
Predicting Animation Skeletons for 3D Articulated Models via Volumetric Nets

Zhan Xu1 Yang Zhou1 Evangelos Kalogerakis1 Karan Singh2

1 University of Massachusetts Amherst 2 University of Toronto

Abstract

We present a learning method for predicting animation
skeletons for input 3D models of articulated characters. In
contrast to previous approaches that fit pre-defined skeleton
templates or predict fixed sets of joints, our method pro-
duces an animation skeleton tailored for the structure and
geometry of the input 3D model. Our architecture is based
on a stack of hourglass modules trained on a large dataset
of 3D rigged characters mined from the web. It operates on
the volumetric representation of the input 3D shapes aug-
mented with geometric shape features that provide addi-
tional cues for joint and bone locations. Our method also
enables intuitive user control of the level-of-detail for the
output skeleton. Our evaluation demonstrates that our ap-
proach predicts animation skeletons that are much more
similar to the ones created by humans compared to several
alternatives and baselines.

1. Introduction
Skeleton-based representations are compact representa-

tions of shapes that are particularly useful for shape analy-
sis, recognition, modeling, and synthesis for both computer
vision and graphics applications [32, 12, 59]. Shape skele-
tons vary in definition and representation from precise geo-
metric concepts, such as the medial axis [4], to a coarse set
of joints, possibly connected via straight segments (bones).
Such jointed skeletons have been broadly used for object
recognition [76, 13] and shape matching [58]. Another im-
portant variation of jointed skeletons are the ones that cap-
ture shape pose and mobility of underlying parts. In com-
puter vision, these skeletons have been widely used for pose
estimation [16, 56, 68, 10, 40] and hand gesture recognition
[37, 20, 45]. In computer graphics, such skeletons are used
for animating articulated characters [31, 3, 55, 7]. Artists
often hand-craft animation skeletons for 3D models (a pro-
cess known as “rigging”), and also specify the association
of the 3D model geometry with the skeleton (known as
“skinning”). As a result, the 3D model is animated when hi-
erarchical transformations are applied to the skeletal joints.

This paper presents a deep learning approach to predict
animation skeletons of 3D models representing articulated
characters. In contrast to existing 3D pose estimation meth-

Figure 1. Examples of our predicted animation skeletons for vari-
ous test 3D models. Joints are shown in red color, bones in blue.

ods that predict jointed skeletons for specific object classes
(e.g., humans, hands) [56, 37, 20, 41, 19, 70], and in con-
trast to existing graphics approaches that fit pre-defined
skeletal templates to 3D meshes [3], our method learns a
generic model of skeleton prediction for 3D models: it can
extract plausible skeletons for a large variety of input char-
acters, such as humanoids, quadrupeds, birds, fish, robots,
and other fictional characters (Figure 1). Our method does
not require input textual descriptions (labels) of joints, nor
requires prior knowledge of the input shape category.

There are several challenges in developing such generic
approach. First, predicting jointed skeletons for a single
static 3D model, without any additional information (shape
class, part structure, joint labels), is under-constrained and
ambiguous. To tackle this issue, we mined a large dataset
of rigged 3D characters from online resources to train our
model. Since the number and type of target joints and bones
are unknown for the input shape, an additional challenge for
our method is to predict an appropriate skeleton tailored for
the input 3D model such that it captures the mobility of its
underlying articulating parts. To form a complete anima-
tion skeleton, our method also needs to learn how to con-
nect the predicted joints. Finally, one more challenge is to
enable user control on the granularity or level-of-detail of
the output skeleton since different applications or users may
require a coarser skeleton than others (Figure 2).

Our evaluation demonstrates that our method outputs

1



Figure 2. Effect of increasing the user parameter that controls the
level-of-detail, or granularity, of our predicted skeleton. Red boxes
highlight the changes in the output skeleton.

skeletons that are much closer to the ones created by hu-
man users and animators compared to several alternatives
and baselines. Our contributions are the following:
• A deep architecture that incorporates volumetric and ge-

ometric shape features to predict animation skeletons tai-
lored for input 3D models of articulated characters.

• A method to control the level-of-detail of the output
skeleton via a single, optional input parameter.

• A dataset of rigged 3D computer character models mined
from the web for training and testing learning methods
for animation skeleton prediction.

2. Related Work
Our work is most related to deep learning methods for

skeleton extraction, 3D pose estimation, and character rig-
ging. Here we provide a brief overview of these approaches.

Geometric skeletons. Early algorithms for skeleton ex-
traction from 2D images were based on gradients of in-
tensity maps or distance maps to the object boundaries
[25, 57, 72, 39, 73, 26]. Other traditional methods used lo-
cal symmetries, Voronoi diagrams, or topological thinning
as cues for skeleton extraction [2, 1, 29, 24, 23, 49, 62]. As
in the case of other image processing tasks, object skeleton
extraction was significantly advanced by deep learning ar-
chitectures. Most deep learning approaches treat the skele-
ton extraction problem as a binary classification problem
where the goal is to detect pixels that lie close to the medial
axis of the object in the image [54, 53, 22, 74, 27]. Alter-
natively, a 2D displacement or flux field can be computed
from image points to geometric skeleton points [67].

Similarly to 2D traditional approaches for skeleton ex-
traction, there has also been significant effort to extract 3D
geometric skeletons, or medial surfaces (the 3D analog of
the 2D medial axis) from 3D shapes. We refer the reader to
[59] for a recent survey. Alternatively, a 3D displacement
field can be extracted through a deep learning architecture
that maps 3D point sets to cross-sections of shapes, yet it
cannot readily predict thin structures [71]. More related to
our work are methods that attempt to extract well-defined
curve skeletons from 3D shapes [60, 9, 21]. However, the
resulting geometric skeletons still do not correspond to an-
imation skeletons i.e., their extracted segments do not nec-

essarily correspond to rigidly moving parts, while their ex-
tracted joints often do not lie near locations where rigid
parts are connected. In addition, geometric skeletons may
produce segments for non-articulating parts (i.e., parts that
lack their own motion). Since our goal is to provide a skele-
ton that is similar to what an animator would expect, our
training data, loss function, and architecture are designed to
extract animation skeletons rather than geometric ones.

