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Abstract
Data-driven methods serve an increasingly important role in discovering geometric, structural and semantic relationships
between shapes. In contrast to traditional approaches that process shapes in isolation of each other, data-driven methods
aggregate information from 3D model collections to improve the analysis, modelling and editing of shapes. Data-driven methods
are also able to learn computational models that reason about properties and relationships of shapes without relying on hard-
coded rules or explicitly programmed instructions. Through reviewing the literature, we provide an overview of the main concepts
and components of these methods, as well as discuss their application to classification, segmentation, matching, reconstruction,
modelling and exploration, as well as scene analysis and synthesis. We conclude our report with ideas that can inspire future
research in data-driven shape analysis and processing.
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1. Introduction

As the availability of 3D data increases, due to the developments
in both 3D sensing technology as well as 3D modelling software,
data-driven approaches become increasingly applicable and useful
to 3D shape processing. In contrast to traditional approaches [LZ11],
data-driven methods look beyond single objects, instead analysing
sets of shapes jointly to extract meaningful mappings and correla-
tions between them. In addition, these methods are able to learn
from data computational models that effectively reason about prop-
erties and relationships of shapes without relying on hard-coded
rules or explicitly programmed instructions. Leveraging shared in-
formation across multiple objects, data-driven methods are able to
facilitate high-level shape understanding through discovering ge-
ometric and structural patterns among collections of shapes, pat-
terns which serve as strong priors in various geometry processing
applications.

The idea of utilizing data to support geometry processing has
been exploited and practiced for many years. However, most ex-
isting works based on this idea are confined to the example-based
paradigm, mostly leveraging only one core concept of data-driven
techniques—information transfer. Typically, the input to these prob-
lems includes one or multiple exemplar shapes with some prescribed
or pre-computed information of interest, and a target shape that
needs to be analysed or processed. These techniques usually es-
tablish a correlation between the source and the target shapes and
transfer the interesting information from the source to the target.
The applications of such approaches include a variety of methods
in shape analysis (e.g. [SY07]) and shape synthesis (e.g. [Mer07,
MHS*14]).

As the availability of 3D data increases, several new concepts
in data-driven methods are emerging, opening space for new de-
velopments in shape analysis and content creation. First, the rich
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variability of 3D content in existing shape repositories makes it
possible to directly reuse the shapes or parts for constructing new
3D models [FKS*04]. Content reuse for 3D modelling is perhaps
the most straightforward application of big 3D geometric data, pro-
viding a promising approach to address the challenging 3D content
creation problem. Second, high-level shape understanding can ben-
efit from co-analysing collections of shapes. Several analysis tools
demonstrate that shape analysis is more reliable if it is supported
by observing certain attributes across a set of semantically related
shapes instead of just focusing on a single object. Co-analysis re-
quires a critical step of finding correlations between multiple shapes
in the input set, which is substantially different from building pair-
wise correlation. A key concept to co-analysis is the consistency
of the correlations across the entire set, which has both seman-
tic [KHS10, SvKK*11, WAvK*12] and mathematical [HG13] justi-
fications. Third, aside from analysing patterns from a set of shapes,
it is also possible to endorse a subset of the shapes with some se-
mantic information (e.g. part labelling), which can be propagated to
the other shapes through learned mappings. This information prop-
agation evolves the concept of knowledge transfer between shapes.

Relation to knowledge-driven shape processing. Prior to the
emergence of data-driven techniques, high-level shape understand-
ing and modelling was usually achieved with knowledge-driven
methods. In the knowledge-driven paradigm, geometric and struc-
tural patterns are extracted and interpreted with the help of ex-
plicit rules or hand-crafted parameters. Such examples include
heuristics-based shape segmentation [Sha08] and procedural shape
modelling [MWH*06]. Although these approaches have certain em-
pirical success, they exhibit several inherent limitations. First, it is
extremely difficult to hard-code explicit rules and heuristics that
can handle the enormous geometric and structural variability of
3D shapes and scenes in general. As a result, knowledge-driven
approaches are often hard to generalize well to large and diverse
shape collections. Another issue is that non-experts find it difficult
to interact with knowledge-driven techniques that require as input
‘low-level’ geometric parameters or instructions.

In contrast to knowledge-driven methods, data-driven techniques
learn representations and parameters from data. They usually do
not depend on hard-coded prior knowledge, and consequently do
not rely on hand-crafted parameters, making these techniques more
data-adaptive and thus lead to significantly improved performance
in many practical settings. The success of data-driven approaches,
backed by machine learning techniques, heavily relies on the acces-
sibility of large data collections. We have witnessed the successful
performance improvement of machine learning algorithms by
increasing the training set size [BB01]. In light of this, the recent
developments in 3D modelling tools and acquisition techniques
for 3D geometry, as well as availability of large repositories of
3D shapes (e.g. Trimble 3D Warehouse, Yobi3D, etc.), offer great
opportunities for developing data-driven approaches for 3D shape
analysis and processing.

Relation to structure-aware shape processing. This report is
closely related to the recent survey on ‘structure-aware shape pro-
cessing’ by Mitra and co-workers [MWZ*14], which concentrates
on techniques for structural analysis of 3D shapes, as well as high-
level shape processing guided by structure-preservation. In that sur-
vey, shape structure is defined as the arrangement and relations

between shape parts, which is analysed through identifying shape
parts, part parameters and part relations. Each of the three can be
determined through manual assignment, pre-defined model fitting
and data-driven learning.

In contrast, our report takes a very different perspective—we fo-
cus on how the increasing availability of geometric data has changed
the field of shape analysis and processing. In particular, we want
to highlight several key distinctions: First, data-driven shape pro-
cessing goes beyond structure analysis. For example, leveraging
large shape collections may benefit a wider variety of problems in
shape understanding and processing, such as parametric modelling
of shape space [ACP03], hypothesis generation for object and scene
understanding [ZSSS13, SLH12] and information transfer between
multi-modal data [WGW*13,SHM*14]. Data-driven shape process-
ing may also exploit the data-centred techniques in machine learning
such as sparse representation [RR13] and feature learning [HOT06,
Ben09, YN10, KSH12], which are not pre-conditioned on any
domain-specific or structural prior beyond raw data. Second, even
within the realm of structure-aware shape processing, data-driven
approaches are arguably becoming dominant due to their theoretical
and practical advantages, as well as the availability of large shape
repositories and recent developments in machine learning.

Vision and motivation. With the emergence of ‘big data’, many
scientific disciplines have shifted their focus to data-driven tech-
niques. Although 3D geometry data are still far from being as ubiq-
uitous as some other data formats (e.g. photographs), the rapidly
growing number of 3D models, the recent developments in fusing
2D and 3D data, and the invention of commodity depth sensors,
have made the era of ‘big 3D data’ more promising than ever. At
the same time, we expect data-driven approaches to take one of the
leading roles in the reconstruction and understanding of acquired 3D
data, as well as the synthesis of new shapes. Data-driven geometry
processing will close the loop starting from acquisition, analysis and
processing all the way to the generation of 3D shapes (see Figure 1),
and will be a key tool for manipulating big visual data.

Recent years have witnessed a rapid development of data-driven
geometry processing algorithms, both in the computer graphics and
computer vision communities. Given the research efforts and wide
interests in the subject, we believe many researchers would benefit
from a comprehensive and systematic survey. We also hope such a
survey can stimulate new theories, problems and applications.

Organization. This survey is organized as follows. Section 2
gives a high-level overview of data-driven approaches and classifies
data-driven methods with respect to their application domains.
This section also provides two representative examples for the
readers to understand the general workflow of data-driven geometry
processing. The sections following survey the various data-driven
shape processing problems in detail, and try to correlate the
different methods through comparisons in various aspects. Finally,
we conclude our survey by discussing a few key problems involved
in designing a data-driven method for shape processing, listing
a set of open challenges in this direction, as well as providing a
vision on future research.

Accompanying online resources. In order to assist the reader in
learning and leveraging the basic algorithms, we provide an on-
line wikipage [XKHK14], which collects tools and source code,
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Figure 1: Data-driven shape processing and modelling provides a
promising solution to the development of ‘big 3D data’. The two
major ways of 3D data generation, 3D sensing and 3D content
creation, populate 3D databases with fast growing amount of 3D
models. The database models are sparsely augmented with manual
segmentation and labelling, as well as reasonably organized, to
support data-driven shape analysis and processing, based on, e.g.
machine learning techniques. The learned knowledge can in turn
support efficient 3D reconstruction and 3D content creation, during
which the knowledge can be transferred to the newly generated data.
Such 3D data with semantic information can be included into the
database to enrich it and facilitate further data-driven applications.

together with benchmark data for typical problems and applications
of data-driven shape processing. This page will also maintain links
and data mining tools for obtaining large data collections of shapes
and scenes. This website could serve as a starting point for those
who are conducting research in this direction. We also expect it to
benefit a wide spectrum of researchers from related fields.

2. Overview

In this section, we provide a high-level overview of the main compo-
nents and steps of data-driven approaches for processing 3D shapes
and scenes. Although the pipeline of these methods vary signifi-
cantly depending on their particular applications and goals, a num-
ber of components tend to be common: the input data collection
and processing, data representations and feature extraction, as well
as learning and inference. Representation, learning and inference
are critical components of machine learning approaches in general
[KF09]. In the case of shape and scene processing, each of these
components poses several interesting and unique problems when
dealing with 3D geometric data. These problems have greatly moti-
vated the research on data-driven geometry processing, and in turn
have brought new challenges to the computer vision and machine
learning communities, as reflected by the increased interest in 3D
visual data from these fields. Below, we discuss particular character-
istics and challenges of data-driven 3D shape and scene processing
algorithms. Figure 2 provides a schematic overview of the most
common components of these algorithms.

2.1. 3D data collection

Shape representation. A main component of data-driven ap-
proaches for shape and scene processing is data collection, where

the goal is acquire a number of 3D shapes and scenes depending on
the application. When shapes and scenes are captured with scanners
or depth sensors, their initial representation is in the form of range
data or unorganized point clouds. Several data-driven methods for
reconstruction, segmentation and recognition directly work on these
representations and do not require any further processing. On the
other hand, online repositories, such as the Trimble 3D Warehouse,
contain millions of shapes and scenes that are represented as poly-
gon meshes. A large number of data-driven techniques are designed
to handle complete shapes in the form of polygon meshes created
by 3D modelling tools or reconstructed from point clouds. Choos-
ing which representation to use depends on the application. For
example, data-driven reconstruction techniques aim for generating
complete shapes and scenes from noisy point clouds with miss-
ing data. The reconstructed shapes can then be processed with other
data-driven methods for categorization, segmentation, matching and
so on. Developing methods that can handle any 3D data represen-
tation, as well as jointly reconstructing and analysing shapes is a
potential direction for future research we discuss in Section 11.

When polygon meshes are used as the input representation, an
important aspect to consider is whether and how data-driven meth-
ods will deal with possible ‘defects’, such as non-manifold and
non-orientable sets of polygons, inverted faces, isolated elements,
self-intersections, holes and topological noise. The vast majority of
meshes available in online repositories have these problems. Al-
though there is a number of mesh repairing tools (see [CAK12] for
a survey), they may not handle all different types of ‘defects’, and
can take a significant amount of time to process each shape in a
large data set. To avoid the issues caused by these ‘defects’, some
data-driven methods uniformly sample the input meshes and work
on the resulting point-based representation instead (e.g. [CKGK11,
KLM*13]).

Data sets. Although it is desirable to develop data-driven methods
that can learn from a handful of training shapes or scenes, this is gen-
erally a challenging problem in machine learning [FFFP06]. Several
data-driven methods in computer vision have been particularly suc-
cessful due to the use of very large data sets that can reach the size
of several millions of images [TFF08]. In contrast, data-driven ap-
proaches for 3D shape and scene processing approaches have mostly
relied on data sets that reach the order of a few thousands so far (e.g.
Princeton Shape Benchmark [SMKF04], or data sets collected from
the web [KLM*13]). Online repositories contain large amount of
shapes, which can lead to the development of methods that will
leverage data sets that are orders of magnitudes larger than the ones
currently used. One significant example is the recently available
ShapeNet [SSY*15], which provides a richly annotated, large-scale
data set of 3D shapes. Similar to ImageNet, a well-known image
database in the computer vision community, ShapeNet is organized
based on the WordNet hierarchy. It has indexed about 3 million mod-
els, out of which 220 000 models are classified into 3135 WordNet
synsets (a synset refers to a meaningful concept in WordNet).

Another possibility is to develop synthetic data sets. A notable ex-
ample is the pose and part recognition algorithm used in Microsoft’s
Kinect that relies on 500K synthesized shapes of human bodies in
different poses [SFC*11]. In general, large data sets are important to
capture the enormous 3D shape and scene variability, and can signif-
icantly increase the predictive performance and usability of learning
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Figure 2: The general pipeline of data-driven geometry processing contains four major stages: data collection and pre-processing, feature
extraction (or feature learning), learning and inference. The inference supports many applications which would produce new shapes or scenes
through reconstruction modelling or synthesis. These new data, typically possessing labels for shapes or parts, can be used to enrich the input
data sets and enhance the learning tasks in future, forming a data-driven geometry processing loop.

methods. A more comprehensive summary of existing online data
collections can be found on our wikipage [XKHK14].

2.2. 3D data processing and feature representation

It is common to perform some additional processing on the in-
put representations of shapes and scenes before executing the main
learning step. The reason is that the input representations of 3D
shapes and scenes can have different resolutions (e.g. number of
points or faces), scale, orientation and structure. In other words, the
input shapes and scenes do not initially have any type of common
parameterization or alignment. This is significantly different from
other domains, such as natural language processing or vision, where
text or image data sets frequently come with a common parameteri-
zation beforehand (e.g. images with the same number of pixels and
objects of consistent orientation).

To achieve a common parameterization of the input shapes and
scenes, one popular approach is to embed them in a common geo-
metric feature space. For this purpose, a variety of shape descrip-
tors have been developed. These descriptors can be classified into
two main categories: global shape descriptors that convert each
shape to a feature vector, and local shape descriptors that con-
vert each point to a feature vector. Examples of global shape de-
scriptors are Extended Gaussian Images [Hor84], 3D shape his-
tograms [AKKS99, CK10], spherical functions [SV01], lightfield
descriptors [CTSO03], shape distributions [OFCD02], symmetry
descriptors [KFR04], spherical harmonics [KFR03], 3D Zernicke
moments [NK03] and bags-of-words created out of local descrip-
tors [BBOG11]. Local shape descriptors include surface curvature,
Principal Component Analysis (PCA) descriptors, local shape diam-
eter [SSCO08], shape contexts [BMP02, KHS10, KBLB12], spin
images [JH99], geodesic distance features [ZMT05], heat-kernel
descriptors [BBOG11] and depth features [SFC*11]. Global shape
descriptors are particularly useful for shape classification, retrieval
and organization. Local shape descriptors are useful for partial shape
matching, segmentation and point correspondence estimation. Be-
fore using any type of global or local descriptor, it is important to
consider whether the descriptor will be invariant to different shape
orientations, scales or poses. In the presence of noise and irregular
mesh tessellations, it is important to robustly estimate local descrip-
tors, since surface derivatives are particularly susceptible to surface

and sampling noise [KSNS07]. It is also possible to use several
different descriptors as input, and let the learning step decide which
ones are more relevant for each class of shapes [KHS10].

