. 2017. Nautilus: Recovering Regional Symmetry
Transformations for Image Editing. ACM Trans. on Graph to appear (2017).

Michael Maire, Takuya Narihira, and Stella X Yu. 2016. Affinity CNN: Learning pixel-
centric pairwise relations for figure/ground embedding. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 174-182.

Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeléez, and Luc Van Gool. 2016. Convo-
lutional oriented boundaries. In European Conference on Computer Vision. 580-596.

Niloy J. Mitra, Mark Pauly, Michael Wand, and Duygu Ceylan. 2012. Symmetry in 3D
Geometry: Extraction and Applications. In Proc. of Eurographics STAR Report.

Liangliang Nan, Andrei Sharf, Ke Xie, Tien-Tsin Wong, Oliver Deussen, Daniel Cohen-
Or, and Baoquan Chen. 2011. Conjoining Gestalt Rules for Abstraction of Architec-
tural Drawings. ACM Trans. on Graph 30, 6 (2011). 185:1-185:10.

S. Palmer. 1992. Common region: a new principle of perceptual grouping. Cognitive
Psychology 24 (1992), 436-447.

Stephen E. Palmer. 1977. Hierarchical structure in perceptual representation. Cognitive
Psychology 9, 4 (1977), 441-474.

Joshua Podolak, Philip Shilane, Aleksey Golovinskiy, Szymon Rusinkiewicz, and
Thomas Funkhouser. 2006. A Planar-reflective Symmetry Transform for 3D Shapes.
ACM Trans. on Graph 25, 3 (2006).

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. 2015. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV) 115, 3 (2015), 211-252. https://doi.
0rg/10.1007/511263-015-0816-y

Jianbo Shi and Jitendra Malik. 2000. Normalized Cuts and Image Segmentation. IEEE
Trans. Pat. Ana. & Mach. Int. (2000).

Patricio Simari, Evangelos Kalogerakis, and Karan Singh. 2006. Folding meshes: hierar-
chical mesh segmentation based on planar symmetry. Symp. on Geom. Proc. (2006),
111-119.

Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas Kokkinos, Pascal Fua, and Francesc
Moreno-Noguer. 2015. Discriminative Learning of Deep Convolutional Feature Point
Descriptors. In Proc. of ICCV.

O. Stava, B. Benes, R. Mech, D. Aliga, and P. Kristof. 2010. Inverse Procedural Modeling
by Automatic Generation of L-systems. Computer Graphics Forum 29, 2 (2010),
665-674.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-Miller. 2015.
Multi-view Convolutional Neural Networks for 3D Shape Recognition. In Proc.
Iccv.

Learning to Group Discrete Graphical Patterns « 225:11

Oliver van Kaick, Kai Xu, Hao Zhang, Yanzhen Wang, Shuyang Sun, Ariel Shamir, and
Daniel Cohen-Or. 2013. Co-Hierarchical Analysis of Shape Structures. ACM Trans.
on Graph 32, 4 (2013), Article 69.

Kaijun Wang. 2010. Fast Affinity Propagation Clustering under Given Number
of Clusters. (2010). https://www.mathworks.com/matlabcentral/fileexchange/
25722-fast-affinity- propagation-clustering-under- given-number- of- clusters

Yanzhen Wang, Kai Xu, Jun Li, Hao Zhang, Ariel Shamir, Ligang Liu, Zhiquan Cheng,
and Yueshan Xiong. 2011. Symmetry Hierarchy of Man-Made Objects. Computer
Graphics Forum (Eurographics) 30, 2 (2011), 287-296.

M. Wertheimer. 1938. Laws of organization in perceptual forms. 71-88.

H. Weyl. 1952. Symmetry. Princeton University Press.

Fuzhang Wu, Dong-Ming Yan, Weiming Dong, Xiaopeng Zhang, and Peter Wonka.
2014. Inverse procedural modeling of facade layouts. ACM Trans. on Graph 33, 4
(2014), 121:1-121:10.

Junyuan Xie, Ross Girshick, and Ali Farhadi. 2016. Unsupervised Deep Embedding for
Clustering Analysis. In Proc. of ICML.

Pengfei Xu, Hongbo Fu, Chiew-Lan Tai, and Takeo Igarashi. 2015. GACA: Group-
Aware Command-based Arrangement of Graphic Elements. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems, CHI 2015,
Seoul, Republic of Korea, April 18-23, 2015. 2787-2795.

Jianwei Yang, Devi Parikh, and Dhruv Batra. 2016. Joint Unsupervised Learning of
Deep Representations and Image Clusters. In Proc. CVPR.

Yi-Ting Yeh, Katherine Breeden, Lingfeng Yang, Matthew Fisher, and Pat Hanrahan.
2013. Synthesis of Tiled Patterns Using Factor Graphs. ACM Trans. on Graph 32, 1,
Article 3 (Feb. 2013), 3:1-3:13 pages.

Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal Fua. 2016. LIFT: Learned
Invariant Feature Transform. In IEEE ECCV.

S. Zagoruyko and N. Komodakis. 2015. Learning to compare image patches via convo-
lutional neural networks. In Proc. of CVPR. 4353-4361.

Hao Zhang, Kai Xu, Wei Jiang, Jinjie Lin, Daniel Cohen-Or, and Baoquan Chen. 2013.
Layered Analysis of Irregular Facades via Symmetry Maximization. ACM Trans. on
Graph 32, 4 (2013), Article 121.

Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. 2012. A Survey on Unsupervised
Outlier Detection in High-dimensional Numerical Data. Stat. Anal. Data Min. 5, 5
(2012).

C. Lawrence Zitnick and Piotr Dollar. 2014. Edge Boxes: Locating Object Proposals
from Edges. In Proc. of ECCV.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 225. Publication date: November 2017.

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://www.mathworks.com/matlabcentral/fileexchange/25722-fast-affinity-propagation-clustering-under-given-number-of-clusters
https://www.mathworks.com/matlabcentral/fileexchange/25722-fast-affinity-propagation-clustering-under-given-number-of-clusters

	Abstract
	1 Introduction
	2 Related work
	3 grouping measure
	4 Learning
	5 Results and validation
	6 Discussion and limitations
	7 Acknowledgements
	References