3D Pose Estimation. Our work is also related to 3D
pose estimation methods that try to recover 3D locations
of joints from 2D images or directly from 3D point cloud
and volumetric data (see also [30, 50] for related sur-
veys). Most recent methods use deep architectures to ex-
tract joints for humans [48, 19, 41, 33, 38, 75, 61, 42], hands
[15, 37, 20, 63, 15, 64, 14], and more recently some species
of animals [43]. However, all these approaches aim to pre-
dict a pre-defined set of joints for a particular class of ob-
jects. In our setting, our input 3D models drastically dif-
fer in class, structure, geometry, and number of articulating
parts. Our architecture is largely inspired by the popular
2D/3D stacked hourglass networks used in pose estimation
[40, 37]. However, we made several adaptations for our
task, including adopting a loss function to jointly predict
joints and bones and incorporating geometric features as ad-
ditional cues to discover joints. Finally, since we do not as-
sume any prior skeletal structure, we recover the underlying
connectivity of the animation skeleton through a minimum
spanning tree algorithm driven by our neural network.

Automatic Character Rigging. A popular method for
automatically extracting an animation skeleton for an input
3D model is Pinocchio [3]. The method fits a pre-defined
skeleton template with a fixed set of joints to a 3D model
through a combination of discrete and continuous optimiza-
tion. The method can evaluate the fitting cost for different
templates, and select the best one for a given model. How-
ever, hand-crafting templates to accommodate the geomet-
ric and structural variability of all possible different articu-
lated characters is extremely hard. Our method aims to learn
a generic model of skeleton prediction without requiring
any particular input templates, shape class information, or
a specific set of target joints. Our experiments demonstrate
that our method predicts skeletons that are much closer to
the ones created by animators compared to Pinocchio. Re-
cently, a neural network method was proposed to deform a
3D model based on a given input animation skeleton [28].
Our method can be used in conjunction with such skinning
approaches to fully automate character rigging pipelines.

3. Overview
Given the input geometry of a 3D character model, our

goal is to predict an animation skeleton that captures the
mobility of its underlying parts. Our method has the fol-
lowing key components.



MST

Pj
(1)

Pb
(1)

...

Pj
(4)

Pb
(4)

output
skeleton

residual
blocks

residual
blocks

Encoder Decoder

intermediate
joint & bone
probabilities

output
joint & bone
probabilities

...

3D shape

SDF

dens

k1

k2

local
diam

input skeleton
granularity
parameter

residual
blocks

residual
blocks

Encoder Decoder

input skeleton
granularity
parameter

conv
conv concat

input
 channels

low high

conv

Figure 3. Pipeline of our method and deep architecture. Given an input 3D shape, we first convert it into a set of geometric representations
(channels) expressed in a volumetric grid: SDF (signed distance function), LVD (local vertex density), principal surface curvatures (k1,
k2), surface LSD (local shape diameter). We visualize cross-sections of these representations for the input shape. The input representation
is processed through a stack of 3D hourglass modules. The second hourglass module is repeated two more times. Each module outputs
joint and bone probabilities in the volumetric grid (visualized through cross-sections), which are progressively refined by the next module.
The final joint and bone probabilities are processed through a Minimum Spanning Tree (MST) algorithm to extract the final skeleton.

Simultaneous joint and bone prediction. In general, in-
put characters can vary significantly in terms of structure,
number and geometry of moving parts. Figure 4 shows ex-
amples of 3D models of characters rigged by artists from
our collection. A single template or a fixed set of joints
cannot capture such variability. Our method predicts a set of
joints tailored for the input character. In addition, since the
connectivity of joints is not known beforehand, and since
simple connectivity heuristics based on Euclidean distance
easily fail (Figure 5), our method also predicts bone seg-
ments to connect the joints. Finally, since joint and bone
predictions are not independent of each other, our method
simultaneously learns to extract both through a shared stack
of encoder-decoder modules, shown in Figure 3. The stack
of modules progressively refines the simultaneous predic-
tion of bones and joints in a coarse-to-fine manner.

Input shape representation. Our input 3D models are
in the form of polygon mesh soups with varying topology,
number of connected components, and resolution. To pro-
cess them, we need to convert them into a representation
that can be processed by deep networks. Our choices of
deep network and input shape representation were moti-
vated by the fact that the target property we wish to predict,
i.e., the animation skeleton, predominantly lies in the inte-
rior of the shape. A volumetric network is well suited for
this task due to its ability to make predictions away from
the 3D model surface. In the context of shape reconstruc-
tion, volumetric networks [35, 69, 47] usually discretize the
shape into a set of binary voxels that may lose surface detail.
Following [11], we instead use an implicit shape represen-
tation, namely Signed Distance Function (SDF), as input
to our volumetric network. In addition, we found that addi-
tional geometric cues in the form of surface curvature, shape
diameter, and mesh vertex density were also useful for our
task. The choice of these particular geometric cues were
motivated by the following observations: (a) joints are usu-
ally located near surface protrusions (e.g. knees, elbows) or

concave regions (e.g., neck); principal surface curvatures
are useful to characterize such areas, especially in high-
resolution meshes, (b) local shape diameter [52] changes
drastically at joints where limbs are connected (e.g., hip
joint); in addition, a part with constant shape diameter is
usually rigged with a single bone, and (c) artist-designed
3D meshes usually include more mesh vertices near joints
to promote smoother skinning and deformations; thus, local
vertex density can also help to reveal joints. We found that
a combination of these geometric cues with the SDF repre-
sentation yielded the best accuracy in skeleton prediction.

User Control. Apart from the geometry of the input 3D
model, our method also optionally takes as input a single
input parameter controlling the desired granularity, or level-
of-detail of the output skeleton. The reason for allowing
user control is that the choice of animations skeleton of-
ten depends on the task. For example, modeling crowds of
characters observed from a distant camera usually does not
require rigging small parts or extremities, such as fingers,
ears and so on, since the animation of these parts would
not be noticeable and would also cause additional computa-
tional overhead. In other applications, such as first-person
VR environments or game environments, rigging such parts
is more important. We also observed this kind of variance
also in our training dataset (Figure 4, right column): the
skeletons of similar 3D models of characters differ espe-
cially near small parts (e.g., foot, nose, and so on). Dealing
with this variance is also important for learning; training
with inconsistent skeletons worsens the accuracy in the joint
and bone prediction. By conditioning our predictions on an
input parameter capturing the desired minimum diameter
of parts to be rigged, training converged faster and yielded
skeletons closer to the ones created by artists. We also ex-
perimented with conditioning our architecture on other pa-
rameters, such as desired minimum or average spacing be-
tween joints, yet we did not find any significant improve-
ments. At test time, the user can interactively change the



Figure 4. Artist-rigged 3D models from our training database.

input parameter or just use the default value, which tends to
produce a moderately coarse skeleton.