A different approach, which has attracted large attention in the
computer vision community, is to avoid manually engineered fea-
tures and instead directly learn features them from raw data. This
approach has been enlightened by the recent developments in deep
learning [Ben09, YN10], and in particular Convolutional Neural
Networks (CNNs) [KSH12, SLJ*15]. A number of deep learn-
ing architectures have been recently proposed to learn 3D shape
and scene descriptors, operating on either voxel-based representa-
tions [WSK*15], view-based projections [SMKLM15, XXS*15],
spectral representations [BMM*15] or RGB-D data [SHB*12,
BSWR12, LBF13, BRF14].

Instead of embedding shapes in a common geometric feature
space, several methods instead try to directly align shapes in Eu-
clidean space. We refer the reader to the survey on dynamic ge-
ometry processing for a tutorial on rigid and non-rigid registration
techniques [CLM*12]. An interesting extension of these techniques
is to include the alignment process in the learning step of data-driven
methods, since it is interdependent with other shape analysis tasks
such as shape segmentation and correspondences [KLM*13].

Some data-driven methods require additional processing steps
on the input. For example, learning deformation handles or fully
generative models of shapes usually rely on segmenting the input
shapes into parts with automatic algorithms [HKG11, SvKK*11]
and representing these parts with surface abstractions [YK12] or
descriptors [KCKK12]. To decrease the amount of computation
required during learning, it is also common to represent the shapes as
a set of patches (super-faces) [HKG11] inspired by the computation
of super-pixels in image segmentation.

2.3. Learning and inference

The processed representations of shapes and scenes are used to
perform learning and inference for a variety of applications: shape
classification, segmentation, matching, reconstruction, modelling,
synthesis and scene analysis. The learning procedures significantly
vary depending on the application, thus we discuss them individually
in each of the following sections on these applications. As a common
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theme, learning is viewed as an optimization problem that runs on
a set of variables representing geometric, structural, semantic or
functional properties of shapes and scenes. There is usually a single
or multiple objective (or loss) functions for quantifying preferences
for different models or patterns governing the 3D data. After learning
a model from the training data, inference procedures are used to
predict values of variables for new shapes or scenes. Again, the
inference procedures vary depending on the application, and are
discussed separately in the following sections. It is common that
inference itself is an optimization problem, and sometimes is part
of the learning process when there are latent variables or partially
observed input shapes or scene data.

A general classification of the different types of algorithms used
in data-driven approaches for shape and scene processing can be
derived from the type of input information available during learning:

� Supervised learning algorithms are trained on a set of shapes or
scenes annotated with labelled data. For example, in the case of
shape classification, these labelled data can have the form of tags,
while in the case of segmentation, the labelled data have the form
of segmentation boundaries or part labels. The labelled data can
be provided by humans or generated synthetically. After learning,
the learned models are applied on different sets of shapes (test
shapes) to produce results relevant to the task.

� Unsupervised algorithms co-analyse the input shapes or scenes
without any additional labelled data, i.e. the desired output is
unknown beforehand. The goal of these methods is to discover
correlations in the geometry and structure of the input shape
or scene data. For example, unsupervised shape segmentation
methods usually perform some type of clustering in the feature
space of points or patches belonging to the input shapes.

� Semi-supervised algorithms make use of shapes (or scenes) with
and without any labelled data. Active learning is a special case
of semi-supervised learning in which a learning algorithm inter-
actively queries the user to obtain desired outputs for more data
points related to shapes.

In general, supervised methods tend to output results that are
closer to what a human would expect given the provided labelled
data. However, they may fail to produce desirable results when the
training shapes (or scenes) are geometrically and structurally dis-
similar from the test shapes (or scenes). They also tend to require a
substantial amount of labelled information as input, which can be-
come a significant burden for the user. Unsupervised methods can
deal with collections of shapes and scenes with larger variability
and require no human supervision. However, they sometimes re-
quire parameter tuning to yield the desired results. Semi-supervised
methods represent a trade-off between supervised and unsupervised
methods: they provide more direct control to the user about the de-
sired result compared to unsupervised methods, and often produce
considerable improvements in the results by making use of both
labelled and unlabelled shapes or scenes compared to supervised
methods.

The data-driven loop. An advantageous feature of data-driven
shape processing is that the output data, produced by learning and
inference, typically come with rich semantic information. For exam-
ple, data-driven shape segmentation produces parts with semantic

labels [KHS10]; data-driven reconstruction is commonly coupled
with semantic part or shape recognition [SFCH12, NXS12]; data-
driven shape modelling can generate readily usable shapes inheriting
the semantic information from the input data [XZZ*11]. These pro-
cessed and generated data can be used to enrich the existing shape
collections with both training labels and reusable contents, which
in turn benefit subsequent learning. In a sense, data-driven methods
close the loop of data generation and data analysis for 3D shapes
and scenes; see Figure 2. Such concept has been practiced in several
prior works, such as the data-driven shape reconstruction framework
proposed in [PMG*05] (Figure 12).

Pipeline example. To help the reader grasp the pipeline of data-
driven methods, a schematic overview of the components is given
in Figure 2. Depending on the particular application, the pipeline
can have several variations, or some components might be skipped.
We discuss the main components and steps of algorithms for each
application in more detail in the following sections. A didactic ex-
ample of the pipeline in the case of supervised shape segmentation
is shown in Figure 3. The input shapes are annotated with labelled
part information. A geometric descriptor is extracted for each point
on the training shapes, and the points are embedded in a common
feature space. The learning step uses a classification algorithm that
non-linearly separates the input space into a set of regions corre-
sponding to part labels in order to optimize classification perfor-
mance (more details are provided in Section 4). Given a test shape,
a probabilistic model is used to infer part labels for each point on
that shape based on its geometric descriptor in the feature space.

2.4. A comparative overview

Before reviewing the related works in detail, we provide a compar-
ative overview of them in Table 5, and correlate them under a set of
criteria:

� Training data. Data-driven methods can be categorized accord-
ing to the shape or scene representations they operate on, the
scale (size) of the training data sets they use, and the type of
pre-processing applied to these data sets. The most common rep-
resentation for shapes are polygon meshes and point clouds. 3D
scenes are typically represented as an arrangement of individual
shapes, usually organized in a scene graph. Pre-processing in-
cludes pre-segmentation, over-segmentation, pre-alignment, ini-
tial correspondence or/and labelling.

� Features. Roughly speaking, there are two types of feature
representations involved in data-driven shape processing. The
most commonly used feature representations are low-level ones,
such as local geometric features (e.g. local curvature) and global
shape descriptors (e.g. shape distribution [OFCD02]). If the in-
put shapes are pre-segmented into meaningful parts, high-level
structural representations (spatial relationships of parts) can be
derived. Generally, working with high-level feature represen-
tations enables the learning of more powerful models for more
advanced inference tasks, such as structural analysis [MWZ*14],
on complex man-made objects and scenes.

� Learning model/approach. The specific choice of learning
method is often application-dependent. In most cases, machine
learning techniques are adapted or developed from scratch to
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Figure 3: Pipeline of a supervised segmentation algorithm [KHS10]. Given a set of shapes with labelled parts, the points of each shape are
embedded in a common feature space based on their local geometric descriptors (a colour is assigned to points depending on their given part
label). A classifier is learned to split the feature space into regions corresponding to each part label. Given a test shape, its points (shown in
grey) are first embedded in the same space. Then part labels are inferred for all its points based on the learned classifier and an underlying
structured probabilistic model (Section 4).

process geometric data. For some problems, such as shape corre-
spondence, the core problem is to extract geometric correlations
between different shapes in an unsupervised manner, which itself
can be seen as a learning problem specific to geometry process-
ing.

� Learning type. As discussed above, there are three basic types
of data-driven methods, depending on the use of labelled training
data: supervised, semi-supervised and unsupervised methods.

� Learning outcome. Learning can produce different types of out-
puts: parametric or non-parametric models (classifiers, cluster-
ings, regressors, etc.), distance metrics which can be utilized for
further analysis and/or feature representations learned from raw
data.

� Application. The main applications of data-driven shape anal-
ysis and processing include classification, segmentation, corre-
spondence, modelling, synthesis, reconstruction, exploration and
organization.

3. Shape Classification

Data-driven techniques commonly make assumptions about the size
and homogeneity of the input data set. In particular, existing analy-
sis techniques often assume that all models belong to the same class
of objects [KLM*13] or scenes [FSH11], and cannot directly scale
to entire repositories such as the Trimble 3D Warehouse [Tri14].
Similarly, techniques for data-driven reconstruction of indoor en-
vironments assume that the input data set only has furniture mod-
els [NXS12], while modelling and synthesis interfaces restrict the
input data to particular object or scene classes [CKGK11, KCKK12,
FRS*12]. Thus, as a first step these methods need query a 3D model
repository to retrieve a subset of relevant models.

Most public shape repositories such as 3D Warehouse [Tri14] rely
on the users to provide tags and names of the shapes with little addi-
tional quality control measures. As a result, the shapes are sparsely
labelled with inconsistent and noisy tags. This motivates developing
automatic algorithms to infer text associated with models. Existing
work focuses on establishing class memberships for an entire shape
(e.g. this shape is a chair), as well as inferring finer scale attributes
(e.g. this chair has a rocking leg).

Classification methods assign a class membership for unlabelled
shapes. One approach is to retrieve for each unlabelled shape the
most similar shape from a database of 3D models with known shape
classes. There has been a large number of shape descriptors pro-
posed in recent years that can be used in such a retrieval task,
and one can refer to various surveys (e.g. [TV08]) for a thorough
overview and comparisons. One can further improve classification
results by leveraging machine learning techniques to learn classi-
fiers that are based on global shape descriptors [FHK*04, GKF09].
Barutcuoglu and DeCoro [BD06] demonstrate that Bayesian ag-
gregation can be used to improve classification of shapes that are
a part of a hierarchical ontology of objects. Geometry matching
algorithms also facilitate distinguishing important features for clas-
sification [FS06, SF07]. Bronstein et al.[BBOG11] leverage ‘bag
of features’ to learn powerful descriptor-space metrics for non-rigid
shapes. These technique can be further improved by using sparse
coding techniques [LBBC14]. In recent shape retrieval challenges,
techniques based on bag of features demonstrated the best perfor-
mance [LGA*12, LLL*14] in comparison to other alternatives. See
Table 1 for a brief summary of some methods.

Tag attributes often capture fine-scale attributes of shapes that
belong to the same class. These attributes can include presence or
absence of particular parts, object style or comparative adjectives.
Huang et al. [HSG13] developed a framework for propagating these
attributes in a collection of partially annotated 3D models. For exam-
ple, only brown models in Figure 4 were labelled, and blue models
were annotated automatically. To achieve automatic labelling, they
start by co-aligning all models to a canonical domain, and generate
a voxel grid around the co-aligned models. For each voxel, they
compute local shape features, such as spin images, for each shape.
Then, they learn a distance metric that best discriminates between
different tags. All shapes are finally embedded in a weighted
feature space where nearest neighbours are connected in a graph. A
graph cut clustering is used to assign tags to unlabelled shapes. Tag
attributes can also be used to describe semantics, function or style of
parts in shapes. Data-driven consistent segmentation and labelling
techniques can be applied to propagate part tags across shapes (see
Section 4). An alternative approach is to partition shapes into
multiple sets of parts, then extract descriptors to define part
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Figure 4: Fine-grained classification of 3D models [HSG13], where text labels are propagated from brown to blue models.

Table 1: Performance of several methods for shape classification (the accu-
racy in the right-most column as measured as fraction of correctly labelled
shapes). Huang et al. [HSG13] predict fine-grained tag attributes for big
collections of similar shapes. Golovinskiy et al. [GKF09] propose a method
for classifying point clouds of objects in urban environments. The meth-
ods aimed at classifying meshes are evaluated on Princeton Shape Bench-
mark (PSB) [SF07, FS06, BD06]. To evaluate performance of the method
in the presence of non-rigid deformations ShapeGoogle (SG) data set is
also commonly used [BBOG11, LBBC14]. In addition, several methods can
be found in regular shape retrieval challenges. The winner of 2012 chal-
lenge [LGA*12] is [OF10] and the winner of 2014 challenge [LLL*14] is
DBSVC technique, both methods use bag of features for classification.

Method Input data Shapes Classes Acc

[HSG13] 3D Warehouse 1206–5850 9–26 86
[GKF09] LIDAR 1063 16 58
[SF07] PSB 1814 90 75
[FS06] PSB 1814 90 83
[BD06] PSB 1814 90 84
[BBOG11] SG 715 13 89
[LBBC14] SG 715 13 91
[LGA*12] SHREC12 1200 60 88
[LLL*14] SHREC14 400–104 19–352 87

similarity. A characteristic example of such an approach was
demonstrated in Shapira et al. [SSS*10]. Given the hierarchical
segmentations of 3D shapes as input, part tagging was achieved by
comparing local geometric features of parts as well as their context
within the whole shape.

While the above method works well for discrete tags, they do
not capture more continuous relations, such as animal A is more
dangerous than animal B. Chaudhuri et al. [CKG*13] focus on
estimating ranking based on comparative adjectives. They use
crowdsourcing to gather pairwise comparisons of shape parts with
respect to different adjectives, and use a Support Vector Machine
ranking method to predict attribute strengths from shape features
for novel shape parts (Figure 5).

Style similarity methods have recently been proposed to classify
shapes into style-related categories, e.g. buildings can be classified
into architectural styles, such as Gothic, Baroque, Byzantine and so
on. In contrast to the previously discussed approaches that rely on
generic visual similarity measures to compare shapes, these methods

Figure 5: Ranking of parts with respect to ‘dangerous’ attribute
(image from [CKG*13]).

learn distance functions for style elements [LKS15] or common fea-
ture spaces [LHLF15] to quantify the stylistic similarity of shapes.
The methods can be used to compare the style similarity of shapes,
even when these belong to different classes (e.g. chairs and lamps).
To align the style similarity measures with the human perception
of style, style comparisons of shapes are gathered through crowd-
sourcing. The learned similarity measures can be used to retrieve
stylistically similar shapes to populate a scene, or associate shapes
with style-related tags.

While the techniques described above are suitable for retrieving
and classifying shapes, a large number of applications require a
more involved structural analysis to infer semantic and functional
properties of shapes or their parts. The following two sections will
discuss methods that perform structural analysis in collections of
shapes based on segmentation and local matching.

4. Shape Segmentation

The goal of data-driven shape segmentation is to partition the
shapes of an input collection into parts, and also estimate part
correspondences across these shapes. We organize the literature on
shape segmentation into the following three categories: supervised
segmentation, unsupervised segmentation and semi-supervised
segmentation following the main classification discussed in
Section 2. Table 2 summarizes representative techniques and
reports their segmentation and part labelling performance based
on established benchmarks. Table 3 reports characteristic running
times for the same techniques.

c© 2016 The Authors
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Table 2: Performance of data-driven methods for segmentation in the Princeton Segmentation Benchmark (PSB) and COSEG data sets. Left to right:
segmentation method, learning type depending on the nature of data required as input to the method, type of manual input if such required, segmentation
performance expressed by the rand index metric [CGF09], labelling accuracy [KHS10] based on the PSB and COSEG data sets. We report the rand index
segmentation error metric averaged over all classes of the PSB benchmark. The labelling accuracy is averaged over the Labelled PSB (L-PSB) benchmark
excluding the ‘Bust’, ‘Mech’ and ‘Bearing’ classes. The reason is that there are no clear semantic correspondences between parts in these classes, or the
ground-truth segmentations do not sufficiently capture semantic parts in their shapes. We report the labelling accuracy averaged over the categories of the
COSEG data set used in [SvKK*11]. The COSEG classes ‘iron’, ‘large chairs’, ‘large vases’, ‘tele-aliens’ were added later and are excluded here since most
papers frequently do not report performance in those. We note that van Kaick et al. [vKTS*11] reported the labelling accuracy in 10 of the L-PSB classes, while
Wang et al. [WGW*13] reported the labelling accuracy in seven of the L-PSB classes. The method by Kim et al. [KLM*13] can run in either semi-supervised
or unsupervised mode. In unsupervised mode, the corresponding labelling accuracy is 89.9% in the COSEG data set on average.

