MACHINE LEARNING ALGORITHMS FOR
GEOMETRY PROCESSING BYEXAMPLE

Evangelos Kalogerakis

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy
Graduate Department of Computer Science
University of Toronto

Copyright © 2010 by Evangelos Kalogerakis

Abstract

Machine Learning Algorithms for

Geometry Processing by Example

Evangelos Kalogerakis
Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

2010

This thesis proposes machine learning algorithms for msing geometry by example. Each
algorithm takes as input a collection of shapes along widmgdar values of target properties
related to shape processing tasks. The goal of the algaithibo output a function that maps
from the shape data to the target properties. The learnedidms can be applied to novel
input shape data in order to synthesize the target propesiith style similar to the training
examples. Learning such functions is particularly usedultévo different types of geometry
processing problems. The first type of problems involvemieg functions that map to target
properties required for shape interpretation and undsigig. The second type of problems
involves learning functions that map to geometric attisudf animated shapes required for

real-time rendering of dynamic scenes.

With respect to the first type of problems involving shaperiptetation and understanding, |
demonstrate learning for shape segmentation and linérdiesn. For shape segmentation, the
algorithms learn functions of shape data in order to perfeegmentation and recognition of
parts in 3D meshes simultaneously. This is in contrast tetiegj mesh segmentation meth-
ods that attempt segmentation without recognition basdyl @m low-level geometric cues.
The proposed method does not require any manual paramateg tand achieves significant

improvements in results over the state-of-the-art. Faz lllustration, the algorithms learn

functions from shape and shading data to hatching progemgigen a single exemplar line
illustration of a shape. Learning models of such artisasdd properties is extremely chal-
lenging, since hatching exhibits significant complexityaasetwork of overlapping curves of
varying orientation, thickness, density, as well as casrsillle stylistic variation. In contrast
to existing algorithms that are hand-tuned or hand-desidram insight and intuition, the

proposed technique offers a largely automated and polignetural workflow for artists.

With respect to the second type of problems involving fagtgotations of geometric attributes
in dynamic scenes, | demonstrate algorithms for learningtfans of shape animation param-
eters that specifically aim at taking advantage of the dpatid temporal coherence in the
attribute data. As a result, the learned mappings can beateal very efficiently during run-
time. This is especially useful when traditional geometomputations are too expensive to
re-estimate the shape attributes at each frame. | applyagohithms to efficiently compute
curvature and high-order derivatives of animated surfadesa result, curvature-dependent
tasks, such as line drawing, which could be previously peréal only offline for animated

scenes, can now be executed in real-time on modern CPU hadwar

Dedication

To my wife, Olia.

Acknowledgements

First of all, I would like to thank my supervisors, Aaron Hartann and Karan Singh. They
offered great help, guidance and support during my PhD asuali the University of Toronto.
| would also like to thank my PhD committee members, EugenenEiand Jos Stam, for
their valuable comments and feedback on my thesis. In aaditiwould like to thank the
external examiner, Szymon Rusinkiewicz, for his detaileshic@nts and recommendation for

my thesis.

| would like to thank my fellow lab members Derek NowrouzezahSimon Breslav, Patricio

Simari, and James McCrae for their collaboration in research

Finally, | would like to thank my wife, Olia Vesselova, my jeats and brother for all of their

love and support they gave me throughout the years.

Contents

1 Introduction 1
1.1 Overview and Contributions 4
2 Machine learning techniques for geometry processing 7
2.1 Steps for designing learning techniques for geometggssing 8
2.2 RegressioN e e 13
2.2.1 Robust Regression Techniques 14.
2.2.2 Non-linearregression e 18
2.2.3 Regularization 19
2.2.4 Mixture of RegressionModels 24
2.25 Mixtureof Experts L 28
2.3 Classification 8 2
2.3.1 Discriminant Functions 32
2.3.2 Probabilistic Generative Models 36
2.3.3 Probabilistic Discriminative Models 38
2.3.4 Conditional Random Fields for Classification 40
2.4 Boostingtechniques.44
241 Adaboost 45
2.4.2 JointBOOSt 47
2.4.3 Boostingforregression oo 50

Vi

2.5 Dimensionality Reduction,
2.5.1 Principal ComponentAnalysis
2.5.2 Independent ComponentAnalysis
2.5.3 Non-linear dimensionality reduction techniques