Cross-category generalization. Our architecture is
trained on a diverse set of character categories, includ-
ing humanoids, bipeds, quadrupeds, fish, toys, fictional
characters, to name a few, with the goal to predict an
“as-generic-as-possible” model, i.e., a model that generally
captures moving parts and limbs in articulated characters.

4. Architecture
The pipeline of our method is shown in Figure 3. It starts

by converting the input 3D model into a discretized implicit
surface representation augmented with geometric features.
The resulting representation is processed through a deep
network that outputs bone and joint probabilities. The final
stage extracts the animation skeleton based on the predicted
probabilities. Below we discuss the stages of our pipeline
in more detail, then in the next section we discuss training.

Input Shape Representation. Our input 3D models are
in the form of polygon mesh soups. Our only assump-
tion is that they are consistently oriented. The first stage
of our pipeline is to convert them into a shape representa-
tion, which can be processed by 3D deep networks. To this
purpose, we first extract an implicit representation of the
shape in the form of the Signed Distance Function (SDF)
extracted through a fast marching method [51]. In our im-
plementation, we use a regular 883 grid. Figure 3 visualizes
the SDF channel for a cross-section of an input shape.

In addition, we found that incorporating additional ge-
ometric cues increases the prediction accuracy of our
method. Specifically, we compute the two surface princi-
pal curvatures through quadratic patch fitting [18, 17] on a
dense point-based sampling of the surface. We also com-
pute the local shape diameter [52] by casting rays opposite
to the surface normals. For each volumetric cell intersect-

ing the surface (i.e., surface voxel), we record the two prin-
cipal curvatures and local shape diameter averaged across
the surface points inside it. Finally, we also experimented
with adding one more channel that incorporates input mesh
information in the form of vertex density. This choice is mo-
tivated by the observation that artist-designed meshes usu-
ally contain more vertices near areas that are expected to
contain joints to promote smoother skinning. To incorpo-
rate this information, we perform kernel density estimation
by using a 3D Gaussian kernel centered at each mesh ver-
tices, and record the estimated density at the center of each
cell. The more vertices exist in a local 3D region, the higher
the recorded density is for neighboring cells. The kernel
bandwidth is set to 10 times the average mesh edge length
(estimated through grid search in a hold-out validation set).

In total, each volumetric cell records five channels: SDF,
two principal curvatures, local shape diameter, and vertex
density. Thus, the resulting input shape representation S has
size 88× 88× 88× 5. We note that non-surface voxels are
assigned with zero value for the two principal curvature and
local shape diameter channels. Through volumetric convo-
lution, the network can diffuse the surface properties in the
grid, and combine them with the rest of the channels. In
our supplementary material, we discuss the effects of using
each of these five channels in the predicted skeletons. We
also note that for different input 3D models, some channels
might be more relevant than others. For example, in the case
of input meshes with near-uniform vertex density (e.g., re-
constructed or re-meshed ones), the density channel is not
expected to be useful. We let the learning process to weigh
the input channels depending on the input accordingly

Hourglass module. The input shape representation is
processed through a 3D hourglass network variant inspired
by Huang et al. [20] and Moon et al. [37]. For our variant,
the input shape representation is first processed through a
volumetric convolutional layer and a residual block whose
goal is to learn a combination of the different input features.
The convolution layer has a 3D kernel of size 5 × 5 × 5,
and the residual block contains two convolutional layers
with kernels 3 × 3 × 3 and stride 1. The output of this
residual block is a new shape feature map S(1) of size
88 × 88 × 88 × 8. This representation is subsequent pro-
cessed by an encoder module with three residual blocks that
progressively encode volumetric feature maps capturing in-
creasingly larger and complex context in the input shape.
Specifically, each of these three residual blocks consist of
two volumetric convolutional layers with 3 × 3 × 3 filters
and stride 1, and followed by another convolutional layer
with stride 2. Each stride-2 convolutional layer downsam-
ples its input feature map by a factor of 2. The last residual
block in the encoder produces a 11 × 11 × 11 × 36 map,
which can be thought of as a compact “code” of the input
shape.

At this point, our architecture processes an input user



parameter between [0, 1] corresponding to the granularity
of the desired skeleton. The smaller the parameter is, the
more the skeleton is extended to fine-grained, thinner parts.
Figure 2 demonstrates the effect of varying this parameter to
the skeleton. In case of no user input, a default value of 0.02
is used (tuned through hold-out validation). The parameter
is first transformed to a 11 × 11 × 11 × 4 map, then is
concatenated with the last feature map produced in the last
residual block of the encoder resulting in a 11×11×11×40
map passed to the decoder.

The decoder is made out of 3 residual blocks that are
symmetric to the encoder. Each block is followed by a
transpose convolutional layer that generates a feature map
of progressively increasing resolution of factor 2. Since
the feature map produced in the last residual block of the
encoder encodes more global information about the shape,
and may lose local details, each residual block of the de-
coder also accesses an earlier, corresponding feature map
of the encoder after processing it through another residual
block, as typically done in hourglass architectures [40]. The
decoder outputs a feature map with the same resolution as
the input (size 88 × 88 × 88 × 8). The feature map is pro-
cessed by two separate branches, each consisting of a resid-
ual block and two more volumetric convolutional layers,
that decrease the dimensionality of the feature maps from 8,
to 4 and then 1. The last feature maps from both branches
are processed through a sigmoid function that outputs two
probability maps individually: P(1)

j (see Figure 3 for an ex-
ample) represents the probability for each voxel to contain
a skeletal joint, and P

(1)
b represents the probability for each

voxel to be on a bone.

Stacked hourglass network. The predictions of joints
and bones are inter-dependent i.e., the location of joints
should affect the location of bones and vice versa. To
capture these inter-dependencies, we stack multiple hour-
glass modules to progressively refine the joint and bone
predictions based on previous estimates. This stack also
yielded better predictions, as we discuss in the results sec-
tion. Specifically, the output maps {P(1)

j ,P
(1)
b } are first

concatenate with the shape feature presentation S(1) ex-
tracted in the first module, resulting in a 88× 88× 88× 10
representation. This is processed through a second hour-
glass module resulting in refined joint and bone probability
maps {P(2)

j ,P
(2)
b }. These are subsequently processed by

an identical third and similarly a fourth hourglass module.
The last module outputs the final joint and bone probability
maps {Pj = P

(4)
j ,Pb = P

(4)
b }. We discuss the effect of

stacking multiple modules in our results section. Details for
the architecture are provided in the supplementary material.