Segmentation Learning Type of PSB rand index (# train. L-PSB accuracy (# train. COSEG
method type manual input shapes if applicable) shapes if applicable) accuracy

[KHS10] Supervised Labelled shapes 9.4% (19)/14.8% (3) 95.3% (19)/89.2% (3) Unknown
[BLVD11] Supervised Segmented shapes 8.8% (19)/9.7% (6) Not applicable Not applicable
[HKG11] Unsupervised None 10.1% Not applicable Not applicable
[SvKK*11] Unsupervised None Unknown Unknown 87.7%

[vKTS*11] Supervised Labelled shapes Unknown
∼

88.7% (12), see caption Unknown
[HFL12] Unsupervised None Unknown 88.5% 91.4%
[LCHB12] Semi-supervised Labelled shapes Unknown 92.3% (3) unknown
[WAvK*12] Semi-supervised Link constraints Unknown Unknown ‘Close to error-free’

[WGW*13] Supervised Labelled images Unknown
∼

88.0% (19), see caption Unknown
[KLM*13] Semi-/unsupervised Box templates Unknown Unknown 92.7% (semi-superv.)
[HWG14] Unsupervised None Unknown Unknown 90.1%
[XSX*14] Supervised Labelled shapes 10.0% 86.0% Unknown
[XXLX14] Supervised Labelled shapes 10.2% (19) 94.2 (19)/88.6 (5) Unknown

Table 3: Running times reported for the data-driven segmentation methods of Table 2. We note that running times are reported in different data set sizes and
processors in the referenced papers, while it is frequently not specified whether the execution uses one or multiple threads or whether the running times include
all the algorithm steps, such as superface or feature extraction. Exact processor information is also frequently not provided. Thus, the reported running times
of this table are only indicative and should not serve as a basis for a fair comparison.

Segmentation Reported Data set size for Reported
method running times reported running times processor

[KHS10] 8 h train./5 min test. 6 train. shapes/1 test shape Intel Xeon E5355 2.66GHz
[BLVD11] 10 min train./1 min test. unknown for train./1 test shape Intel Core 2 Duo 2.99GHz
[HKG11] 32 h 380 shapes unknown, 2.4 GHz
[SvKK*11] 10 min 30 shapes AMD Opteron 2.4GHz
[vKTS*11] 10 h train./few min test. 20-30 train. shapes/1 test shape AMD Opteron 1GHz
[HFL12] 8 min (excl. feat. extr.) 20 shapes Intel dual-core 2.93GHz
[LCHB12] 7 h train./few min test. 20 shapes Intel I7 2600 3.4GHz
[WAvK*12] 7 min user interaction 28 shapes unknown
[WGW*13] 1.5 min (no train. step) 1 test shape unknown
[KLM*13] 11 h 7442 shapes unknown
[HWG14] 33 h 8401 shapes unknown, 3.2GHZ
[XSX*14] 30 s (no train. step) 1 test shape Intel I5 CPU
[XXLX14] 15 s train. (excl. feat. extr.) 6 train. shapes Intel Quad-Core 3.2 GHz

4.1. Supervised shape segmentation

Classification techniques. Supervised shape segmentation is fre-
quently formulated as a classification problem. Given a training set
of shapes containing points, faces or patches that are labelled ac-
cording to a part category (see Figure 3), the goal of a classifier is to
identify which part category other points, faces or patches from dif-
ferent shapes belong to. Supervised shape segmentation is executed
in two steps: during the first step, the parameters of the classifier are

learned from the training data. During the second step, the classifier
is applied on new shapes. A simple linear classifier has the form:

c = f (
∑

j

θj · xj ), (1)

where xj is a geometric feature of a point (face, or patch), such
as the ones discussed in Section 2. The parameters θj serve as
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Figure 6: A random forest classifier applied on depth data repre-
senting a human body shape (image from [FGG∗13]).

weights for each geometric feature. The function f is non-linear
and maps to a discrete value (label), which is a part category, or
to probabilities per category. In general, choosing a good set of
geometric features that help predicting part labels, and employing
classifiers that can discriminate the input data points correctly are
important design choices. There is no rule of thumb on which is
the best classifier for a problem. This depends on the underlying
distribution and characteristics of the input geometric features, their
dimensionality, amount of labelled data, existence of noise in the
labelled data or shapes, training and test time constraints—for a
related discussion on how to choose a classifier for a problem, we
refer the reader to [MRS08]. Due to the large dimensionality and
complexity of geometric feature spaces, non-linear classifiers are
more commonly used. For example, to segment human bodies into
parts and recognize poses, the Microsoft’s Kinect uses a random
forest classifier trained on synthetic depth images of humans of
many shapes and sizes in highly varied poses sampled from a large
motion capture database [SFC*11] (Figure 6).

Structured models. For computer graphics applications, it is im-
portant to segment shapes with accurate and smooth boundaries.
For example, to help the user create a new shape by recombining
parts from other shapes [FKS*04], irregular and noisy segmentation
boundaries can cause problems in the part attachment. From this as-
pect, using a classifier per point/face independently is usually not
enough. Thus, it is more common to formulate the shape segmen-
tation problem as an energy minimization problem that involves a
unary term assessing the consistency of each point/face with each
part label, as well as a pairwise term assessing the consistency of
neighbouring points/faces with pairs of labels. For example, pairs of
points that have low curvature (i.e. are on flat surface) are more likely
to have the same part label. This energy minimization formulation
has been used in several single-shape and data-driven segmentations
(unsupervised or supervised) [KT03, ATC*05, SSS*10, KHS10].
In the case of supervised segmentation [KHS10], the energy can be
written as

E(c; θ ) =
∑

i

Eunary(ci ; xi , θ1) +
∑
i,j

Epairwise(ci, cj ; yij , θ2), (2)

where c = {ci} is a vector of random variables representing the part
label per point (or face) i, xi is its geometric feature vector, i, j are
indices to points (or faces) that are considered neighbours, yij is a
geometric feature vector representing dihedral angle, angle between
normals or other features and θ = {θ1, θ2} are the energy parameters.
The important difference of supervised data-driven methods with
previous single-shape segmentation methods is that the parameters
θ are automatically learned from the training shapes to capture

complex feature space patterns per part [ATC*05, KHS10]. We
also note that the above energy of Equation (2), when written in an
exponentiated form and normalized, can be treated as a probabilistic
graphical model [KF09], called Conditional Random Field [LMP01]
that represents the joint probability distribution over part labels
conditioned on the input features:

P (c|x, y, θ ) = exp(−E(c; θ ))/Z(x, y, θ ), (3)

where Z(x, y, θ ) is a normalization factor, also known as partition
function. Minimizing the energy of Equation (2), or correspond-
ingly finding the assignment c that maximizes the above probability
distribution is known as a Maximum a Posteriori (MAP) inference
problem that can be solved in various manners, such as graph cuts,
belief propagation, variational or linear programming relaxation
techniques [KF09].

The parameters θ can be jointly learned through maximum like-
lihood (ML) or MAP estimates [KF09]. However, due to high com-
putational complexity of ML or MAP learning and the non-linearity
of classifiers used in shape segmentation, it is common to train the
parameters θ1 and θ2 of the model separately, i.e. train the classifiers
of the unary and pairwise term separately [SM05]. The exact form
of the unary and pairwise terms vary across supervised shape seg-
mentation methods: the unary term can have the form of a log-linear
model [ATC*05], cascade of JointBoost classifiers [KHS10], Gen-
tleboost [vKTS*11] or feedforward neural networks [XXLX14].
The pairwise term can have the form of a learned log-linear model
[ATC*05], label-dependent GentleBoost classifier [KHS10] or a
smoothness term based on dihedral angles and edge length tuned by
experimentation [SSS*10, vKTS*11, XXLX14]. Again the form of
the unary and pairwise terms depend on the amount of training data,
dimensionality and underlying distribution of geometric features
used and computational cost.

Joint labelling. Instead of applying the learned probabilistic model
to a single shape, an alternative approach is to find correspondences
between faces of pairs of shapes, and incorporate a third ‘intershape’
term in the energy of Equation (2) [vKTS*11]. The ‘intershape’ term
favours pairs of corresponding faces on different shapes to have the
same label. As a result, the energy can be minimized jointly over a
set of shapes to take into account any additional correspondences.

Boundary learning. Instead of applying a classifier per mesh
point, face or patch to predict a part label, a different approach
is to predict the probability that a polygon mesh edge is a seg-
mentation boundary [BLVD11]. The problem can be formulated
as a binary classifier (e.g. Adaboost) that is trained from human
segmentation boundaries. The input to the classifier are geometric
features of edges, such as dihedral angles, curvature and shape di-
ameter. The output is a probability for an edge to be a segmentation
boundary. Since the predicted probabilities over the mesh do not
correspond to closed smooth boundaries, a thinning and an active
contour model [KWT88] are used in post-processing to produce the
final segmentations.

Transductive segmentation. Another way to formulate the shape
segmentation problem is to group patches on a mesh such that the
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segment similarity is maximized between the resulting segments
and the provided segments in the training database. The segment
similarity can be measured as the reconstruction cost of the resulting
segment from the training ones. The grouping of patches can be
solved as an integer programming problem [XSX*14].

Shape segmentation from labelled images. Instead of using la-
belled training shapes for supervised shape segmentation, an alter-
native source of training data can come in the form of segmented
and labelled images, as demonstrated by Wang et al. [WGW*13].
Given an input 3D shape, this method first renders 2D binary im-
ages of it from different viewpoints. Each binary image is used to
retrieve multiple segmented and labelled training images from an
input database based on a bi-class Hausdorff distance measure. Each
retrieved image is used to perform label transfer to the 2D shape
projections. All labelled projections are then backprojected onto the
input 3D model to compute a labelling probability map. The energy
function for segmentation is formulated by using this probability
map in the unary term expressed per face or point, while dihedral
angles and Euclidean distances are used in the pairwise term.

4.2. Semi-supervised shape segmentation

Entropy regularization. The parameters θ of Equation (2) can be
learned not only from the training labelled shapes, but also from
the unlabelled shapes [LCHB12]. The idea is that learning should
maximize the likelihood function of the parameters over the labelled
shapes, and also minimize the entropy (uncertainty) of the classi-
fier over the unlabelled shapes (or correspondingly maximize the
negative entropy). The idea is that minimizing the entropy over un-
labelled shapes encourages the algorithm to find putative labellings
for the unlabelled data [JWL*06]. However, it is generally hard to
strike a balance between the likelihood and entropy terms.

Metric embedding and active learning. A more general for-
mulation for semi-supervised segmentation was presented in
[WAvK*12]. Starting from a set of shapes that are co-segmented
in an unsupervised manner [SvKK*11], the user interactively adds
two types of constraints: ‘must-link’ constraints, which specify that
two patches (super-faces) should belong to the same cluster, and
‘cannot-link’ constraints which specify that two patches must be in
different clusters. These constraints are used to perform constrained
clustering in an embedded feature space of super-faces coming from
all the shapes of the input data set. The key idea is to transform
the original feature space, such that super-faces with ‘must-link’
constraints come closer together to form a cluster in the embedded
feature space, while super-faces with ‘cannot-link’ constraints move
away from each other. To minimize the effort required from the user,
the method suggests to the user pairs of points in feature space that
when constrained are likely to improve the co-segmentation. The
suggestions involve points that are far from their cluster centres, and
have a low confidence of belonging to their clusters.

Template fitting. A different form of partial supervision can come
in the form of part-based templates. Kim et al.’s method [KLM*13]
allows users to specify or refine a few templates made out of boxes
representing expected parts in an input database. The boxes itera-

tively fit to the shapes of a collection through simultaneous align-
ment, surface segmentation and point-to-point correspondences
estimated between each template and each input shape. Alterna-
tively, the templates can be inferred automatically from the shapes
of the input collection without human supervision based on single
shape segmentation heuristics. Optionally, the user can refine and
improve these estimated templates. From this aspect, Kim et al.’s
method can run in either a semi-supervised or unsupervised method.
It was also the first method to handle segmentation and correspon-
dences in collections with size on the order of thousands of shapes.

4.3. Unsupervised segmentation

Unsupervised data-driven shape segmentation techniques fall into
two categories: clustering-based techniques and matching-based
techniques. In the following, we highlight the key idea of each
type of approach.

Clustering-based techniques are adapted from supervised tech-
niques. They compute feature descriptors on points or faces. Cluster-
ing is performed over all points/faces over all shapes. Each resulting
cluster indicates a consistent segment across the input shapes. The
promise of the clustering-based approach is that when the num-
ber of shapes becomes large, the sampling density in the clustering
space becomes dense enough, so that certain statistical assumptions
are satisfied, e.g. diffusion distances between points from differ-
ent clusters is significantly larger than those between points within
each cluster. When these assumptions are satisfied, clustering-based
approaches may produce results that are comparable to supervised
techniques (cf. [HFL12]). In [SvKK*11], the authors utilize spec-
tral clustering to perform clustering. In [HFL12], the authors employ
subspace clustering, a more advanced clustering method, to obtain
improved results.

Clustering methods can also be applied to shape parts.
In [XLZ*10], the authors perform co-analysis over a set of shapes
via factoring out the part scale variation by grouping the shapes into
different styles, where style is defined by the anisotropic part scales
of the shapes. In [vKXZ*13], the authors introduce unsupervised
co-hierarchical analysis of a set of shapes. They propose a
novel cluster-and-select scheme for selecting representative part
hierarchies for all shapes and grouping the shapes according to
the hierarchies. The method can be used to compute consistent
hierarchical segmentations for the input set.

Matching-based methods [GF09, HKG11, WHG13, HWG14]
build maps across shapes and utilize these maps to achieve consis-
tency of segmentations. As shown in Figure 7, this strategy allows
us to identify meaningful parts despite the lack of strong geometric
cues on a particular shape. Likewise, the approach is able to iden-
tify coherent single parts even when the geometry of the individual
shape suggests the presence of multiple segments. A challenge here
is to find a suitable shape representation so that maps across di-
verse shapes are well-defined. In [HKG11], Huang et al. introduce
an optimization strategy that jointly optimizes shape segmentations
and maps between optimized segmentations. Since the maps are
defined at the part level, this technique is suitable for heterogeneous
shape collections. Experimentally, it generates comparable results
with supervised method [KHS10] on the Princeton segmentation
benchmark. Recently, Huang et al.[HWG14] formulated the same
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Figure 7: Comparison of single-shape segmentation (left) and
joint shape segmentation (right) on models from the PSB bench-
mark [CGF09]. Each segmentation on the left was produced by the
top-performing algorithm in the benchmark for that shape. The seg-
mentations on the right were produced by [HKG11], which jointly
optimized segmentations and correspondences across the entire data
set.

idea under the framework of functional maps [OBCS*12] and gain
improved segmentation quality and computational efficiency.