2.6 Otherlearningtopics @ . i,

Learning mesh segmentation and labeling

3.1 Relatedwork

3.2 CRF model for segmentation and labeling
3.21 UnaryEnergyTerm.
3.2.2 PairwiseEnergy Term,
3.2.3 Featurevectors

3.3 LearningCRF parameters. i
3.3.1 Learning JointBoost classifiers
3.3.2 Learning the remaining parameters

34 Results.

3.5 Applications e

3.6 DISCUSSION e

Learning hatching for pen-and-ink illustration of surfaces

4.1 Related Work

4.2 OVEIVIEW o

4.3 Synthesis Algorithm
4.3.1 Segmentationandlabeling
4.3.2 Computingorientations
4.3.3 Computing real-valued properties

4.4 Learning o e e e

4.4.1 Learning Segmentation and Orientation Functions

vii

.82

.48

4.4.2 Learning LabelingwithCRFs 810

4.4.3 Learning Real-Valued Stroke Properties113

45 Results. e 114
4.6 Summaryand FutureWork 120
Data-driven computation of surface attributes for animated scenes 124
5.1 Data-driven curvature for real-time line drawing of dymc scenes 125
5.2 Relatedwork 129
5.3 OVEIVIEW e 129
5.3.1 Curvatureattributes L oo 130
5.3.2 Dimensionality reduction L. 132
5.4 Skeleton-based deformations L an 132
541 Training e e e e 134
5.4.2 Regressionmodel L 134
5.4.3 Determining which joints influence curvature at eagttex 136
5.4.4 Dimensionalityreduction. L. 138
545 Regression 138
5.4.6 Run-timeevaluation, 014
55 Clothsimulation. 142
5.5.1 Dimensionality reduction for clothstate 142
55.2 Regression 142
5.5.3 Run-timeevaluation, 414
5.6 Blend-shape facial animation 145
5.6.1 Neural Network Regression 451
5.6.2 Run-timeevaluation, 714
5.7 Stylization 147
58 Results. 149

5.9 Summary, Limitations and Futurework152

viii

6 Conclusion and Future Work

A.1 Unary Features

Features used For Learning Mesh Segmentation and Part Labelig

A.2 Pairwise Features e

B Properties and Features used For Learning Pen-And-Ink Illustrations

B.1 Image Preprocessing o i it

B.2 Scalar features

B.3 Orientation features e

Bibliography

Chapter 1

Introduction

3D shape processing is fundamental to computer graphiogpuier-aided design, computer
vision, multimedia and several other fields in computerrsmeand engineering. Shape pro-
cessing deals with transformation and analysis of 3D gegnaeta, which typically comes in
the form of a raw collection of points or/and faces in 3D spaaeimportant component of 3D
shape processing usually involves the extraction or syiglod various shape properties based
on its underlying geometry. Despite the significant advannehis field, there is still a lot
to be done for inferring shape properties more automayieadtl efficiently by exploiting the
regularities and repeating patterns in geometry data. Wétappearance of large repositories

of 3D models on the Internet, such issues are becoming isiagdg significant.

Consider the example of shape segmentation, illustratedguré1.1. The figure shows the
composite images of segment boundaries selected by diffee®ple based on the recent study
by Chenet al. [16]. The goal of a shape processing algorithm for segmientatould be to
infer the parts of all these different shapes in a similar wesegmentations performed by hu-
mans. To date, nearly all existing shape segmentation metibempt segmentation without

recognition. When the goal of segmentation can be formulatathematically (e.g., parti-

CHAPTER1. INTRODUCTION 2

Figure 1.1: Composite images of segment boundaries selected by diffexeple (the darker
the seam the more people have chosen a cut along that edge)niHge is taken by the recent
survey by Cheat al.[16] which considers human segmentationsl®@vobject categories. One

example is shown for each of the categories considered irstidy.

tioning into patches of near-constant curvature), lovelggeometric cues may be sufficient.
However, many tasks require some understanding of theitunscbr relationships of parts,

which are not readily available from low-level geometriesu

Therefore, an important question in shape processing istbasgvelop algorithms that would
automatically learn to recognize complex patterns in treggry data, such as parts in shapes
as in the above example. Similar to how humans learn by ubgigpast experience, machine

learning can be performed based on empirical data, suclom@stfaining databases.