Skeleton extraction. The output map of joints and bones
extracted from the last module of our hourglass architec-
ture are already approximate, probabilistic indicators of the

Figure 5. Left: Joints detected by our method. Middle: Skeleton
created with Prim’s algorithm using Euclidean distance as cost.
Right: Skeleton created with Prim’s algorithm using the negative
log of our output bone probabilities as cost.

skeletal joints and bones. As shown in the output maps in
Figure 3, neighboring voxels often have correlated prob-
abilities for joints. To avoid multiple near-duplicate joint
predictions, we apply non-maximum suppression as a post-
processing step to obtain the joints of the animation skele-
ton. We found that the soft non-maximum suppression
procedure by Bodla et al. [5] is effective at pruning non-
maxima in the joint probability map. We adopt their method
in our case as follows: we start with the voxel having the
highest joint probability, create a skeletal joint in its posi-
tion, then decay the probability of its neighborhood using a
3D isotropic Gaussian with standard deviation σ = 4.5 (the
deviation is tuned in a hold-out validation set). We proceed
with the next voxel with the second highest probability in
the updated map, create a skeletal joint, and again decay the
probability of its neighborhood. The procedure stops until
we cannot find any more joints with higher probability than
a threshold t = 0.013 (also tuned through hold-out valida-
tion). We also found useful to symmetrize the output prob-
ability map for symmetric characters before non-maximum
suppression to ensure that the extracted joints will be sym-
metric in these cases. Specifically, we first check if the in-
put character has a global bilateral symmetry. If it does, we
reflect and average the output probability maps across the
detected symmetry plane, then apply non-maximum sup-
pression.

After extracting the joints, the next step is to connect
them through bones. Relying on simple heuristics, such as
connecting nearest neighboring joints based on Euclidean
distance often fails (Figure 5a) resulting often in wrong
connectivity. Instead, we use a Minimum Spanning Tree
(MST) algorithm that minimizes a cost function over edges
between extracted joints representing candidate skeleton
bones. The MST algorithm also guarantees that the output
animation skeleton is a tree, as typically required in graph-



Figure 6. Examples of augmentation of our training dataset.
Left: Training 3D models. Middle: Generated variants through
anisotropic scaling. Right: Generated variants with different pose.

ics animation pipelines to ensure uniqueness of the hierar-
chical transformations applied to the bones. The cost func-
tion is driven by the bone probability map extracted by our
network. If an edge between two skeletal joints intersects
voxels with low bone probability, then the edge has a high
cost of being a bone. If the edge instead passes through a
high bone probability region, then the cost is low. Math-
ematically, given an edge between joints i and j, the 3D
line segment li,j connecting them, and the predicted bone
probability Pb(v) for each voxel that is intersected by this
line segment (v ∈ lij), the cost for this edge is defined as
follows:

wi,j = −
∑
v∈li,j

logPb(v)

We note that we use sum instead of the average of the bone
voxel probabilities for the edge costs in the above formula.
In this manner, if there are two edges that are both cross-
ing the same high-probability bone regions, the shorter edge
will be preferred since nearby joints are more likely to be
connected. To prevent bones from going outside the shape,
we also set the edge cost of voxels that lie outside the shape
to a large number (105 in our implementation).

After forming a graph connecting all-pairs of joints, we
use the Prim’s algorithm [44] to extract the tree with a min-
imum total cost over its edges. The root joint is selected
to be the one closest to the shape centroid. The extracted
edges represent the bones of our animation skeleton.

5. Training
Our training procedure aims to optimize the parameters

of our architecture such that the resulting probability maps
agree as much as possible with the training joints and bone
locations. Below we discuss the procedure to train our ar-
chitecture and the details of our dataset.

Dataset. We first collected a dataset of 3277 rigged char-
acters from an online repository, called Models Resource
[46]. The models spanned various categories, including hu-
manoids, quadrupeds, birds, fish, robots, toys, and other fic-

tional characters. The vast majority of models are in a sym-
metric, neutral pose. We excluded any duplicate models
by examining both the Chamfer distance (average point-to-
nearest-point distance) between the surface of the models,
and also intersection over union based on their volumetric
representations. The check also included varying the pose
of each model. Most of the models were consistently ori-
ented in terms of front-facing and upright axis. The rest
were corrected manually (about 30% of the models). The
models were centered such that they are grounded on the
x-z plane, and their centroid projection on x-z plane was at
(0, 0). They were also scaled such that the length of their
longest dimension is 1.

Splits. After re-orientation, re-scaling and de-duplication,
our dataset contained 3193 models. The average number of
joints per character in our dataset was 26.4. The supplemen-
tary material provides more statistics and a histogram over
the number of joints across the models of our dataset. We
split our dataset into 80% for training (2, 554 models), 10%
for hold-out validation (319 models), and 10% for testing.

Augmentation. The training split was relatively small,
thus, we considered two useful types of augmentations: (a)
scaling the model anisotropically along each of the 3 axes
using a random scaling amount between 0.5 and 1.5, (b)
we apply a random rotation between 30 and 50 degrees to
joints. If two joints found to be symmetric after checking
for bilateral symmetry (e.g. hips), we apply the same ran-
dom rotation to both. These augmentations promoted in-
variance to pose variations, and invariance to scaling. We
rejected augmentations that resulted in severe, geometric
self-penetrations. Examples are shown in Figure 6. In to-
tal, we generated up to 5 variations of each model in our
training split, resulting totally in 15, 526 training models.

Training objective. The training 3D models are vox-
elized in a 883 volumetric grid, and the input feature chan-
nels (signed distance function, principal curvatures, local
shape diameter, and mesh density) are extracted for them.
To train our network, we also need a value for the input
granularity control parameter, which captures the minimum
shape diameter of part to be rigged per training shape. We
set this automatically based on the input training shape ge-
ometry and skeleton: for each model, we find the surface
points nearest to its training bones and compute their local
shape diameter. We set this parameter equal to the fifth per-
centile of the local shape diameter across these points. We
used the fifth percentile instead of the minimum for robust-
ness reasons.