5. Joint Shape Matching

Another fundamental problem in shape analysis is shape matching,
which finds relations or maps between shapes. These maps allow
us to transfer information across shapes and aggregate information
from a collection of shapes for a better understanding of individual
shapes (e.g. detecting shared structures such as skeletons or shape
parts). They also provide a powerful platform for comparing shapes
(i.e. with respect to different measures and at different places). As
we can see from other sections, shape maps are widely applied in
shape classification and shape exploration as well.

So far, most existing research in shape matching has focused on
matching pairs of shapes in isolation. We refer to [vKZHCO11]
for a survey and to [LH05, LF09, vKZHCO11, OMMG10, KLF11,
OBCS*12] for recent advances. Although significant progress has
been made, state-of-the-art techniques are limited to shapes that are
similar to each other. On the other hand, these techniques tend to be
insufficient among shape collections that possess large geometric
and topological variations.

The availability of large shape collections offers opportunities
to address this issue. Intuitively, when matching two dissimilar
shapes, we may utilize intermediate shapes to transfer maps. In
other words, we can build maps between similar shapes, and use
the composite maps to obtain maps between less similar shapes.
As we will see shortly, this intuition can be generalized to enforc-
ing a cycle-consistency constraint; namely, composite maps along
cycles should be the identity map and the composite map between
any two shapes is path-independent. In this section, we discuss
joint shape matching techniques that take a shape collection and

noisy maps as input, and output improved maps across the shape
collection.

5.1. Model graph and cycle consistency

To formulate the joint matching problem, we consider a model graph
G = (S, E) (cf. [Hub02]). The vertex set S = {S1, · · · , Sn)} consists
of the input shapes. The edge set E characterizes the pairs of shapes
that are selected for performing pairwise matching. For small-scale
data sets, we typically match all pairs of shapes. For large-scale
data sets, the edge set usually connects shapes that are similar ac-
cording to a pre-defined shape descriptor [KLM*12, HSG13], thus
generating a sparse shape graph.

The key component of a joint matching algorithm is to utilize
the so-called cycle-consistency constraint. In particular, if all the
maps in G are correct, then composite maps along any loops should
be the identity map. This is true for maps that are represented as
transformations (e.g. rotations and rigid/affine transformations), or
full pointwise maps that can be described as permutation matrices).
We can easily modify the constraint to handle partial maps; namely,
each point, when transformed along a loop, either disappears or goes
back to the original point (see Figure 8 and [HWG14] for details).

The cycle-consistency constraint is useful because the initial
maps, which are computed between pairs of shapes in isolation,
are not expected to satisfy the cycle-consistency constraint. On
the other hand, although we do not know which maps or corre-
spondences are incorrect, we can detect inconsistent cycles. These
inconsistent cycles provide useful information for us to detect in-
correct correspondences or maps, i.e. an inconsistent cycle indicates
that at least one of the participating maps or correspondences is in-
correct. To incorporate this observation into algorithms, one has to
formulate the cycle-consistency constraint properly. Existing works
in data-driven shape matching fall into two categories: combinato-
rial techniques and matrix recovery-based techniques. The reminder
of this section provides the details.

Figure 8: Joint shape matching takes as input maps computed be-
tween pairs of shapes in isolation and utilizes the cycle-consistency
constraint to improve shape maps. This figure shows the result of
Huang et al. [HWG14], which performs joint shape matching under
the functional map setting.
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5.2. Combinatorial techniques

Spanning tree optimization. Earlier works in joint matching aim
at finding a spanning tree in the model graph. In [GMB04, HFG*06],
the authors propose to use the maximum spanning tree (MST) of
the model graph. However, this strategy can easily fail since a sin-
gle incorrect edge in the MST may break the entire matching re-
sult. In the seminal work [Hub02], Huber showed that finding the
best spanning tree maximizing the number of consistent edges is
NP-hard. Although finding the best spanning tree is not tractable,
Huber introduced several local operations for improving the score
of spanning trees. However, these approaches are generally limited
to small-scale problems so that the search space can be sufficiently
explored.

Inconsistent cycle detection. Another line of approaches [ZKP10,
RSSS11, NBCW*11] applies global optimization to select cycle-
consistent maps. These approaches are typically formulated as solv-
ing constrained optimization problems, where objective functions
encode the scores of selected maps, and constraints enforce the con-
sistency of selected maps along cycles. The major advantage of these
approaches is that the correct maps are determined globally. How-
ever, as the cycle-consistency constraint needs to apportion blame
along many edges on a cycle, the success of these approaches relies
on the assumption that correct maps are dominant in the model graph
so that the small number of bad maps can be identified through their
participation in many bad cycles.

Markov Random Field (MRF) formulation. Joint matching may
also be formulated as solving a second-order Markov Random Field
(or MRF) [CAF10b, CAF10a, COSH11, HZG*12]. The basic idea
is to sample the transformation/deformation space of each shape
to obtain a candidate set of transformation/deformation samples
per shape. Joint matching is then formulated as optimizing the best
sample for each shape. The objective function considers initial maps.
Specifically, each pair of samples from two different shapes would
generate a candidate map between them. The objective function then
formulates second-order potentials, where each term characterize
the alignment score between these candidate maps and the initial
maps [HSG13, HZG*12].

The key challenge in the MRF formulation is generating the candi-
date samples for each shape. The most popular strategy is to perform
uniform sampling [COSH11, HSG13], which works well when the
transformation space is low-dimensional. To apply the MRF for-
mulation on high-dimensional problems, Huang et al. [HZG*12]
introduce a diffusion-and-sharpening strategy. The idea is to diffuse
the maps among the model graph to obtain rich samples of candidate
transformations or correspondences and then perform clustering to
reduce the number of candidate samples.

5.3. Matrix-based techniques

A recent trend in map computation is to formulate joint map com-
putation as inferring matrices [SW11, HZG*12, KLM*12, HG13,
WS13, CGH14, HWG14]. The basic idea is to consider a big map
collection matrix

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

X11 X12 · · · X1n

X21 X22 · · · X2n

...
. . . · · ·

...

X21 · · · · · · Xnn

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where each block Xij encodes the map from shape Si to shape Sj .
In this matrix representation, the cycle-consistency constraint can
be equivalently described by simple properties of X, i.e. depending
on the types of maps, X is either positive semidefinite or low rank
(cf. [HG13, HWG14]). In addition, we may view the initial pairwise
maps as noisy measurements of the entries of X. Based on this
perspective, we can formulate joint matching as matrix recovery
from noisy measurements of its entries.

Spectral techniques. The initial attempts in matrix recovery are
spectral techniques and their variants [SW11, KLM*12, WHG13].
The basic idea is to consider the map collection Xinput that encodes
initial maps in its blocks. Then, the recovered matrix is given by X =
U�VT , where U, �, V represent the singular value decomposition
(or SVD) of Xinput. Various methods have added heuristics on top
of this basic procedure. For example, Kim et al. [KLM*12] use the
optimized maps to recompute initial maps.

This SVD strategy can be viewed as matrix recovery because
X is equivalent to the optimal low-rank approximation of Xinput

(with given rank) under the matrix Frobenius norm. However, as the
input maps may contain outliers, employing the Frobenius norm for
matrix recovery is suboptimal. Moreover, it is hard to analyse these
techniques, even in the very basic setting where maps are given by
permutation matrices [PKS13].

Point-based maps. In a series of works, Huang and cowork-
ers [HG13, CGH14, HCG14] consider the case of point-based maps
and develop joint matching algorithms that admit theoretical guaran-
tees. The work of [HG13] considers the basic setting of permutation
matrix maps and proves the equivalence between cycle-consistent
maps and the low-rank or positive semi-definiteness of the map
collection matrix. This leads to a semidefinite programming for-
mulation for joint matching. In particular, the L1 norm is used to
measure the distance between the recovered maps and the initial
maps. The authors provide exact recovery conditions, which state
that the ground-truth maps can be recovered if the percentage of
incorrect correspondences in the input maps is below a constant. In
a follow-up work, Chen et al. [CGH14] extends this to partial maps
and provide a better analysis in the case where incorrect correspon-
dences in the input maps are random. The computational issue is
addressed in [HCG14], which employs the alternating direction of
multiplier methods for optimization. Figure 9 compares the SDP
formulation of [HG13] with several other data-driven shape match-
ing methods. Note that all data-driven shape matching methods
improve upon pairwise matching, yet the SDP formulation leads to
the largest improvement.

Rotations and functional maps. Maps that are represented by
general matrices (e.g. rotations or functional maps) can also be
handled in a similar fashion. In [WS13], Wang and Singer consider
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Figure 9: Comparison among various data-driven shape matching methods: optimized composite maps [NBCW*11], fuzzy correspon-
dences [KLM*12], hub-and-spoke network [HZG*12] and semi-definite programming relaxation [HG13]. The input maps are given by
blended intrinsic maps [KLF11].

the case of rotations between objects. Their formulation is similar
to [HG13] but utilize an L1 Frobenius norm for measuring the
distance between initial rotations and recovered rotations. Recently,
Huang et al. [HWG14] extend this idea to functional maps. The
major difference between functional maps and point-based maps or
rotations is that the map collection matrix is no-longer symmetric.
Thus, their method is formulated to recover low-rank matrices.

5.4. Discussion and future directions

The key to joint shape matching is to have a proper formulation of
the cycle-consistency constraint. We have witnessed the evolution
of this constraint from earlier works on combinatorial search and
inconsistent cycle detection to more recent works which use spectral
techniques, MRF-based methods and matrix recovery techniques. In
particular, matrix recovery techniques admit theoretical guarantees,
providing a fundamental understanding of why joint shape matching
can improve upon isolated pairwise matching.

One future direction is to integrate pairwise matching and joint
matching into one optimization problem. Since the major role of
joint matching is to remove the noise presented in pairwise match-
ing, it makes sense to perform them together. Such unified ap-
proaches have the potential to further improve upon decomposed
approaches (i.e. from pairwise to joint). The technical challenge
is to find map representations so that pairwise matching and map
consistency can be formulated in the same framework.

6. Shape Reconstruction

Reconstructing geometric shapes from physical objects is a funda-
mental problem in geometry processing. The input to this problem
is usually a point cloud produced by aligned range scans, which
provides an observation of an object. The goal of a shape recon-
struction algorithm is to convert this point cloud into a high-quality

geometric model. In practice, the input point cloud data are noisy
and incomplete. Thus, the key to a successful shape reconstruc-
tion algorithm is formulating appropriate shape priors. Traditional
shape reconstruction algorithms usually utilize generic priors, such
as surface smoothness [DTB06], and typically assume that the input
data capture most of the object’s surface. To handle higher degrees
of noise and partiality of the input data, it is important to build
structural shape priors.

Data-driven techniques tackle this challenge by leveraging shape
collections to learn strong structural priors from similar objects,
and use them to reconstruct high-quality 3D models. Existing
approaches fall into two categories, based on how they represent the
shape priors: parametric and non-parametric. The former usually
builds a low-dimensional parametric representation of the under-
lying shape space, learning the representation from exemplars and
enforcing the parameterization when reconstructing new models.
Parametric methods typically require building correspondences
across the exemplar shapes. In contrast, non-parametric methods
directly operate on the input shapes by copying and deforming
existing shapes or shape parts.

6.1. Parametric methods

Morphable face. The morphable face model [BV99] is a repre-
sentative work of parametric data-driven shape reconstruction, a
technique which reconstructs 3D textured faces from photos and
scans. The model is learned from a data set of prototypical 3D
shapes of faces, and can then be used to derive a new 3D face from
a novel image (see Figure10).

In particular, the morphable face model represents the geometry
of a face with a shape-vector S = (pT

1 , · · · , pT
n )T ) ∈ R

3n), which
contains the 3D coordinates of its n vertices. Similarly, it encodes
the texture of a face by a texture-vector T = (cT

1 , cT
2 , · · · , cT

n ) ∈ R
3n,
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Figure 10: Derived from a data set of prototypical 3D scans of
faces, the morphable face model contributes to two main steps in
face manipulation: (1) deriving a 3D face model from a novel image,
and (2) modifying shape and texture in a natural way [BV99].

that contains the RGB colour values of the corresponding vertices.
A morphable face model is then constructed using a database of
m exemplar faces, each represented by its shape-vector Si and Ti .
In [BV99], the exemplar faces are constructed by matching a tem-
plate to scanned human faces.

The morphable face model uses PCA to characterize the shape
space. A new shape and its associated texture are given by

Smod = S +
m−1∑
i=1

αisi , Tmod = T +
m−1∑
i=1

βiti ,

where S and T are the mean-shape and mean-texture, respectively,
and si and ti are eigenvectors of the covariance matrices. αi and
βi are coefficients. PCA also gives probability distributions over
coefficients. The probability for coefficient αi is given by

p({αi}) ∼ exp

(
−1

2

m−1∑
i=1

(αi/σi)
2

)

with σ 2
i being the corresponding eigenvalue of the shape covariant

matrix CS (the probability p({βi}) is computed in a similar way).

With this morphable face model, reconstruction of textured mod-
els can be posed as a small-scale non-linear optimization problem.
For example, given a 2D image of a human face Iinput, one can
reconstruct the underlying textured 3D model by searching for a
similar rendered face I ({αi}, {βi}, p), parameterized by the shape
and texture coefficients αi and βi , and the rendering parameters p

(e.g. camera configuration, lighting parameters). The optimization
problem is formulated as minimizing a data term, which measures
the distance between the input image and the rendered image, and
regularization terms that are learned from exemplar faces. The suc-
cess of the morphable model relies on the low-dimensionality of the
solution space, and so is also applicable to several other data sets
where this assumption holds, including the domain of human bodies
and poses.

Morphable human bodies. Allen et al. [ACP03] generalize the
morphable model to characterize human bodies (Figure 11). Given
a set of 250 scanned human bodies, the method first performs non-
rigid registration to fit a hole-free, artist-generated mesh (template)

Figure 11: Parameterizing the variation in human shapes can be
used to synthesize new individuals or edit existing ones [ACP03].

to each of these scans. The result is a set of mutually consistent
parameterized shapes based on the corresponding vertex positions
originating from the template. Similar to [BV99], the method em-
ploys PCA to characterize the shape space, which enables applica-
tions in shape exploration, synthesis and reconstruction.

In addition to variations in body shape, human models also ex-
hibit variations in poses. The SCAPE model (Shape Completion and
Animation for People) [ASK*05] addresses this challenge by learn-
ing two separate models of body deformation—one accounting for
variations in poses and one for differences in body shapes. The pose
deformation component is acquired from a set of dense 3D scans of
a single person in multiple poses. A key aspect of the pose model
is that it decomposes deformation into a rigid and a non-rigid com-
ponent. The rigid component is modelled using a standard skeleton
system. The non-rigid component, which captures remaining de-
formations such as flexing of the muscles, associates each triangle
with a local affine transformation matrix. These transformation ma-
trices are learned from exemplars using a joint regression model.
In [HSS*09], Hasler et al. introduce a unified model for param-
eterizing both shapes and poses. The basic idea is to consider the
relative transformations between all pairs of neighbouring triangles.
These transformation matrices allow us to reconstruct the original
shape by solving a least-squares problem. In this regard, each shape
is encoded as a set of edgewise transformation matrices, which are
fit into the PCA framework to obtain a statistical model of human
shapes. The model is further extended to estimate shapes of dressed
humans from range scans [HSR*09].