This thesis introduces machine learning techniques forlaatmn of problems in geometry
processing. The main ingredient of these algorithms isamléunctions that maps from the
shape data to the target properties. The input to the atgositis a collection of training
shapes along with exemplar values of target propertiesatieaelevant to the desired geometry
processing tasks. The output is the learned function fdn e@pping. There are two types of
tasks, for which the introduced learning techniques aréuusehe first type of tasks involves

the computation of properties that require some shape staoheling and may also depend on

CHAPTER1. INTRODUCTION 3

users’ style and preferences. A characteristic exampleapessegmentation and part labeling
mentioned above. This is a highly nontrivial problem duehe targe variability of parts.
Previous research has mainly focused on using single geicragteria, rules or heuristics to
find meaningful parts in a shape. However, parts exhibit sargfe variability that it is unlikely

to have satisfactory results for a broad set of shapes bassdct approaches. In other words,
it is extremely hard to develop a simple mathematical foararl handcraft all possible rules
as well as their exceptions in order to detect parts in shepgeneral. Instead, much better
results can be obtained if a mapping is learned from lots Wéréint shape features to each
part based on some representative training examples. Thepters of the mapping as well
as the most appropriate features for each part are adgptwielcted based on a learned model

according the training dataset.

Another characteristic example for this type of problemartsstic rendering of shapes. Here,
the stroke locations, orientations, texture and other gmggs vary not only according to the
underlying shape but also according to its shading. In audithe stroke properties also
exhibit enormous variability according to the specific sidi style, communication goals or
even mood. Existing approaches employ specific rules witbraé hand-tuned parameters;
however, it is extremely hard to capture all possible stk hand-tuned models. Machine
learning can be also used here to automatically captureaespects of style based on a few
exemplar drawings. Such example-based approaches offaeatjlly natural workflow for
users. Instead of designing complex user interfaces olirrequusers to tune several hard-
to-understand parameters, the only workload for users ppdwvide the machine with a few

training examples.

The second type of tasks, where machine learning provesgaitiieularly useful, involves the
computation of shape attributes in animated, dynamic s;énat exhibit some spatial continu-
ity as well as temporal coherence with respect to the anomgtarameters. Surface curvature

and visibility are examples of such attributes. These sh#pbutes are known functions of the

CHAPTER1. INTRODUCTION 4

input geometry, i.e., they can be estimated with appropg@iometric techniques. However,
some of these attributes are very slow to compute geomigribathis case, machine learning
algorithms can exploit their temporal and spatial coheselnclearn very compact mappings
from animation parameters to these attributes. The leammgapings can be then evaluated
very efficiently during runtime, enabling also much fasteea@ution of tasks that depend on

these attributes.

The learning techniques for the above two types of tasksdcalsb be combined into a single
pipeline, if necessary. First, a target shape propertydcbalinferred for static shapes based
on the learning techniques for shape understanding. Therprbperty can also be computed

efficiently for dynamic scenes using the learning techrsgoe animated scenes.

1.1 Overview and Contributions

As mentioned above, the goal of the thesis is to develop ilegtiechniques that learn map-
pings of geometric-based features to target propertiesrdar to achieve this, first the target
properties must be identified. Then, a set of appropriatiifes must be extracted to form
the input space of the mapping. Then, an appropriate legteichnique must be designed to
match the requirements of this mapping. The thesis desctitese considerations for these

steps in Chapter 2.

| should strongly emphasize here that machine learning tisand should not be thought of
as some monolithic theory. Thus, the thesis does not desardingle, unified workflow or

framework for applying learning to geometry processingerBhis no single learning algorithm
or theory that can be applied to solve all example-based gggrprocessing problems in
general. Each geometry processing problem has its very baracteristics and components,

thus, completely different requirements and formulatiexist for selecting and developing the

CHAPTER1. INTRODUCTION 5

most appropriate learning algorithms. This is very impattdecause especially in the field
of computer graphics, it might be thought that machine liegris about downloading one

technique, treating it as a black-box, and then, make it \g8orkehow.

| do however describe the general steps and consideratiorapplying machine learning to
geometry processing. Then, | present the machine leareampiques developed for the above-
mentioned types of problems. Each technique has its ownibations to the problem it at-

tempts to solve.

First, | show a learning approach for automatic labelingsegmentation of 3D meshes (Chap-
ter 3). The method obtains state-of-the-art results anteiditst to demonstrate effective seg-
mentation and labeling for a broad type of meshes. Meshitapékelf enables automation
of several tasks in computer graphics and computer-aidsidmaéhat would normally require
laborious human intervention. Various applications of mkabeling for automatic 3D object
manufacturing, texturing and character rigging are dennatesl. Second, | show a learning
approach for creating line illustrations of 3D models fromirgle example (Chapter 4). The
main contribution of this application is the ability to skiesize detailed line illustrations based

on the learned aspects of the artist’s hatching style.