Then for each training model m, we generate a target
map for joints P̂v,m and bones P̂b,m based on their anima-
tion skeleton. Specifically, at each joint position, we create
a small 3D isotropic Gaussian heatmap with unit variance.
The target joint map is created by aggregating the individ-
ual heatmaps and discretizing them into the same volumet-



ric grid. If a voxel is affected by more than one heatmaps,
we use the max value over them. This strategy of diffusing
the target joint maps (instead of setting individual voxels to
ones when they contain joints) led to faster convergence and
more accurate skeletons at test time. Another reason for do-
ing this is that the skeletons were manually created by mod-
elers, and as a result, the joint positions are not expected
to be perfect. The same strategy is followed for generat-
ing the target bone map: we create a 3D isotropic Gaussian
heatmap at dense samples over bones, then aggregate them
and discretize them into the volumetric grid.

The cross-entropy can be used to measure the difference
between our predicted probability maps Pb,m,Pj,m and the
target heat maps P̂b,m, P̂b,m for each voxel v. The cross
entropy for joints is defined as follows:

Lj [v] = P̂j(v) log(Pj(v)− (1− P̂j(v)) log(1−Pj(v))

The cross entropy for bones is similarly defined as follows:

Lb[v] = P̂b(v) log(Pb(v)− (1− P̂b(v)) log(1−Pb(v))

We note that in contrast to the binary cross-entropy used in
classification tasks where the target variables are binary, in
our case these are soft due to the target map diffusion.

A large number of volumetric cells lie in the exterior
of the 3D model and do not contain any joints and bones.
These cells do not carry useful supervisory signal, and can
dominate the loss if we simply sum up the cross-entropy
across all voxels. To prevent this, we use a masked loss.
Specifically, for each training shape s, we compute the mask
Ms, which is set to 1 for voxels that are on the surface or
the interior of the model, and 0 otherwise. The final loss
used to train our model is the following:

L =
∑
s

1

Ns

∑
v

Ms[v](Lj [v] + Lb[v]) (1)

where Ns =
∑

vMs[v]. The loss is applied to the output
of all hourglass modules of our stack architecture. We also
note that applying different weights for the joint and bone
losses did not improve the performance.

Optimization. We use the Adam optimizer to minimize
the loss. Our implementation is done on PyTorch. Hyper-
parameters, including the Gaussian kernel bandwith for the
density channel, the parameters of the non-maximum sup-
presion, and variance for diffusion of target maps are set
through grid search in the hold-out validation set to mini-
mize the same loss. In addition, we choose a default value
for the input user parameter also through grid search in our
hold-out validation set.

6. Results
We evaluated our method and alternatives quantitatively

and qualitatively on the test split of our dataset. Below, we
discuss results and comparisons.

Quantitative evaluation measures. The goal of our
quantitative evaluation is to numerically measure the sim-
ilarity of the predicted skeletons to the ones created by de-
signers (denoted as “reference” skeletons in the following
paragraphs). We rely on several measures to quantify this
similarity. The first evaluation measure is the Chamfer dis-
tance between joints (CD-joint). Specifically, given a test
shape, we measure the Euclidean distance from each pre-
dicted joint to the nearest joint in its reference skeleton,
then compute the average over the predicted joints. The
Euclidean distance is divided by the length of the longest
axis in the input shape. We also compute the Chamfer dis-
tance the other way around i.e., we compute the distance
from each joint in the reference skeleton to the nearest pre-
dicted joint. We then take the average of these two dis-
tance measures resulting in a symmetrized Chamfer dis-
tance. We report this distance measure averaged over our
test shapes. The higher the value is for CD-joint, the more
erroneous the placement of the predicted joints is. To fur-
ther characterize the misplacement, we use a second mea-
sure, which is the Chamfer distance between joints and
bones (CD-joint2bone). Given a shape, we measure the
Euclidean distance from each predicted joint to the near-
est bone point on the artist-created skeleton, then compute
the average. As in the case the previous measure, also we
symmetrize this measure by evaluating the distance from
the reference skeleton joints to the predicted bones. If CD-
joint2bone is much lower than CD-joint, it indicates that the
predicted and reference skeletons overlap, yet the joints are
misplaced along the direction of the bones. Ideally, both
CD-joint2bone and CD-joint2bone should be low.

Another evaluation measure we use is the matching rate
of the predicted joints (MR-pred): this is defined as the per-
centage of predicted joints whose distance to their nearest
reference ones is lower than a prescribed tolerance. In other
words, if a predicted joint is located closer to a reference
joint than this tolerance, it counts as a correct prediction.
Similarly, we also define the matching rate of the reference
joints (MR-ref). This is the percentage of reference joints
whose distance to their nearest predicted joints is lower
than the tolerance. The tolerance is normalized by the lo-
cal shape diameter evaluated at the nearest reference joint.
This is computed by casting rays perpendicular to the bone
starting at this joint and computing the average distance be-
tween intersection points at the surface along opposite ray
directions. The reason for using this normalization is that
at increasingly thinner parts, joint misplacement becomes
more pronounced e.g., a predicted joint may have low ab-
solute distance to the nearest reference joint, but is located
outside the shape.

Comparisons. Our method was evaluated against the fol-
lowing prior works. First, we compare with Pinocchio
[3], which fits a template skeleton selected for each input
model. The template is automatically selected among a set



Figure 7. Comparisons of different methods for representative test characters. In each group, the green one indicates the artist-created
(reference) skeleton, and the blue ones, from left to right, are our prediction, result from Pinocchio, result from the L1-median method.

Table 1. Evaluation for all competing methods

Method CD-joint CD-joint2bone MR-pred MR-ref
Pinocchio 7.4% 5.8% 55.8% 45.9%
L1-median 5.7% 4.4% 47.9% 63.2%

Ours 4.6% 3.2% 62.1% 68.3%

of predefined templates (humanoid, short quadruped, tall
quadruped, and centaur) by evaluating the fitting cost for
each of them, and choosing the one with the minimum one.
Second, we compare with the L1-medial skeleton that com-
putes a geometric skeleton representation for an input point
set, representing its localized center. To compute the L1
medial skeleton, we uniformly sample the surface of each
input shape with 1000 points. The method also creates a
set of joints through morphological operations. We tune
the parameters of the method in our hold-out validation set
through grid search.

Table 1 reports our evaluation measures for all the com-
peting methods. Our method achieves the lowest Chamfer
distances (CD-joint, CD-joint2bone). Our CD-joint2bone
measure is also lower than CD-joint indicating that our pre-
dicted skeletons tend to overlap more with the reference
ones, and errors are mostly due to misplacing joints along
the bones of the reference skeleton. In addition, for a con-
servative tolerance of 0.5 of the local shape diameter, our
method achieves the highest marching rates. All evaluation
measures indicate that our method produces more accurate
skeletons with respect to the reference ones. Figure 7 shows
the reference skeletons and predicted ones from different
methods for some characteristic test shapes. We observe
that our methods tends to output skeletons whose joints and
bones are closer to the artist-created ones.