Recent works on statistical human shape analysis focus on com-
bining learned shape priors with sparse observations and special
effects. In [LMB14], the authors introduce an approach that recon-
structs high-quality shapes and poses from a sparse set of markers.
The success of this approach relies on learning meaningful shape pri-
ors from a database consisting of thousands of shapes. In [TMB14],
the authors study human breathing from acquired data.

Data-driven tracking. Object tracking aims to analyse dynamic
shapes and/or poses of physical objects. Successful tracking tech-
niques (e.g. [WLVGP09, WBLP11, LYYB13, CWLZ13, CHZ14])
typically utilize parametric shape spaces. These reduced shape
spaces provide shape priors that improve both the efficiency and
robustness of the tracking process. The way to utilize and construct
shape spaces vary in different settings, and are typically tailored
to the specific problem setting. Weise et al. [WLVGP09] utilize a
linear PCA subspace trained with a very large set of pre-processed
facial expressions. This method requires an extended training ses-
sion with a careful choice of facial action units. In addition, the
learned face model is actor-specific. These restrictions are partially
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Figure 12: The data-driven shape reconstruction pipeline proposed in [PMG*05].

resolved in [LWP10], which introduces an example-based blend-
shape optimization technique, involving only a limited number of
random facial expressions. In [WBLP11], the authors combine both
blendshapes and data-driven animation priors to improve the track-
ing performance. In a recent work, Li et al. [LYYB13] employ
adaptive PCA to further improve tracking performance on nuanced
emotions and micro-expression. The key idea is to combine a general
blendshape PCA model and a corrective PCA model that is updated
on-the-fly. This corrective PCA model captures the details of the
specific actor and missing deformations from the initial blendshape
model.

6.2. Non-parametric methods

Parametric methods require canonical domains to characterize the
shape space, which have so far been demonstrated within domains
of organic shapes, such as body shapes or faces. In this section, we
discuss another category of methods that have shown the potential
to handle more diverse shape collections.

Generally speaking, a non-parametric data-driven shape recon-
struction method utilizes a collection of relevant shapes and com-
bines three phases, i.e. a query phase, a transformation phase and
an assembly phase. Existing methods differ in how the input shape
collection is pre-processed and how these phases are performed.

Example-based scan completion. Pauly et al. [PMG*05] in-
troduce one of the first non-parametric systems. As shown
in [PMG*05], the method takes a point cloud and a collection of
complete objects as input. The reconstruction procedure incorpo-
rates all three phases described above. The first phase determines a
set of similar objects. The retrieval phase combines both text-based
search and PCA signatures, which are then refined by rigid align-
ment. The second step performs non-rigid alignment between the
retrieved shapes and the input point cloud. This step partitions the
input point cloud into a set of patches, where each patch is associ-
ated with one retrieved shape (via the corresponding region). The
final phase merges the corresponding regions into a unified shape.

Nan et al. [NXS12] introduce a similar system for indoor scene re-
construction. Given an input point cloud of an indoor scene that con-

sists of a set of objects with known categories, the method searches
in a database of 3D models to find matched objects and then deforms
them in a non-rigid manner to fit the input point cloud. Note that this
method treats complete 3D objects as building blocks, so the final
reconstruction does not necessarily reflect the original scene. Shao
et al. [SXZ*12] adopt an interactive approach to labelled segmen-
tations of RGBD images, followed by 3D model retrieval for scene
modelling. Chen et al. [CLW*14] learn contextual relationships
from a 3D scene database to further constrain the reconstruction for
semantic compatibility between both objects and parts.

In contrast to considering entire 3D shapes, Gal et al. [GSH*07]
utilize a dictionary of local shape priors (defined as patches) for
shape reconstruction. The method is mainly designed for enhancing
shape features, where each region of an input point cloud is matched
to a shape patch in the database. The matched shape patch is then
used to enhance and rectify the local region. Recently, Mattausch
et al. [MPM*14] introduce a patch-based reconstruction system for
indoor scenes. Their method considers recognizing and fitting planar
patches from point cloud data.

Shen et al. [SFCH12] extends this idea for single object
reconstruction by assembling object parts. Their method utilizes
a collection consistently segmented 3D shapes. Given a scan of an
object, the method recursively searches for parts in the collection
to assemble the original object. The retrieval phase considers both
the geometric similarity between the input and retrieved parts as
well as part compatibility which is learned from the input shapes.
Sung et al. [SKAG15] describe a framework for reliably estimating
the part structure of partial scans by treating each part as a local
coordinate system. Their method also utilizes symmetric properties
of the target object and shape collection, providing more accurate
reconstructions on their shape completion benchmark.

Data-driven SLAM. Non-parametric methods have also found
applications in reconstructing temporal geometric data (e.g. the
output of the Kinect scanner). The simultaneous localization and
mapping (or SLAM) method is a notable technique which jointly
estimates the trajectory of the scanning device alongside the geome-
try of the environment. In this case, shape collections serve as priors
for the objects in the environment, which can be used to train
object detectors. For example, the SLAM++ system proposed
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by Salas-Moreno et al. [SMNS*13] trained domain-specific
object detectors from shape collections. The learned detectors are
integrated inside the SLAM framework to recognize and track those
objects. Similarly, Kim et al. [KMYG12] use learned object models
to reconstruct dense 3D models from a single scan of an indoor
scene. More recently, Song et al. [SX14] introduced a 3D sliding
window object detector with improved performance and capability
extending to a broader range of objects. Li et al. [LDGN15] propose
a data-assisted online reconstruction technique which allows object
retrieval from a 3D shape database while simultaneously scanning
an environment in real-time.

Shape-driven reconstruction from images. Recently, there is a
growing interest in reconstructing 3D objects directly from images
(e.g. [XZZ*11, KSES14, AME*14, SHM*14]). This problem intro-
duces fundamental challenges in both querying similar objects and
deforming objects/parts to fit the input object. In terms of searching
similar objects, successful methods typically render objects in the
database from a dense set of viewpoints and pick objects where one
view is similar to the input image object. Since depth information is
missing from the image object, it is important to properly regularize
3D object transformations; otherwise, a 3D object may be deformed
arbitrarily even though its projection on the image domain matches
the image object. Most existing techniques consider rigid transfor-
mations or user-specified deformations [XZZ*11]. In a recent work,
Su et al. [SHM*14] propose to learn meaningful deformations of
each shape from its optimal deformation to similar shapes. Huang
et al. [HWK15] jointly analyse a large collection of images in ob-
ject categories and a smaller collection of 3D models to achieve
simultaneous analysis and reconstruction of 2D images.

7. Shape Modelling and Synthesis

So far, the creation of detailed three-dimensional content remains a
tedious task which can mainly be performed by skilled artists. Three-
dimensional content creation has been a major bottleneck hindering
the development of ubiquitous 3D graphics. Thus, providing easy-
to-use tools for casual and novice users to design and create 3D
models has been a key challenge in computer graphics. To address
this challenge, current literature has been focused on two main
directions, i.e. intelligent interfaces for interactive shape modelling
and smart models for automated model synthesis. The former strives
to endow modelling interfaces with a higher level understanding of
the structure and semantics of 3D shapes, allowing the interface
to reason around the incomplete shapes being modelled. The latter

direction focuses on developing data-driven models to synthesize
new shapes automatically. The core problem is to learn generative
shape models from a set of exemplars (e.g. probability distributions,
fitness functions, functional constraints, etc.) so that the synthesized
shapes are plausible and novel. It can be seen that both of the two
paradigms depend on data-driven modelling of shape structures and
semantics. With the availability of large 3D shape collections, the
data-driven approach becomes a promising answer to the content
creation bottleneck.

7.1. Interactive shape modelling and editing

Interactive 3D modelling software (3DS Max, Maya, etc.) provide
artists with a large set of tools for creating and editing detailed
3D models. Unfortunately, this same software is often onerous to
harness for non-professional users. For casual users, more intu-
itive modelling interfaces with a certain machine intelligence are to
be preferred. Below, we discuss such methods for assembly-based
modelling and guided shape editing.

Assembly-based modelling. Early works on 3D modelling based
on shape sets are primarily driven by the purpose of content reuse
in part-assembly based modelling approaches. The seminal work of
modelling by example [FKS*04] presents a pioneering system of
shape modelling by searching a shape database for parts to reuse in
the construction of new shapes. Kraevoy et al. [KJS07] describe a
system for shape creation via interchanging parts between a small
set of compatible shapes. Guo et al. [GLXJ14] propose assembly-
based creature modelling guided by a shape grammar.

Beyond content reuse through database queries or hand-crafted
rules, Chaudhuri and Koltun [CK10] propose a data-driven tech-
nique for suggesting the modeller with shape parts that can poten-
tially augment the current shape being built. Such part suggestions
are generated through retrieving a shape from a database based on
partial shape matching. Although this is a purely geometric method
without accounting for the semantics of shape parts, it represents
the first attempt at utilizing a shape database to augment the mod-
elling interface. Later, Chaudhuri et al. [CKGK11] show that the
incorporation of semantic relationships increases the relevance of
presented parts. Given a repository of 3D shapes, the method learns
a probabilistic graphical model encoding semantic and geometric
relationships among shape parts. During modelling, inference in
the learned Bayesian network is performed to produce a relevance
ranking of the parts (see Figure 13).

Figure 13: Given a library of models, a Bayesian network encoding semantic and geometric relationships among shape parts is
learned [CKGK11] (top). The modelling process (bottom) performs probabilistic inference in the learned Bayesian network to generate
ranked lists of category labels and components within each category, customized for the currently assembled model.
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A common limitation of the above techniques is that they do
not provide a way to directly express a high-level design goal (e.g.
‘create a cute toy’). Chaudhuri et al. [CKG*13] proposed a method
that learns semantic attributes for shape parts that reflect the high-
level intent people may have for creating content in a domain (e.g.
adjectives such as ‘dangerous’, ‘scary’ or ‘strong’) and ranks them
according to the strength of each learned attribute (Figure 5). During
an interactive session, the user explores and modifies the strengths
of semantic attributes to generate new part assemblies.

Three-dimensional shape collections can supply other useful in-
formation as well, such as contextual and spatial relationships be-
tween shape parts, to enhance a variety of modelling interfaces. Xie
et al. [XXM*13] propose a data-driven sketch-based 3D modelling
system. In the offline learning stage, a shape database is pre-analysed
to extract the contextual information among parts. During the online
stage, the user designs a 3D model by progressively sketching its
parts and retrieving and assembling shape parts from the database.
Both the retrieval and assembly are assisted by pre-computed con-
textual information so that more relevant parts can be returned and
selected parts can be automatically placed. Inspired by the Shadow-
Draw system [LZC11], Fan et al. [FWX*13] propose 3D modelling
by drawing with data-driven shadow guidance. The user’s strokes
are used to query a 3D shape database for generating the shadow
image, which in turn can guide the user’s drawing. Along the draw-
ing, 3D candidate parts are retrieved for assembly-based modelling.
Starting from a collection of expertly created, fabricable 3D mod-
els, Schulz et al. [SSL*14] extract parameterized design templates
encoding all information necessary for fabrication. The templates
can then be used to generate new fabricable models in an interactive
design system.

Shape editing. The general idea of data-driven shape editing is to
learn a model from a collection of closely related shapes that charac-
terizes the plausible variations or deformations of the shapes in this
collection. In this way, the learned model can be used to constrain a
user’s edit to maintain plausibility. For organic shapes, such as hu-
man faces [BV99, CWZ*14] or bodies [ACP03], parametric models
can be learned from a shape set characterizing its shape space. Such
parametric models can be used to edit the shapes through exploring
the shape space with the set of parameters.

An alternative widely adopted approach is the analyse-and-edit
paradigm. This technique first extracts the structure of the input
shape, and then uses this structure to constrain the editing phase to
be more tenable [GSMCO09]. Instead of learning structure from a
single shape, Fish et al. [FAvK*14] learn it from a set of shapes
that belong to the same family, resulting in a set of probability dis-
tributions characterizing the part arrangements. These distributions
can be used to guide structure-preserving editing, where models
can be edited while maintaining their familial traits. Yumer and
Kara [YK14] extract co-constrained handles from a set of shapes
for shape deformation. The handles are generated based on co-
abstraction [YK12] of the set of shapes and the deformation co-
constraints are learned statistically from the set. The deformation
handles can also be controlled with continuous semantic attributes
[YCHK15].

Based on learned structures from a database of 3D models,
Xu et al. [XZZ*11] propose photo-inspired 3D object modelling.

Guided by the object in a photograph, the method creates a 3D
model as a geometric variation of a candidate model retrieved from
the database. Due to the pre-analysed structural information, the
method addresses the ill-posed problem of 3D modelling from a
single 2D image via structure-preserving 3D warping. The final re-
sult is structurally plausible and is readily usable for subsequent
editing. Moreover, the resulting 3D model, although built from a
single view, is structurally coherent from all views.

7.2. Automated synthesis of shapes

Many applications such as 3D games and films require large col-
lections of 3D shapes for populating their environments. Modelling
each shape individually can be tedious even with the best interac-
tive tools. The goal of data-driven shape synthesis algorithms is to
generate several shapes automatically with no or very little user su-
pervision: users may only provide some preferences or high-level
specifications to control the shape synthesis process. Existing meth-
ods achieve this task by using probabilistic generative models of
shapes, evolutionary methods or learned probabilistic grammars.

Statistical models of shapes. The basic idea of these methods
is to define a parametric shape space and then fit a probability
distribution to the data points that represent the input exemplar
shapes. Since the input shapes are assumed to be plausible and
desired representatives of the shape space, high-probability areas
of the shape space which tend to become associated with new,
plausible shape variants. This idea was first explored in the context
of parametric models [BV99, ACP03], discussed in Section 6. By
associating each principal component of the shape space defined
by these methods with a Gaussian distribution, this distribution
can be sampled to generate new human faces or bodies (Figure
11). Since the probability distribution of plausible shapes tends
to be highly non-uniform in several shape classes, Talton et al.
[TGY*09] use kernel density estimation with Gaussian kernels to
represent plausible shape variability. The method is able to generate
new shapes for tree and human body parametric spaces.

Shapes have structure, i.e. shapes vary in terms of their type and
style, different shape styles have different number and type of parts,
parts have various subparts that can be made of patches, and so
on. Thus, to generate shapes in complex domains, it is important to
define shape spaces over structural and geometric parameters, and
capture hierarchical relationships between these parameters at dif-
ferent levels. Kalogerakis et al. [KCKK12] (Figure 14) proposed a

Figure 14: Given a hundred training aeroplanes (in green), the
probabilistic model from [KCKK12] synthesizes several hundreds
of new aeroplanes (in blue).
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probabilistic model that represents variation and relationships of
geometric descriptors and adjacency features for different part
styles, as well as variation and relationships of part styles and rep-
etitions for different shape styles. The method learns the model
from a set of consistently segmented shapes. Part and shape styles
are discovered based on latent variables that capture the underlying
modes of shape variability. The method uses a search procedure to
assemble new shapes from parts of the input shapes according to
the learned probability distribution. Users can also set preferences
for generating shapes from a particular shape style, with given part
styles or specific parts. Instead of relying on pre-segmented shapes
and high-level part descriptors to encode shape variability, Huang
et al. [HKM15] propose a probabilistic model that jointly estimates
shape segmentation, surface correspondences and surface descrip-
tors from an input shape data set. A deep learning procedure was
used to capture hierarchical relationships of corresponding surface
point positions and parts as well as their existence in the input
shapes. Their probabilistic model can be sampled to directly gener-
ate point-sampled surface geometry and shape structure.