With respect to the second type of tasks, | demonstrate aiteptechnique that computes
surface curvature for animated scenes (Chapter 5). Thedéanodel can accurately and
efficiently predict surface curvatures and their derivegiduring runtime, enabling also real-
time object-space rendering of feature lines, such as stiggeontours and apparent ridges.
This represents an order-of-magnitude speed-up over #testaexisting algorithms that are
capable of estimating curvatures and their derivativesirately enough for many different

types of line drawings.

Finally, Chapter 6 mentions future research directions fiplyang machine learning tech-

niques for other geometry processing problems.

CHAPTER1. INTRODUCTION 6

Limitations: It should be noted that there are also limitations to theniegrtechniques
presented in this thesis. First of all, they require a regmegive enough training dataset for
learning the parameters of each task reliably. However,ightmot be always technically

feasible to acquire training examples for a problem.

There are also no theoretical guarantees on the genei@izarformance of the algorithms
from a deterministic point of view. In other words, even ifeaining algorithm finds a hy-
pothesis that explains the training examples well, it isasgible to deterministically predict
the error of the algorithm when it is applied to novel unseatadunless they are the same
as the training data). However, if the learned model persowall on most training data and
it is not too complex, it will probably do well on similar tedata. This is known as Induc-
tive Learning Hypothesis in the literature of machine l&agn In other words, it states that
if the hypothesis space is not too complicated and if thenitngi dataset is large enough, the
probability of performing much worse on test data than oming data can be bounded. In
general, it is important to acquire a training dataset wisclarge and representative enough
of the distribution of the input features and output projesrtlf this is not possible, then it is

likely that any learning technique might overfit the tramuata and fail.

Finally, the learning techniques of this thesis requirestderable time for their training step.
In our problems, the learning time was usually several hoHi@vever, once the models are
learned, they can be applied to novel input very efficienflyere are also specific limitations

to each technique that will be described in detail later enttresis.

Chapter 2

Machine learning techniques for geometry

processing

This chapter presents an overview of the steps and consmesdor developing machine
learning techniques for geometry processing by examples KBy ingredient of these tech-
niques is to learn mappings from shape data to target prepéniat are relevant to the desired
geometry processing tasks. As noted in the previous chdp&e is no single machine learn-
ing algorithm or unified framework to be applied for any maggpi Instead, there are several
considerations for designing an appropriate learningrélgo or a combination of learning
algorithms for a task. In many cases, this also involvessite experimenting with many
different techniques, especially if there are no theoa¢®vidence for choosing a particular
technique. The goal of this chapter is to layout the gendrategyy for developing learning
techniques for geometry processing problems as well avieweseveral learning techniques
that can be applied to these problems depending on the typehamacteristics of each map-
ping. It should be noted that | do not cover every possiblenieg technique; | mainly focus
on the most representative supervised learning technanesspecially the ones that are used

in the rest of the thesis.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 8
2.1 Steps for designing learning techniques for geometry pro-

cessing

Given a collection of input shapes along with exemplar tapgeperties on them, the goal is

to develop an appropriate learning technique that woulchlegunction from the shape data
to target properties. Letbe the shape data amdbe the target properties. In this thesis, it is
assumed that the shape data are given in the form of triangelshes. The target properties are
represented by continuous or discrete values defined ondhlk triangles, the mesh vertices or
the projections of the triangles to the image plane (i.e.ctirresponding pixels). For example,
a target property could be a symbolic attribute, such astdgizel per face or a geometric shape
attribute such as the principal curvatures per vertex. €aeked function should successfully
generalize to novel input shapgse., correctly output predictiorisfor the target properties

for shapes that are not the same with the ones used for lgarnin

There are several steps that can be followed in general tela®an appropriate learning

technique for a geometry processing task. Below, | discuds etthem in detail.

Identification of target properties: The first step is to identify the target shape properties
that are relevant for the desired geometry processing tagkcan be learned from training
examples. The target properties must exhibit some regelsrand repeating patterns that
can be explained based on the training data i.e., the tgaidéta should come from some
unknown probability distribution and should not be completrandom. For example, mesh
segmentation can be formulated as a problem of assigningehtia each mesh face. In this
case, the target properties are the part labels, which adktagperform the segmentation task
i.e, the labels of connected components on the mesh indeaadish segmentation. The part

labels strongly depend on the shape properties, hencec#imeye learned.