Ablation study. In our supplementary material, we
present evaluation of alternative choices for our method.
All the variants are trained in the same split, and tuned in
the same hold-out validation set in the same manner as our

original method. We examined the effect of different num-
bers of hourglass modules in our architecture. We observed
that the performance saturates when we reach 4 hourglass
modules. We also evaluated the effect of geometric features
and the input granularity control parameter. We found that
all are useful to increase the performance. Finally, we ex-
amined the effect of predicting only joints and connecting
them based on Euclidean distance as cost for Prim’s algo-
rithm. We observed that the performance degrades without
driving it through our bone predictions. We refer the reader
to the supplementary material for our ablation study.

7. Conclusion

We presented a method for learning animation skeletons
for 3D computer characters. To the best of our knowl-
edge, our method represents a first step towards learning
a generic, cross-category model for producing animation
skeletons of 3D models.

There are still several limitations. First, the method is
based on a volumetric networks with limited resolution,
which can result in missing joints for small parts, such as
fingers, or misplacing other joints, such as knees and el-
bows. In the future, it would be interesting to investigate
other networks, such as octree-based ones [65, 47, 66],
graph or mesh-based ones [34, 6, 36, 8, 28]. The anima-
tion skeleton is produced through a post-processing stage in
our method, which might result in undesirable joint connec-
tivity (e.g., see shoulder joints for the four-armed alien of
Figure 7). An end-to-end method would be more desirable.
It would also be interesting to investigate learning methods
that jointly estimate skinning weights [28] and animation
skeletons.

Acknowledgements. This research is funded by NSF
(CHS-161733). Our experiments were performed in the
UMass GPU cluster obtained under the Collaborative Fund
managed by the Massachusetts Technology Collaborative.



References
[1] N. Amenta and M. Bern. Surface reconstruction by voronoi

filtering. In Proc. SGC, 1998. 2
[2] D. Attali and A. Montanvert. Computing and simplifying 2d

and 3d continuous skeletons. Comput. Vis. Image Underst.,
67(3), 1997. 2

[3] I. Baran and J. Popović. Automatic rigging and animation of
3d characters. ACM Trans. Graph., 26(3), 2007. 1, 2, 7

[4] H. Blum. Biological shape and visual science (part i). Jour-
nal of Theoretical Biology, 38(2), 1973. 1

[5] N. Bodla, B. Singh, R. Chellappa, and L. S. Davis. Soft-nms
- improving object detection with one line of code. In Proc.
ICCV, 2017. 5

[6] D. Boscaini, J. Masci, E. Rodol, and M. M. Bronstein. Learn-
ing Shape Correspondence with Anisotropic Convolutional
Neural Networks. In Proc. NIPS, 2016. 8

[7] R. Boulic and R. Mas. Interactive computer animation. chap-
ter Hierarchical Kinematic Behaviors for Complex Articu-
lated Figures. 1996. 1

[8] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-
dergheynst. Geometric deep learning: Going beyond eu-
clidean data. IEEE Signal Processing Magazine, 34(4),
2017. 8

[9] J. Cao, A. Tagliasacchi, M. Olson, H. Zhang, and Z. Su.
Point cloud skeletons via laplacian based contraction. In
Proc. SMI, 2010. 2

[10] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-
person 2d pose estimation using part affinity fields. Proc.
CVPR, 2017. 1

[11] A. Dai, C. R. Qi, and M. Nießner. Shape completion us-
ing 3d-encoder-predictor cnns and shape synthesis. In Proc.
CVPR, 2017. 3

[12] S. J. Dickinson, A. Leonardis, B. Schiele, and M. J. Tarr. Ob-
ject Categorization: Computer and Human Vision Perspec-
tives. 2009. 1

[13] P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial struc-
tures for object recognition. Int. J. Comput. Vision, 61(1),
2005. 1

[14] L. Ge, Z. Ren, Y. Li, Z. Xue, Y. Wang, J. Cai, and J. Yuan.
3d hand shape and pose estimation from a single rgb image.
In Proc. CVPR, 2019. 2

[15] L. Ge, Z. Ren, and J. Yuan. Point-to-point regression point-
net for 3d hand pose estimation. In Proc. ECCV, 2018. 2

[16] R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and
A. Fitzgibbon. Efficient regression of general-activity hu-
man poses from depth images. In Proc. ICCV, 2011. 1

[17] J. Goldfeather and V. Interrante. A novel cubic-order algo-
rithm for approximating principal direction vectors. ACM
Trans. Graph., 23(1), 2004. 4

[18] E. Hameiri and I. Shimshoni. Estimating the principal curva-
tures and the darboux frame from real 3-d range data. IEEE
Trans. Systems, Man, and Cybernetics, Part B (Cybernetics),
33(4), 2003. 4

[19] A. Haque, B. Peng, Z. Luo, A. Alahi, S. Yeung, and F. Li.
Towards viewpoint invariant 3d human pose estimation. In
Proc. ECCV, 2016. 1, 2

[20] F. Huang, A. Zeng, M. Liu, J. Qin, and Q. Xu. Structure-
aware 3d hourglass network for hand pose estimation from
single depth image. In Proc. BMVC, 2018. 1, 2, 4

[21] H. Huang, S. Wu, D. Cohen-Or, M. Gong, H. Zhang, G. Li,
and B. Chen. L1-medial skeleton of point cloud. ACM Trans.
Graph., 32(4), 2013. 2

[22] W. Ke, J. Chen, J. Jiao, G. Zhao, and Q. Ye. SRN: side-
output residual network for object symmetry detection in the
wild. In Proc. CVPR, 2017. 2

[23] T. S. H. Lee, S. Fidler, and S. Dickinson. Detecting curved
symmetric parts using a deformable disc model. In Proc.
ICCV, 2013. 2

[24] A. Levinshtein, C. Sminchisescu, and S. Dickinson. Multi-
scale symmetric part detection and grouping. Int. J. Comput.
Vision, 104(2), 2013. 2

[25] T. Lindeberg. Edge detection and ridge detection with auto-
matic scale selection. In Proc. CVPR, 1996. 2

[26] T. Lindeberg. Scale selection properties of generalized scale-
space interest point detectors. Journal of Mathematical
Imaging and Vision, 46(2), Jun 2013. 2

[27] C. Liu, W. Ke, F. Qin, and Q. Ye. Linear span network for
object skeleton detection. In Proc. ECCV, 2018. 2