Set evolution. Xu et al. [XZCOC12] developed a method for gener-
ating shapes inspired by the theory of evolution in biology. The basic
idea of set evolution is to define cross-over and mutation operators
on shapes to perform part warping and part replacement. Starting
from an initial generation of shapes with part correspondences and
built-in structural information such as interpart symmetries, these
operators are applied to create a new generation of shapes. A selected
subset from the generation is presented via a gallery to the user who
provides feedback to the system by rating them. The ratings are used
to define the fitness function for the evolution. Through the evolu-
tion, the set is personalized and populated with shapes that better
fit to the user. At the same time, the system explicitly maintains the
diversity of the population so as to prevent it from converging into
an ‘elite’ set.

Learned shape grammars. Talton et al. [TYK*12] leverage
techniques from natural language processing to learn probabilistic
generative grammars of shapes. The method takes as input a set
of exemplar shapes represented with a scene graph specifying par-
ent/child relationships and relative transformations between labelled
shape components. They use Bayesian inference to learn a proba-
bilistic formal grammar that can be used to synthesize novel shapes.

8. Scene Analysis and Synthesis

Analysing and modelling indoor and outdoor environments has im-
portant applications in various domains. For example, in robotics it
is desirable for an autonomous agent to understand the semantics of
3D environments to be able to interact with them. In urban planning
and architecture, professionals build digital models of cities and
buildings to validate and improve their designs. In computer graph-
ics, artists create novel 3D scenes for movies and video games.

The fast growing number of 3D scenes in digital repositories
provide new opportunities for data-driven scene analysis, editing and
synthesis. Emerging collections of 3D scenes pose novel research
challenges that cannot be easily addressed with existing tools. In
particular, representations created for analysing collections of single
models mostly focus on arrangement and relations between shape

parts [MWZ*14], which usually exhibit less variations than objects
in scenes. Capturing scene structure poses a greater challenge due
to looser spatial relations and a more diverse mixture of functional
substructures.

Inferring scene semantics is a long-standing problem in im-
age understanding, with many methods developed for object
recognition [QT09], classification [SW10], layout and structure
reasoning [CCPS13, FGH13] with a single image. Previous work
demonstrates that one can leverage collections of 3D models to facil-
itate scene understanding in images [SLH12]. In addition, the depth
information in RGBD scans can be used to establish the link be-
tween 2D and 3D for model-driven scene understanding [SKHF12].
The semantic annotations of images are not immediately useful for
modelling and synthesizing 3D scenes, for which the geometric and
structural priors have to be learned from 3D data.

In this section, we cover the data-driven techniques that leverage
collections of 3D scenes for modelling, editing and synthesizing
novel scenes.

Context-based retrieval. To address the large variation in the ge-
ometry and arrangement of objects in scenes, Fisher et al. [FH10,
FSH11] propose to take advantage of local context. One of the key
insights of their work is that collections of 3D scenes provide rich
information about context in which objects appear. They show that
capturing these contextual priors can help in scene retrieval and
editing.

Their system takes an annotated collection of 3D scenes as input,
where each object in a scene is classified. They represent each
scene as a graph, where nodes represent objects and edges represent
relations between objects, such as support and surface contact. In
order to compare scenes, they define kernel functions for pairs of
nodes measuring similarity in object geometry, and for pairs of
edges, measuring similarity in relations of two pairs of objects.
They further define a graph kernel to compare pairs of scenes. In
particular, they compare all walks of fixed length originating at
all pairs of objects in both scene graphs, which loosely captures
similarities of all contexts in which objects appear [FSH11]. They
show that this similarity metric can be used to retrieve scenes. By
comparing only paths originated at a particular object, they can
retrieve objects for interactive scene editing.

Focal points. Measuring the similarity of complex hybrid scenes
such as studios composed of a bedroom, living room and dining
room poses a challenge to graph kernel techniques since they only
measure global scene similarity. Thus, Xu et al. [XMZ*14] advo-
cate analysing salient sub-scenes, which they call focal points, to
compare hybrid scenes, i.e. scenes containing multiple salient sub-
scenes. Figure 15 shows an example of comparing complex scenes,
where the middle scene is a hybrid one encompassing two semanti-
cally salient subscenes, i.e. bed-nightstands and TV-table-sofa. The
middle scene is closer to the left one when the bed and nightstands
are focused on, and otherwise when the TV-table-sofa combo is
the focal point. Therefore, scene comparison may yield different
similarity distances depending on the focal points.

Formally, a focal point is defined as a representative substructure
of a scene which can characterize a semantic scene category. That
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Figure 15: Scene comparisons may yield different similarity distances (left) depending on the focal points [XMZ*14].

Figure 16: The algorithm processes raw scene graphs with possible over-segmentation (a) into consistent hierarchies capturing semantic
and functional groups (b,c) [LCK*14].

means the substructure should reoccur frequently only within that
category. Therefore, focal point detection is naturally coupled with
the identification of scene categories via scene clustering. This poses
coupled problems of detecting focal points based on scene groups
and grouping scenes based on focal points. These two problems
are solved via interleaved optimization which alternates between
focal point detection and focal-based scene clustering. The former
is achieved by mining frequent substructures and the latter uses
subspace clustering, where scene distances are defined in a focal-
centric manner. Inspired by the work of Fisher et al. [FSH11], scene
distances are computed using focal-centric graph kernels which are
estimated from walks originating from representative focal points.

The detected focal points can be used to organize the scene col-
lection and to support efficient exploration of the collection (see
Section 9). Focal-based scene similarity can be used for novel ap-
plications such as multi-query scene retrieval, where one may issue
queries consisting of multiple semantically related scenes and wish
to retrieve more scenes ‘of the same kind’.

Synthesis. Given an annotated scene collection, one can also syn-
thesize new scenes that have a similar distribution of objects. The
scene synthesis technique of Fisher et al. [FRS*12] learns two prob-
abilistic models from the training data set: (1) object occurrence,
indicating which objects should be placed in the scene, and (2)
layout optimization, indicating where to place the objects. Next, it
takes an example scene, and then synthesizes similar scenes using
the learned priors. It replaces or adds new objects using context-
based retrieval techniques, and then optimizes for object placement
based on learned object-to-object spatial relations. Synthesizing ex-
ample scenes might be a challenging task, thus Xu et al. [XCF*13]
propose modelling 3D indoor scenes from 2D sketches, by lever-

aging a database of 3D scenes. Their system jointly optimizes for
sketch-guided co-retrieval and co-placement of all objects.

Hierarchical scene annotation. All aforementioned applications
take an annotated collection of 3D scenes as an input. Unfortunately,
most scenes in public repositories are not annotated and thus require
additional manual labelling [FRS*12]. Liu et al. [LCK*14] address
the challenge of annotating novel scenes. The key observation of
their work is that understanding hierarchical structure of a scene
enables efficient encoding of functional scene substructures, which
significantly simplifies detecting objects and representing their re-
lationships. Thus, they propose a supervised learning approach to
estimate a hierarchical structure for novel scenes. Given a collec-
tion of scene graphs with consistent hierarchies and labels, they train
a probabilistic hierarchical grammar encoding the distributions of
shapes, cardinalities and spatial relationships between objects. Such
a grammar can then be used to parse new scenes: find segmentations,
object labels and hierarchical organization of objects consistent with
the annotated collection (see Figure 16).

Challenges and opportunities. The topic of 3D scene analysis is
quite new and there are many open problems and research oppor-
tunities. The first problem is to efficiently characterize spatial rela-
tionships between objects and object groups. Most existing methods
work with bounding box representation which are efficient to pro-
cess, but not sufficiently informative to characterize object-to-object
relationships. For example, one cannot reliably determine the ob-
ject enclosure relationship based on a bounding box. Recently, Zhao
et al. [ZWK14] propose to use biologically inspired bisector sur-
face to characterize the geometric interaction between adjacent ob-
jects for 3D scene indexing (Figure 17). The bisector surface can be
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Figure 17: The interaction bisector surface (in blue) of several
two-object scenes [ZWK14].

extended into a geometric descriptor for contextual modelling of the
functionality of a 3D object in a given scene [HZvK*15]. Second,
most existing techniques heavily rely on expert user supervision for
scene understanding. Unfortunately, online repositories rarely have
models with reliable object tags. Therefore, there is a need for meth-
ods that can leverage scenes containing only partial and/or noisy
annotations. Finally, the popularity of commodity RGBD cameras
has significantly simplified the acquisition of indoor scenes. This
emerging scanning technique opens space for new applications such
as online scene analysis [ZXTZ14, XHS*15].

9. Exploration and Organization

The rapidly growing quantity and variety of digital 3D models in
large online collections have caused an emerging need to develop
algorithms and techniques that effectively organize these large col-
lections and allow users to interactively explore them. For example,
an architect might furnish a digital building by searching through
databases organized according to furniture types, regions of interest
and design styles. Likewise, an industrial designer can explore shape
variations among existing products when creating a new object.
Most existing repositories only support text-based search, relying
on user-entered tags and titles. This approach suffers from inac-
curate and ambiguous tags, often entered in different languages.
While it is possible to try using shape analysis to infer consistent
tags as discussed in Section 3, it is difficult to convey stylistic and
geometric variations using only text. An alternative approach can
be to perform shape, sketch or image-based queries. However, to
formulate such search queries the user needs to have a clear mental
model of the shape that should be retrieved. Thus, some researchers
focus on providing tools for exploring shape collections. Unlike
search, exploration techniques do not assume a priori knowledge of
the repository content, and help the user to understand geometric,
topological and semantic variations within the collection.

Problem statement and method categorization. Data exploration
and organization is a classical problem in data analysis and visual-
ization [PEP*11]. Given a data collection, the research focuses on
grouping and relating data points, learning the data variations in
the collection and organizing the collection into a structured form,
to facilitate retrieval, browsing, summarization and visualization of
the data, based on efficient interfaces or metaphors.

The first step to organizing model collections is to devise ap-
propriate metrics to relate different data points. Various similarity
metrics have been proposed in the past to relate entire shapes as well
as local regions on shapes. In particular, previous sections of this
document cover algorithms for computing global shape similarities

Table 4: A summary of several recent works over four aspects. Metaphor:
templates, surface painted ROIs, probability distribution plots or query
shapes. Shape Comparison: shape similarity, part or point correspondence.
Variability: geometry, topology or both. Organization Form: cluster or hi-
erarchy.

Method Meta. Comp. Var. Org.

[OLGM11] temp. simi. geom. n/a
[KLM*13] temp. part both cluster
[AKZM14] plot part both cluster
[KLM*12] ROI point both n/a
[ROA*13] ROI point geom. n/a
[HWG14] ROI point both cluster
[XMZ*14] ROI simi. topo. cluster
[FAvK*14] plot part geom. cluster
[HSS*13] query simi. both hierarchy

(Section 3), partwise correspondences (Section 4) and pointwise
correspondences (Section 5). In this section, we will focus on tech-
niques that take advantage of these correlations to provide different
interfaces for exploring and understanding geometric variability in
collections of 3D shapes. We categorize the existing exploration
approaches based on four aspects:

� Metaphor: a user interface for exploring shape variations. We
will discuss five basic exploration interfaces, ones that use proxy
shapes (templates), regions of interest, probability plots, query
shapes or continuous attributes.

� Shape comparison: techniques used to relate different shapes.
We will discuss techniques that use global shape similarities, as
well as part or point correspondences.

� Variability: shape variations captured by the system. Most meth-
ods we will discuss rely on geometric variability of shapes or
parts. Some techniques also take advantage of topological vari-
ability; that is, variance in number of parts or how they are con-
nected (or variance in numbers of objects and their arrangements
in scenes).

� Organizational form: a method to group shapes. We will discuss
methods that group similar shapes to facilitate exploring intra-
group similarities and intergroup variations, typically including
clustering and hierarchical clustering.

Table 4 summarizes several representative works in terms of these
aspects. In the remaining part of this section, we list several recent
techniques which are grouped based on the exploration metaphor.

Template-based exploration. Componentwise variability in
position and scale of parts reveals useful information about a
model collection. Several techniques use box-like templates to
show variations among models of the same class. Ovsjanikov
et al. [OLGM11] describe a technique for learning these partwise
variations without solving the challenging problem of consistent
segmentation. First, they use the segmentation of a single shape
to construct the initial template. This is the only step that needs
to be verified and potentially fixed by the user. The next goal is to
automatically infer deformations of the template that would capture
the most important geometric variations of other models in the
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Table 5: Comparison of various works on data-driven shape analysis and processing. For each work, we summarize over the criterion set defined for data-
driven methods: training data (encompassing data representation, preprocessing and scale), feature (including feature type and whether feature selection is
involved), learning model or approach, learning type (supervised, semi-supervised and unsupervised), learning outcome (e.g. a classifier or a distance metric),
as well as its typical application scenario. See the text for detailed explanation of the criteria. Some works employ another work as a pre-processing stage
(e.g. [CKG*13] requires the labelled segmentation produced by [KHS10]). There are four types of features including local geometric features (Local), global
shape descriptors (Global), both local and global shape features (L.&G.), structural features (Struct.) as well as 2D visual features (Visual).

Training data Feature

Work Rep. Pre-proc. Scale Type Sel. Learning model/approach Learning type Learning outcome Application