[28] L. Liu, Y. Zheng, D. Tang, Y. Yuan, C. Fan, and K. Zhou.
Neuroskinning: Automatic skin binding for production char-
acters with deep graph networks. ACM Trans. Graphics, to
appear, 2019. 2, 8

[29] T.-L. Liu, D. Geiger, and A. L. Yuille. Segmenting by seek-
ing the symmetry axis. In Proc. ICPR, 1998. 2

[30] L. Lo Presti and M. La Cascia. 3d skeleton-based human
action classification. Pattern Recogn., 53, 2016. 2

[31] N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann.
Joint-dependent local deformations for hand animation and
object grasping. In Proc. Graphics Interface ’88, 1988. 1

[32] D. Marr and H. K. Nishihara. Representation and recogni-
tion of the spatial organization of three-dimensional shapes.
Royal Society of London. Series B, Containing papers of a
Biological character, 200, 1978. 1

[33] J. Martinez, R. Hossain, J. Romero, and J. J. Little. A simple
yet effective baseline for 3d human pose estimation. In Proc.
ICCV, 2017. 2

[34] J. Masci, D. Boscaini, M. Bronstein, and P. Vandergheynst.
Geodesic convolutional neural networks on riemannian man-
ifolds. In Proc. ICCV, 2015. 8

[35] D. Maturana and S. Scherer. VoxNet: A 3D Convolutional
Neural Network for Real-Time Object Recognition. In IROS,
2015. 3

[36] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and
M. M. Bronstein. Geometric deep learning on graphs and
manifolds using mixture model CNNs. In Proc. CVPR),
2017. 8

[37] G. Moon, J. Y. Chang, and K. M. Lee. V2v-posenet: Voxel-
to-voxel prediction network for accurate 3d hand and human
pose estimation from a single depth map. In Proc. CVPR,
2018. 1, 2, 4

[38] F. Moreno-Noguer. 3d human pose estimation from a single
image via distance matrix regression. In Proc. CVPR, 2017.
2



[39] A. Nedzved, S. Ablameyko, and S. Uchida. Gray-scale thin-
ning by using a pseudo-distance map. In Proc. ICPR, 2006.
2

[40] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-
works for human pose estimation. In Proc. ECCV, 2016. 1,
2, 5

[41] G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Daniilidis.
Coarse-to-fine volumetric prediction for single-image 3d hu-
man pose. In Proc. CVPR, 2017. 1, 2

[42] X. Peng, Z. Tang, F. Yang, R. S. Feris, and D. Metaxas.
Jointly optimize data augmentation and network training:
Adversarial data augmentation in human pose estimation. In
Proc. CVPR, 2018. 2

[43] T. Pereira, D. Aldarondo, L. Willmore, M. Kislin, S. Wang,
M. Murthy, and J. W. Shaevitz. Fast animal pose estimation
using deep neural networks. Nature Methods, 2019. 2

[44] R. C. Prim. Shortest connection networks and some gener-
alizations. The Bell Systems Technical Journal, 36(6), 1957.
6

[45] Z. Ren, J. Yuan, J. Meng, and Z. Zhang. Robust part-based
hand gesture recognition using kinect sensor. IEEE Trans.
Multimedia, 15(5), 2013. 1

[46] V. Resource. The models resource, https://www.models-
resource.com/, 2019. 6

[47] G. Riegler, A. O. Ulusoys, and A. Geiger. Octnet: Learning
deep 3D representations at high resolutions. In Proc. CVPR,
2017. 3, 8

[48] G. Rogez and C. Schmid. Mocap-guided data augmentation
for 3d pose estimation in the wild. In Proc. NIPS, 2016. 2

[49] P. K. Saha, G. Borgefors, and G. Sanniti di Baja. A survey
on skeletonization algorithms and their applications. Pattern
Recogn. Lett., 76, 2016. 2

[50] N. Sarafianos, B. Boteanu, B. Ionescu, and I. Kakadiaris. 3d
human pose estimation: A review of the literature and anal-
ysis of covariates. Comput. Vis. Image Underst., 09 2016.
2

[51] J. A. Sethian. A fast marching level set method for mono-
tonically advancing fronts. In Proc. Natl. Acad. Sci., 1995.
4

[52] L. Shapira, A. Shamir, and D. Cohen-Or. Consistent mesh
partitioning and skeletonisation using the shape diameter
function. Vis. Comput., 24(4), 2008. 3, 4

[53] W. Shen, K. Zhao, Y. Jiang, Y. Wang, X. Bai, and A. Yuille.
Deepskeleton: Learning multi-task scale-associated deep
side outputs for object skeleton extraction in natural images.
IEEE Trans. Image Processing, 26(11), 2017. 2

[54] W. Shen, K. Zhao, Y. Jiang, Y. Wang, Z. Zhang, and X. Bai.
Object skeleton extraction in natural images by fusing scale-
associated deep side outputs. Proc. CVPR, 2016. 2

[55] H. J. Shin, J. Lee, S. Y. Shin, and M. Gleicher. Com-
puter puppetry: An importance-based approach. ACM Trans.
Graph., 20(2), 2001. 1

[56] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finoc-
chio, R. Moore, A. Kipman, and A. Blake. Real-time human
pose recognition in parts from single depth images. In Proc.
CVPR, 2011. 1

[57] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. W. Zucker.
Hamilton-jacobi skeletons. Int. J. Comput. Vision, 48(3),
2002. 2

[58] K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W.
Zucker. Shock graphs and shape matching. Int. J. Comput.
Vision, 35(1), 1999. 1

[59] A. Tagliasacchi, T. Delame, M. Spagnuolo, N. Amenta, and
A. Telea. 3D Skeletons: A State-of-the-Art Report. Com-
puter Graphics Forum, 2016. 1, 2

[60] A. Tagliasacchi, H. Zhang, and D. Cohen-Or. Curve skeleton
extraction from incomplete point cloud. ACM Trans. Graph.,
28(3), 2009. 2

[61] B. Tekin, P. Márquez-Neila, M. Salzmann, and P. Fua. Learn-
ing to fuse 2d and 3d image cues for monocular body pose
estimation. In Proc. ICCV, 2017. 2

[62] S. Tsogkas and S. Dickinson. Amat: Medial axis transform
for natural images. In Proc. ICCV, 2017. 2

[63] C. Wan, T. Probst, L. Van Gool, and A. Yao. Dense 3d re-
gression for hand pose estimation. In Proc. CVPR, 2018. 2

[64] C. Wan, T. Probst, L. Van Gool, and A. Yao. Self-supervised
3d hand pose estimation through training by fitting. In Proc.
CVPR, 2019. 2

[65] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong. O-
CNN: Octree-based convolutional neural networks for 3D
shape analysis. ACM Trans. Graph., 36(4), 2017. 8

[66] P.-S. Wang, C.-Y. Sun, Y. Liu, and X. Tong. Adaptive o-cnn:
A patch-based deep representation of 3d shapes. ACM Trans.
Graph., 37(6), 2018. 8

[67] Y. Wang, Y. Xu, S. Tsogkas, X. Bai, S. J. Dickinson, and
K. Siddiqi. Deepflux for skeletons in the wild. In Proc.
CVPR, 2019. 2

[68] S. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Convo-
lutional pose machines. In Proc. CVPR, 2016. 1

[69] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In Proc. CVPR, 2015. 3

[70] C. Xu, L. N. Govindarajan, Y. Zhang, and L. Cheng. Lie-x:
Depth image based articulated object pose estimation, track-
ing, and action recognition on lie groups. Int. J. Comput.
Vision, 123(3), 2017. 1

[71] K. Yin, H. Huang, D. Cohen-Or, and H. Zhang. P2p-net:
Bidirectional point displacement net for shape transform.
ACM Trans. Graphics, 37(4), 2018. 2

[72] Zeyun Yu and Chandrajit Bajaj. A segmentation-free
approach for skeletonization of gray-scale images via
anisotropic vector diffusion. In Proc. CVPR, 2004. 2

[73] Q. Zhang and I. Couloigner. Accurate centerline detection
and line width estimation of thick lines using the radon trans-
form. IEEE Trans. Image Processing, 16(2), 2007. 2

[74] K. Zhao, W. Shen, S. Gao, D. Li, and M.-M. Cheng. Hi-
fi: Hierarchical feature integration for skeleton detection. In
Proc. IJCAI, 2018. 2

[75] X. Zhou, Q. Huang, X. Sun, X. Xue, and Y. Wei. Towards
3d human pose estimation in the wild: A weakly-supervised
approach. In Proc. ICCV, Oct 2017. 2

[76] S. Zhu and A. Yuille. Forms: A flexible object recognition
and modeling system. Int. J. Comput. Vision, 20, 1996. 1



Predicting Animation Skeletons for 3D Articulated Models via Volumetric Nets
-Supplementary Material-

Ablation Study. Here we present evaluation of alternative
choices for our method. All the variants are trained in the
same split and tuned in the same hold-out validation set in
the same manner as our original method. Table 1 reports the
same evaluation measures described in Section 6 of our pa-
per for different number of hourglass modules in our archi-
tecture. We observed that the performance saturates when
we reach 4 hourglass modules.

We also evaluated the geometric features used as input
to our architecture. Table 2 reports the evaluation measures
when using the Signed Distance Function only (SDF), the
SDF plus each of the other geometric features, and alto-
gether. We can see that each geometric feature individu-
ally improves the performance, and integrating all of them
achieves the best result.

Table 3 reports the performance when (a) we remove the
granularity control parameter from the architecture, (b) use
Euclidean distances as cost for Prim’s algorithm instead of
the predicted log probabilities for bones. Both degraded
variants drop the performance especially in terms of preci-
sion and recall.

Dataset Statistics. Our de-duplicated dataset contained
3193 rigged characters from Models Resource. The aver-
age joint number per character is 26.4. Figure 1 shows a
histogram over the number of joints across the models of
our dataset.

Architecture details. Table 4 lists each layer used in our
architecture along with the size of its output map. We refer
the reader to our source code for more details.

Figure 1. Histogram over the number of joints across the models
of our dataset

Table 1. Evaluation of varying number of hourglass modules

(#) Modules CD-joint CD-joint2bone MR-pred MR-ref
1 5.2% 3.4% 55.7% 60.9%
2 4.9% 3.3% 60.0% 65.5%
3 4.7% 3.3% 61.4% 67.0%
4 4.6% 3.2% 62.1% 68.3%

Table 2. Evaluation of different input feature combinations

Input features CD-joint CD-joint2bone MR-pred MR-ref
SDF only 5.2% 3.5% 60.6% 56.0%

SDF+diam. 4.9% 3.3% 53.5% 61.8%
SDF+curv. 4.7% 3.2% 51.2% 66.4%

SDF+density 4.7% 3.2% 57.5% 63.2%
all features 4.6% 3.2% 62.1% 68.3%

Table 3. Evaluation of skipping the granularity control parame-
ter (no control) and using Euclidean distances instead of log bone
probabilities for Prim’s algorithm (no bone prob)

variant CD-joint CD-joint2bone MR-pred MR-pref
no control 4.6% 3.2% 54.5% 67.9%

no bone prob. 4.6% 3.2% 57.8% 67.0%
full method 4.6% 3.2% 62.1% 68.3%

Table 4. Architecture details. ResBlock: The residual block is
made of two volumetric convolutional layers with filters 3×3×3.
Both produce the same number of feature maps. When the number
of input/output feature maps differ, the skip path within any resid-
ual block contains an additional volumetric convolutional layer
with 3×3×3 filters. Dropout: dropout layer with 0.2 probability.

Layers Output

Input volume 88×88×88×5
ReLU(BN(Conv(5x5x5, 5→8))) 88×88×88×8

ResBlock 88×88×88×8

Encoder

ReLU(BN(Conv(2x2x2, stride=2)))

44×44×44×8
for 1st module,
44×44×44×10

for the rest
ResBlock 44×44×44×16

ReLU(BN(Conv(2x2x2, stride=2))) 22×22×22×16
ResBlock 22×22×22×24

ReLU(BN(Conv(2x2x2, stride=2))) 11×11×11×24
ResBlock 11×11×11×36

Concat with control param. 11×11×11×40
ResBlock 11×11×11×40

Decoder

ResBlock 11×11×11×36
ReLU(BN(ConvTrans(2x2x2, stride=2))) 22×22×22×24

ResBlock 22×22×22×24
ReLU(BN(ConvTrans(2x2x2, stride=2))) 44×44×44×16

ResBlock 44×44×44×16
ReLU(BN(ConvTrans(2x2x2, stride=2))) 88×88×88×8

Prediction
ResBlock 88×88×88×4

Dropout(ReLU(BN(Conv(1x1x1, 4→4)))) 88×88×88×4
Conv(1x1x1, 4→1) 88×88×88×1