[FKMS05] Point No Thousands Local No SVM classifier Supervised Object classifier Classification
[BBOG11] Mesh No Thousands Local No Similarity Sensitive Hashing Supervised Distance metric Classification
[HSG13] Mesh Pre-align. Thousands Local No Max-marginal distance learning Semi-supervised Distance metric Classification
[KHS10] Mesh No Tens Local Yes Jointboost classifier Supervised Face classifier Segmentation
[vKTS*11] Mesh Yes Tens Local Yes Gentleboost classifier Supervised Face classifier Segmentation
[BLVD11] Mesh No Tens L.&G. Yes Adaboost classifier Supervised Boundary classifier Segmentation
[XXLX14] Mesh No Hundreds Local Yes Feedforward neural networks Supervised Face/patch classifier Segmentation
[XSX*14] Mesh Pre-seg. Tens Local No Sparse model selection Supervised Segment similarity Segmentation
[LCHB12] Mesh No Tens Local Yes Entropy regularization Semi-supervised Face classifier Segmentation
[WAvK*12] Mesh Pre-seg. Hundreds Local No Active learning Semi-supervised Segment classifier Segmentation
[WGW*13] Image Labelled parts Hundreds Local No 2D shape matching Supervised 2D shape similarity Segmentation
[HFL12] Mesh Over-seg. Tens Local Yes Subspace clustering Unsupervised Patch similarity Seg./Corr.
[SvKK*11] Mesh Pre-seg. Tens Local No Spectral clustering Unsupervised Seg. simi./classifier Seg./Corr.
[XLZ*10] Mesh Part Tens Struct. No Spectral clustering Unsupervised Part proportion simi. Seg./Corr.
[vKXZ*13] Mesh Part Tens Struct. No Multi-instance clustering Unsupervised Seg. hier. simi. Seg./Corr.
[GF09] Mesh No Tens Global No Global shape alignment Unsupervised Face similarity Seg./Corr.
[HKG11] Mesh Pre-seg. Tens Local No Joint part matching Unsupervised Segment similarity Seg./Corr.
[HWG14] Mesh Init. corr. Tens Global No Consistent func. map networks Unsupervised Segment similarity Seg./Corr.
[KLM*13] Mesh Template Thousands Local No Shape alignment Semi-supervised Templates Seg./Corr.
[MPM*14] Mesh Over-seg. Hundreds Local No Density-based clustering Unsupervised Patch similarity Recognition
[NBCW*11] Mesh Init. corr. Tens L.&G. No Inconsistent map detection Unsupervised Point similarity Corr./Expl.
[HZG*12] Mesh Init. corr. Tens L.&G. No MRF joint matching Unsupervised Point similarity Corr./Expl.
[KLM*12] Mesh Pre-align. Tens Global No Spectral matrix recovery Unsupervised Point similarity Corr./Expl.
[HG13] Mesh Init. corr. Tens Global No Low-rank matrix recovery Unsupervised Point similarity Corr./Expl.
[OLGM11] Mesh Part Hundreds Global No Manifold learning Unsupervised Parametric model Exploration
[ROA*13] Mesh Map Tens None N/A Functional map analysis Unsupervised Difference operator Exploration
[FAvK*14] Mesh Labelled parts Hundreds Struct. No Kernel Density Estimation Supervised Prob. distributions Expl./Synth.
[AKZM14] Mesh [KLM*13] Thousands Struct. No Manifold learning Unsupervised Parametric models Expl./Synth.
[HSS*13] Mesh No Hundreds Global No Quartet analysis and clustering Unsupervised Distance measure Organization
[BV99] Mesh Pre-align. Hundreds Local No Principal Component Analysis Unsupervised Parametric model Recon./Expl.
[ACP03] Point Pre-align. Hundreds Local No Principal Component Analysis Unsupervised Parametric model Recon./Expl.
[HSS*09] Point Pre-align. Hundreds Local No PCA & linear regression Unsupervised Parametric model Recon./Expl.
[PMG*05] Mesh Pre-align. Hundreds Global No Global shape alignment Unsupervised Shape similarity Reconstruction
[NXS12] Point Labelled parts Hundreds Struct. No Random Forest Classifier Supervised Object classifier Reconstruction
[SFCH12] Mesh Labelled parts Tens Global No Part matching Unsupervised Part detector Reconstruction
[KMYG12] Point Labelled parts Tens Local No Joint part fitting and matching Unsupervised Object detector Reconstruction
[SMNS*13] Mesh No Tens L.&G. No Shape matching Unsupervised Object detector Reconstruction
[XZZ*11] Mesh Labelled parts Tens Struct. No Structural shape matching Unsupervised Part detector Modelling
[AME*14] Mesh Projected Thousands Visual No Linear Discriminant Analysis Supervised Object detector Recognition
[SHM*14] Mesh Projected Tens Visual No Shape matching Unsupervised 2D-3D correlation Reconstruction
[CK10] Mesh No Thousands Global No Shape matching Unsupervised Part detector Modelling
[CKGK11] Mesh [KHS10] Hundreds Local No Bayesian Network Unsupervised Part reasoning model Modelling
[XXM*13] Mesh Labelled parts Tens Struct. No Contextual part matching Unsupervised Part detector Modelling
[KCKK12] Mesh [KHS10] Hundreds L.&G. No Bayesian Network Unsupervised Shape reasoning model Synthesis
[XZCOC12] Mesh Part Tens Struct. No Part matching Unsupervised Part similarity Synthesis
[TYK*12] Mesh Labelled parts Tens Struct. No Structured concept learning Unsupervised Probabilistic grammar Synthesis
[YK12] Mesh No Tens Global No Shape matching Unsupervised Shape abs. similarity Modelling
[YK14] Mesh Pre-seg. Tens Local No Segment matching Unsupervised Segment abs. simi. Modelling
[CKG*13] Mesh [KHS10] Hundreds L.&G. No SVM ranking Supervised Ranking metric Model./Expl.
[FSH11] Scene Labelled obj. Tens Struct. No Relevance feedback Supervised Contextual obj. simi. Classification
[FRS*12] Scene Labelled obj. Hundreds Struct. No Bayesian Network Supervised Mixture models Synthesis
[XCF*13] Scene Labelled obj. Hundreds Struct. No Frequent subgraph mining Unsupervised Frequent obj. groups Modelling
[XMZ*14] Scene Labelled obj. Hundreds Struct. No Weighted subgraph mining Unsupervised Distinct obj. groups Org./Expl.
[LCK*14] Scene Labelled hier. Tens Struct. No Probabilistic learning Supervised Probabilistic grammar Seg./Corr.
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Figure 18: Shape exploration based on fuzzy correspondence. The
user paints a region of interest (ROI) on a query shape (left column),
and the method sorts models based on their similarity within the
region (right).

collection. They hypothesize that all shapes can be projected on a
low-dimensional manifold based on their global shape descriptors.
Finally, they reveal the manifold structure by deforming a template
to fit to the sample points. Directions for interesting variations are
depicted by arrows on the template and the shapes that correspond
to the current template configuration are presented to the user.

The descriptor-based approach described above assumes that all
intraclass shapes share the same parts and that there exists a low-
dimensional manifold that can be captured by deforming a single
template. These assumptions do not hold for large and diverse collec-
tions of 3D models. To tackle this challenge, Kim et al. [KLM*13]
proposed an algorithm for learning several part-based templates
capturing multi-modal variability in collections of shapes. They
start with an initial template that includes a superset of all parts
that might occur in a data set, and jointly learn part segmentations,
point-to-point surface correspondence as well as a compact defor-
mation model. The output is a set of templates that groups the input
models into clusters, capturing their styles and variations.

ROI-based exploration. Not all interesting variations occur at the
scale of parts: they can occur at subpart scale, or span multiple
subregions from multiple parts. In these cases, the user may prefer
to select an arbitrary region on a 3D model and look for more models
sharing similar regions of interest. Such detailed and flexible queries
require a finer understanding of correspondences between different
shapes. Kim et al. [KLM*12] propose fuzzy point correspondences
to encode the inherent ambiguity in relating diverse shapes. Fuzzy
point correspondences are represented by real values specified for
all pairs of points, indicating how well the points correspond. They
leverage transitivity in correspondence relationships to compute this
representation from a sparse set of pairwise point correspondences.
The interface proposed by Kim et al. allows users to paint regions
of interest directly on a surface and then retrieve similar regions
among other shapes, or even show geometric variations found in the
selected region (see Figure 18).

One limitation of correspondence-based techniques is that they
typically do not consider the entire collection when estimating shape
differences. Rustamov et al. [ROA*13] focus on a fundamental in-
trinsic representation for shape differences. Starting with a func-
tional map between two shapes, that is, a map that describes a

change of functional basis, they derive a shape difference operator
revealing detailed information about the location, type and magni-
tude of distortions induced by a map. This makes shape difference
a quantifiable object that can be co-analysed within a context of
the entire collection. They show that this deeper understanding of
shape differences can help in exploration. For example, one can em-
bed shapes in a low-dimensional space based on shape differences,
or use shape difference to interpolate variations by showing ‘inter-
mediate’ shapes between two regions of interest. To extend these
technique to man-made objects, Huang et al. [HWG14] construct
a consistent functional basis for shape collections exhibiting large
geometric and topological variability. They show that the result-
ing consistent maps are capable of capturing discrete topological
variability, such as variance in the number of bars of the back of a
chair.

ROI-based scene exploration. Recent works on organizing and
exploring 3D visual data mostly focus on object collections. Ex-
ploring 3D scenes poses additional challenges since scenes typi-
cally exhibit more structural variations. Unlike man-made objects
that usually contain a handful of object parts, scenes can contain any-
where from ten to hundreds of objects. Not only this, but the objects
themselves do not typically have a prescribed rigid arrangement
with respect to each other. Thus, global scene similarity metrics,
such as the graph kernel based one used in [FRS*12] are limited
to organizing data sets based on very high level features, such as
scene type. Xu et al. [XMZ*14] advocate that 3D scenes should be
compared from the perspective of a particular focal point which is a
representative substructure of a specific scene category. Focal points
are detected through contextual analysis of a collection of scenes,
resulting in a clustering of the scene collection where each cluster is
characterized by its representative focal points (see Section 8). Con-
sequently, the focal points extracted from a scene collection can be
used to organize collection into an interlinked and well-connected
cluster formation, which facilitates scene exploration. Figure 19
shows an illustration of such cluster-based organization and an ex-
ploratory path transiting between two scene clusters/categories.

Plot-based exploration. All aforementioned exploration tech-
niques typically do not visualize the probabilistic nature of shape
variations. Fish et al. [FAvK*14] study the configurations of shape
parts from a probabilistic perspective, trying to indicate which
shape variations are more likely to occur. To learn the distributions
of part arrangements, all shapes in the family are pre-segmented
consistently. The resulting set of probability density functions
(PDFs) characterizes the variability of relations and arrangements
across different parts. A peak in a PDF curve represents that
particular a configuration of the related parts frequently appeared
among several shapes in the family. The multiple PDFs can be used
as interfaces to interactively explore the shape family from various
perspectives. Averkiou et al. [AKZM14] use part structure inferred
by this method to produce a low-dimensional part-aware embedding
of all models. The user can explore interesting variations in part
arrangements simply by moving the mouse over the 2D embedding.
In addition, their technique allows the synthesis of novel shapes by
clicking on empty spaces in the embedded space. Upon clicking, the
system would deform parts from neighbouring shapes to synthesize
a novel part arrangement.
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Figure 19: Focal-based scene clustering produces overlapping clusters, which is due to hybrid scenes possessing multiple focal points. An
exploratory path, from (a) to (e), through the overlap, smoothly transit between the two scene clusters, representing bedroom and offices,
respectively.

Figure 20: Given a set of heterogeneous shapes, a reliable quali-
tative similarity is derived from quartets composed of two pairs of
objects (left). Aggregating such qualitative information from many
quartets computed across the whole set leads to a categorization
tree as a hierarchical organization of the input shape collection
(right).

Query-based exploration For a heterogeneous shape collection
encompassing diverse object classes, it is typically not possible to
characterize part-structure and correspondences between all pairs of
shapes. Even global shape similarity is not a very reliable feature in
this setting, which makes organizing and exploring heterogeneous
collections especially difficult. To address this challenge, Huang
et al. [HSS*13] introduce qualitative analysis techniques from the
field of bioinformatics. Instead of relying on quantitative distances,
which may be ill-applied between dissimilar shapes, the method
considers a more reliable qualitative similarity derived from quar-
tets composed of two pairs of objects. The shapes that are paired
in the quartet are close to each other and far from the shapes in
the other pair, where distances are estimated from multiple shape
descriptors. They aggregate this topological information from many
quartets computed across the entire shape collection, and construct
a hierarchical categorization tree (see Figure 20). Analogous to the
phylogenetic trees of species, this categorization tree of a shape col-
lection provides an overview of the shapes as well as their mutual
distance and hierarchical relations. Based on such an organization,
they also define the degree of separation chart for every shape in the
collection and apply it for interactive shape exploration.

Attribute-based exploration Yet another approach seeks to allow
users to interactively explore shapes with continuously valued se-
mantic attributes. Blanz and Vetter [BV99] provide an interface to

explore faces based on continuous facial attributes, such as ‘smile’
or ‘frown’, built upon the face parametric model (Section 6). Sim-
ilarly, Allen et al. [ACP03] allow users to explore the range of
human bodies with features such as height, weight and age. Chaud-
huri et al.’s [CKG*13] interface enables exploration of shape parts
according to learned strengths of semantic attributes (Figure 5).

10. Discussion

There is no ‘magic recipe’ for developing new data-driven and ma-
chine learning applications in geometry processing and computer
graphics. Yet, there are some important considerations one needs
to make in devising a data-driven method, including computational
complexity, scalability, applicability issues, proper evaluation pro-
cedures and limitations. In this section, we briefly discuss these
issues.

Computational complexity. As explained in Section 2, data-
driven shape analysis and processing algorithms generally contain
several stages (Figure 2). The complexity of each stage varies and
largely depends on the number of input shapes, resolution of the
input shape representation (number of faces, surface points, pixels
or voxels), as well as the number and type of the used geomet-
ric features. The feature extraction stage is usually executed per
each shape, thus, its time complexity often tends to be linear in the
number of input shapes. Local geometric features, such as surface
curvature or PCA-based descriptors, are usually computed within a
small neighbourhood around each vertex, face or surface point, thus
their extraction depends linearly on the number of these primitives
in the input shape representation. Extracting geometric features that
capture less local or global information about the shape, such as
shape diameter, geodesic distance-based features or heat-kernel de-
scriptors, is often computationally more intensive, i.e. super-linear
in the number of primitives.

During the learning and inference steps, data-driven methods usu-
ally solve an optimization problem, which involves minimizing or
maximizing a function, e.g. a data likelihood function. In general,
optimization techniques inhabit a wide range of computational com-
plexities. For example, if the optimization involves the least-squares
solution of a linear system, as in the case of linear regression, the
complexity is O(N · F 2), where N is the number of input training
examples and F is the dimensionality of the input feature vector.

c© 2016 The Authors
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



24 K. Xu et al. / Data-Driven Shape Analysis and Processing

If optimization is performed through a steepest descent algorithm,
the complexity is O(N · F ) per parameter update step. However,
the performance of iterative optimization algorithms depends on
the number of steps, which in turn varies according to their con-
vergence properties and the function they optimize. We refer the
reader to [NW06, KF09, Sol15] for an in-depth discussion on the
computational complexity and convergence properties of various
optimization and inference algorithms.

Scalability. Data-driven methods are inherently bound up with
the input data. Rapid developments in capturing and modelling
techniques have engendered the growth of 3D shape and scene
repositories over recent years, which have in turn influenced the ad-
vancement of data-driven geometry processing. This is evidenced by
the fact that the number of training shapes employed in data-driven
geometry processing techniques has grown from a few tens [KHS10,
SvKK*11] to several thousands [KLM*13, HWG14]. On the one
hand, the increasing availability of 3D data can improve the accuracy
and generalization of data-driven methods. On the other hand, issues
of scalability arise. More data cause longer processing times, which
in turn makes the debugging of such methods harder for developers.
The scalability issues are further exacerbated by the complexity (i.e.
high dimensionality) of the 3D geometric feature representations.
Potential workarounds include debugging the pipeline of these
methods on smaller data sets before turning to larger ones, trying
simpler learning techniques before switching to more complex ones
or making use of computing clusters for executing offline steps.

Scope of application. Not every problem in shape analysis and pro-
cessing is well-suited to be solved by a data-driven method. When
the underlying rules, principles and parameters can be manually and
unambiguously specified in a problem, then non-data-driven meth-
ods should be considered for it. For example, deforming a shape with
an elastic material and known physical parameters and forces can
be addressed by a physics-based method rather than a data-driven
one. In contrast, there are several problems in shape analysis and
processing for which it is hard, or even impossible, to hand-design
a set of rules and principles, or quantify them through manually
specified parameters. This is often the case for problems that in-
volve shape and scene recognition, high-level processing, structure
parsing, co-analysis, reconstruction from noisy missing data, and
modelling with high-level user input. Shape co-analysis (e.g. co-
segmentation), in particular, requires estimating several possible
geometric and semantic correlations among input shapes, which
would be practically impossible to capture through hand-designed
rules. Data-driven methods that automatically compute geometric,
semantic and structural relationships in the input shapes are more ap-
propriate for such co-analysis problems [XLZ*10, HKG11, HG13].
Another example can be found in the problem of shape style anal-
ysis. Although humans have an innate sense of style similarity, it
is hard to manually quantify geometric criteria for modelling the
stylistic similarity of shapes. A style analysis algorithm whose pa-
rameters are learned through a data-driven method is much more
well-suited to perform this quantification [LHLF15, LKS15].

Evaluation. Correctly evaluating the predictive performance of
data-driven methods should be another important consideration for
researchers of such methods. A common pitfall is to evaluate the

predictive performance of a data-driven method with the same data
set on which it was trained on (e.g. through supervised learning), or
a data set for which any parameters of the method were manually
tuned. The risk here is that the method might not be able to gen-
eralize to any other data sets beyond the ones used in training or
hand-tuning. A method that simply memorizes the training data set,
or overfits a model to a particular data set, will obviously perform
well there. However, if its performance on other data sets is poor,
the method is effectively useless. The best practice is to introduce
training and test splits of the input data sets. The models and pa-
rameters should then be learned or tuned exclusively on the training
portion, and evaluated exclusively on the testing portion. To insure
fair-play, it is also necessary that different data-driven methods be
compared using the same training and test splits.

Limitations The data-driven approach to shape analysis and pro-
cessing is bound by a few limitations that we summarize below. We
also discuss potential workarounds to overcome some of these.

� Generalization guarantees. It is generally hard to provide any
guarantees about the generalization performance of data-driven
algorithms. In other words, when a data-driven algorithm makes
use of a particular data set for training, it is often impossible to
predict how well it will generalize to other data sets beforehand.
Although statistical error bounds can be provided under partic-
ular assumptions on data distributions, in particular within the
context of the Probably Approximately Correct learning theory
[Val84] or the Bayes decision theory [Fuk90], these assumptions
often cannot be validated in practice.

� Complexity and scalability. As discussed above, data-driven
methods are computationally intensive in general. The complex-
ity of data-driven methods depends on the number of input train-
ing shapes. As a general rule of thumb, the accuracy of data-
driven methods improves with more training data. On the other
hand, this comes at a higher computational cost during training
time.

� Size of 3D shape data sets. Despite their recent growth, the size
of available 3D shape data sets remains much smaller than those
used in computer vision and natural language processing (e.g.
image and text data sets). As a result, overfitting remains a com-
mon issue with data-driven methods for 3D shape processing.
Overfitting occurs when a learned model, or function, captures
random error, noise or patterns specific only to the input training
data set instead of the underlying, correct relationships in the
data. It usually occurs when the learned model, or function, is
excessively complex, e.g. having an extremely large number of
parameters relative to the size of the training data set. To mitigate
this issue, regularization techniques can be used to favour sim-
pler models and functions [Ng04, Dom12]. Another promising
approach is to use both 3D shapes and 2D images as input to
data-driven methods, or in other words, to perform co-analysis
of image and shape data. We discuss this issue as one important
future research direction for further development in data-driven
methods in the next section.

� Data collection. Data-driven techniques rely on the availability
of data for the particular problem they attempt to solve. Gathering
training data for several geometry processing tasks is often not an
easy task, especially when human labour is involved to process
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or annotate geometric data. Although crowdsourcing Internet
marketplaces, such as Amazon Mechanical Turk [Ama09], can
help gather training data efficiently, online questionnaires and
user studies still require careful design, monetary compensation
and participant consistency checks.

� From data to knowledge. Data-driven methods put particular
emphasis on discovering patterns and models that explain the in-
put data and provide useful insights to the problem being solved.
However, these learned patterns and models might not always
be readily interpretable, i.e. might not correspond to ‘easy-to-
understand’ rules. This is a common situation when one treats
the internals of the data-driven method (e.g. the learning process)
as a ‘black box’ without first trying to understand their exact
functionality in detail. In general, interpreting such patterns and
models requires significant time and effort.

11. Conclusion and Open Problems

In this survey, we have so far discussed state of the art on data-driven
methods for 3D shape analysis and processing. We also presented the
main concepts and methodologies used to develop such methods. We
hope that this survey will act as a tutorial that will help researchers
develop new data-driven algorithms related to shape analysis and
processing. There are several exciting research directions that have
not been sufficiently explored so far in our community that we
discuss below:

Joint analysis of 2D and 3D data. Generating 3D content from
images requires building mappings from 2D to 3D space. Unfor-
tunately, the problem remains largely ill-posed. However, with the
help vast quantities of 2D images available on the web, effective pri-
ors can be developed to map 2D visual elements or features to 3D
shape and scene representations. Indeed, we have in fact seen recent
attempts made in this very vein of thought with some success in
[SHM*14, AME*14, LSQ*15, HOM15, SQLG15], which attempts
depth estimation through joint analysis over 2D image collections
and 3D model databases. We have also seen success of the joint
analysis framework in the setting of texture-data with [YCM14],
which attempts cosegementation of textured 3D shapes.

Following this line, it would be interesting to jointly analyse
and process multi-modal visual data, including depth scans and
videos. The key challenge lies in the integration of heterogeneous
information in a unified learning framework.

Better and scalable shape analysis techniques. Many data-driven
applications rely on high-quality shape analysis results, particularly
shape segmentations and correspondences. We believe it is impor-
tant to further advance research in both these directions. This in-
cludes designing shape analysis techniques for specific data and/or
making them scalable to very large data sets, especially recently
emerging large-scale richly annotated repositories [SSY*15].

From geometry to semantics and vice versa. Several data-driven
methods have tried to map 2D and 3D geometric data to high-
level concepts, such as shape categories, semantic attributes or
part labels. Gathering relevant training data is a key component
in achieving this aim, a task which remains a non-trivial endeavour.

Several recent promising works employ crowdsourcing to address
this issue [CGF09, CKG*13, LKS15, LHLF15, YCHK15]. Existing
methods deal with cases where only a handful of different entities
are predicted for input shapes or scenes. Scaling these methods to
handle thousands of categories, part labels and other such entities,
as well as attaining human-level performance, is an open problem.
The opposite direction is also interesting and insufficiently explored:
generating shapes and scenes based on high-level specifications such
as shape styles, attributes or even natural language. Such approaches
may even potentially be combined with further diverse inputs, such
as sketches and interactive handles, in the shape-generating pipeline.
WordsEye [CS01] was an early attempt to bridge this gap, yet re-
quires extensive manual mappings.

Understanding function from geometry. The geometry of a shape
is strongly related to its functionality, including the shape’s relation-
ship to human activity. Thus, analysing shapes and scenes requires
some understanding of their function. The recent works by Laga
et al. [LMS13], Kim et al. [KCGF14] and Hu et al. [HZvK*15]
are important examples of data-driven approaches that take into ac-
count functional aspects of shapes in the process of their analysis.
In addition, data-driven methods can guide the synthesis of shapes
that can be manufactured or 3D printed based on given functional
specifications; an example of such an attempt is reflected in the work
of Schulz et al.[SSL*14].

Data-driven shape abstractions. It is relatively easy for humans
to communicate the essence of shapes with a few lines, sketches
and abstract forms. Developing methods that can build such ab-
stractions automatically has significant applications in shape and
scene visualization, artistic rendering and shape analysis. There are
a few data-driven approaches to line drawing [CGL*08, KNS*09,
KNBH12], saliency analysis [CSPF12], surface abstraction [YK12]
and viewpoint preferences [SLF*11] related to this goal. Matching
human performance in these tasks is still a largely open problem,
while synthesizing and editing shapes using shape abstractions as
input remains a significant challenge.

Feature learning. Several shape and scene processing tasks de-
pend on engineering geometric features for points and shapes, as
discussed in Section 3. In general, it seems that some features work
well in particular settings, but can fail in others. A prevailing issue
is that universal geometric descriptors—features that can serve as
reliable mid or high-level representations ubiquitously across all
variety of shapes—do not yet exist.

Recent work in machine learning has demonstrated that pow-
erful feature representations can be learned directly from raw in-
put text and image data with deep architectures [HOT06, KSH12,
ZF14]. These architectures are composed of multiple processing
layers which learn representations of the input data at multiple lev-
els of abstraction. These data-driven representations are optimized
for processing-performance in complex interpretation tasks. Such
feature learning for 3D shapes with deep architectures has recently
been demonstrated in the context of shape classification [WSK*15,
SMKLM15, XXS*15, HKM15]. Learning features for performing
other complex high-level shape analysis and processing tasks re-
mains an open problem.
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MĚCH R.: Learning design patterns with Bayesian grammar in-
duction. In Proceedings of UIST (Cambridge, MA, USA, 2012),
pp. 63–74.

[Val84] VALIANT L. G.: A theory of the learnable. Communications
of the ACM 27, 11 (1984), 1134–1142.

[vKTS*11] VAN KAICK O., TAGLIASACCHI A., SIDI O., ZHANG H.,
COHEN-OR D., WOLF L., , HAMARNEH G.: Prior knowledge for
part correspondence. Computer Graphics Forum 30, 2 (2011),
553–562.

[vKXZ*13] VAN KAICK O., XU K., ZHANG H., WANG Y., SUN

S., SHAMIR A., COHEN-OR D.: Co-hierarchical analysis of
shape structures. ACM Transactions on Graphics 32, 4 (2013),
69:1–10.

c© 2016 The Authors
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.



32 K. Xu et al. / Data-Driven Shape Analysis and Processing

[vKZHCO11] VAN KAICK O., ZHANG H., HAMARNEH G., COHEN-OR D.:
A survey on shape correspondence. Computer Graphics Forum
30, 6 (2011), 1681–1707.

[WAvK*12] WANG Y., ASAFI S., VAN KAICK O., ZHANG H., COHEN-
OR D., CHEN B.: Active co-analysis of a set of shapes. ACM
Transations on Graphics 31, 6 (2012), 165:1–165:10.

[WBLP11] WEISE T., BOUAZIZ S., LI H., PAULY M.: Realtime
performance-based facial animation. ACM Transactions on
Graphics 30, 4 (2011), 77:1–77:10.

[WGW*13] WANG Y., GONG M., WANG T., COHEN-OR D., ZHANG H.,
CHEN B.: Projective analysis for 3D shape segmentation. ACM
Transactions on Graphics 32, 6 (2013), 192:1–192:12.

[WHG13] WANG F., HUANG Q., GUIBAS L.: Image co-segmentation
via consistent functional maps. In Proceedings of ICCV (Sydney,
Australia, 2013).

[WLVGP09] WEISE T., LI H., VAN GOOL L., PAULY M.: Face/off:
Live facial puppetry. In Proceedings of Symposium on Computer
Animation (Copenhagen, Denmark, 2009), pp. 7–16.

[WS13] WANG L., SINGER A.: Exact and stable recovery of rota-
tions for robust synchronization. Information and Inference 2, 2
(2013), 145–193.

[WSK*15] WU Z., SONG S., KHOSLA A., YU F., ZHANG L., TANG

X., XIAO J.: 3D shapenets: A deep representation for volumetric
shapes. In Proceedings of CVPR (Boston, MA, USA, 2015).

[XCF*13] XU K., CHEN K., FU H., SUN W.-L., HU S.-M.:
Sketch2scene: Sketch-based co-retrieval and co-placement of 3D
models. ACM Transactions on Graphics 32, 4 (2013), 123:1–12.

[XHS*15] XU K., HUANG H., SHI Y., LI H., LONG P., CAICHEN J., SUN

W., CHEN B.: Autoscanning for coupled scene reconstruction and
proactive object analysis. ACM Transactions on Graphics 34, 6
(2015), 177:1–177:14.

[XKHK14] XU K., KIM V., HUANG Q., KALOGERAKIS E.:
Wikipage: Data-driven shape analysis and processing. http://wp.
cs.umass.edu/datadrivenshape/.

[XLZ*10] XU K., LI H., ZHANG H., COHEN-OR D., XIONG Y., CHENG

Z.-Q.: Style-content separation by anisotropic part scales. ACM
Transactions on Graphics 29, 5 (2010), 184:1–184:10.

[XMZ*14] XU K., MA R., ZHANG H., ZHU C., SHAMIR A., COHEN-
OR D., HUANG H.: Organizing heterogeneous scene collections
through contextual focal points. ACM Transactions on Graph.
33, 4 (2014), 35:1–12.

[XSX*14] XU W., SHI Z., XU M., ZHOU K., WANG J., ZHOU B.,
WANG J., YUAN Z.: Transductive 3D shape segmentation using
sparse reconstruction. Computer Graphics Forum 33, 5 (2014),
107–115.

[XXLX14] XIE Z., XU K., LIU L., XIONG Y.: 3D shape segmentation
and labeling via extreme learning machine. Computer Graphics
Forum 33, 5 (2014), 85–95.

[XXM*13] XIE X., XU K., MITRA N. J., COHEN-OR D., GONG W.,
SU Q., CHEN B.: Sketch-to-design: Context-based part assembly.
Computer Graphics Forum 32, 8 (2013), 233–245.

[XXS*15] XIE Z., XU K., SHAN W., LIU L., XIONG Y., HUANG

H.: Projective feature learning for 3D shapes with multi-
view depth images. Computer Graphics Forum 34, 7 (2015),
1–11.

[XZCOC12] XU K., ZHANG H., COHEN-OR D., CHEN B.: Fit and di-
verse: Set evolution for inspiring 3d shape galleries. ACM Trans-
actions on Graphics 31, 4 (2012), 57:1–57:10.

[XZZ*11] XU K., ZHENG H., ZHANG H., COHEN-OR D., LIU

L., XIONG Y.: Photo-inspired model-driven 3D object mod-
eling. ACM Transactions on Graphics 30, 4 (2011), 80:1–
80:10.

[YCHK15] YUMER M. E., CHAUDHURI S., HODGINS J. K., KARA L. B.:
Semantic shape editing using deformation handles. ACM Trans-
actions on Graphics 34 (2015), 86:1–86:12.

[YCM14] YUMER M. E., CHUN W., MAKADIA A.: Co-segmentation
of textured 3D shapes with sparse annotations. In Proceedings of
CVPR (Columbus, OH, USA, 2014).

[YK12] YUMER M. E., KARA L. B.: Co-abstraction of shape col-
lections. ACM Transactions on Graphics 31, 6 (2012), 166:1–
166:11.

[YK14] YUMER M., KARA L.: Co-constrained handles for deforma-
tion in shape collections. ACM Transactions on Graphics 32, 6
(2014), 187:1–187:11.

[YN10] YU K., NG A.: Feature learning for image classification. In
ECCV Tutorials (2010).

[ZF14] ZEILER M. D., FERGUS R.: Visualizing and understand-
ing convolutional neural networks. In Proceedings of ECCV
(2014), 187:1–187:1.

[ZKP10] ZACH C., KLOPSCHITZ M., POLLEFEYS M.: Disambiguating
visual relations using loop constraints. In Proceedings of CVPR
(Colorado Springs, CO, USA, 2010).

[ZMT05] ZHANG E., MISCHAIKOW K., TURK G.: Feature-based sur-
face parameterization and texture mapping. ACM Transactions
on Graphics 24, 1 (2005), 1–27.

[ZSSS13] ZIA M. Z., STARK M., SCHIELE B., SCHINDLER K.: Detailed
3D representations for object recognition and modeling. IEEE
Transactions on Pattern Analysis and Machine Intelligence 35,
11 (2013), 2608–2623.

[ZWK14] ZHAO X., WANG H., KOMURA T.: Indexing 3D scenes using
the interaction bisector surface. ACM Transactions on Graphics
33, 3 (2014), 22:1–22:15.

[ZXTZ14] ZHANG Y., XU W., TONG Y., ZHOU K.: Online structure
analysis for real-time indoor scene reconstruction. ACM Trans-
actions on Graphics 34, 5 (2014), 159:1–159:12.

c© 2016 The Authors
Computer Graphics Forum c© 2016 The Eurographics Association and John Wiley & Sons Ltd.