Feature extraction: The shape data needs to be pre-processed and transformeadspdce of

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 9

features that are expected to be relevant to the target phi@peletx be the extracted shape
features. For example, in the case of mesh segmentatiaem givnesh which is a collection
of triangles, it would not make sense to use its mesh infaonas it is (e.g., triangles ids).
Finding all the possible relevant shape features for a tagktrbe a nontrivial problem. There
might be different relevant features depending on the fipgmals of each task and the user’s
preferences. Therefore, in general, it is better to coosfieature vectors out of as many

informative features as possible.

For example, the algorithm for learning mesh segmentatidghis thesis extracts hundreds of
shape features based on several shape descriptors prapdsedomputer graphics and vision
literature that have been found relevant to segmentatidrobject recognition. If different fea-
tures are relevant depending on the dataset or task, ittisrkietinclude all different features.
During the learning step, feature selection techniquesheandle the problem of mining the
most relevant features for each task. It is also importanhtwse features that are as discrim-
inative as possible to predict at least some ranges of védudkle target properties. Finally,
it is necessary to appropriately scale the features so liegthave a similar range of values

between different shapes.

Forming training datasets: The next step is to acquire a training dataset that will levi
exemplar values for the target properties. The values ofdiget properties are set by either
hand-labeling them or acquiring sensor data. The trainatgsit should be as representative
as possible of the different data that might be encountenedgitest time. The training exam-
ples should also contain consistent values for the targgteptiest for each exemplar shape.
This means that for the same inm,tthe target properties should be almost the same; some
inconsistencies and noise can be tolerated in generalpbohsistent training examples may
result in less reliable learned models. After forming tlaning dataset, we apply supervised

learning techniques described below.

Learning: The main goal of the learning step is to find the functféx w) along with its

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 10

parametersv, which accurately maps featurggo target properties and best generalizes to
different shape inputs. The mapping may be very high-dinogas$ or highly non-linear. The
identification of the type and characteristics of the magpévery important for applying the

appropriate learning algorithm to the problem.

For example, one thing to examine is if we need to choose aifitaion or regression tech-
nique for the learning problem. If the target propettyakes continuous values, then the
mapping should be expressed as a regression problem ($&c8p If the target property
is categorical, i.e. it takes values from a finite number etdite categories, then it should be

expressed as a classification problem (Section 2.3).

Then, we examine what model is appropriate for the mappingultVa linear model be ex-
pressive enough to capture the relationship of the featordse target properties or would a
non-linear model be more appropriate? This can be decidestlhan theoretical evidence, in-
tuition, plotting the data, or experimenting with the feati(or subsets of them). Sometimes,
it is common to express a non-linear mapping as a linear mgppy simply transforming the
features into a higher-dimensional space based on a selected keimetldn applied to them.

This is known as kernel trick and will be described in moreadéh Section 2.2.2.

In addition, if there are interdependencies of the assigmnsnieetween different target prop-
erties, then graphical models could be used to capture theseependencies. For example,
assigning a part label to a vertex strongly depends on thgraments of labels to its neigh-
boring vertices. Graphical models will be briefly presente8ection 2.3.4, and | will mostly

focus on Conditional Random Fields for classification.

If the input feature form a very high-dimensional space and it is expected thégrdnt
subsets of features are relevant for different tasks andliftarent ranges of values of the
target property, then a feature selection technique musséd. This decreases the number of

parameters of the model, making it sparser. Sparse modedsajze better, are more compact

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 11

to store, and require less time to be evaluated during rentitm this thesis, we focus on
boosting techniques for regression and classificationeffiatently perform automatic feature

selection and can handle large numbers of input featureti¢Be2.4).

Finally, if the dimensionality of the target property is tbigh and its data points lie close to
a manifold of much lower dimensionality because of lineanon-linear interdependencies
between the different dimensions of the data, then dimeasity reduction techniques can be
used to project them into a lower-dimensional space. This lelads to a more compact model
that can be evaluated more efficiently during runtime. Disi@mality reduction techniques

will be presented in Section 2.5.

It is also common to develop a learning technique that coasseveral of the above steps
(e.g., dimensionality reduction, feature selection,)etdong with the necessary adaptations
depending on each geometry processing problem. This isabe for all the problems that
we will present in this thesis. Thus, developing machinenieg techniques for geometry
processing does not mean that a black-box technique is wisgiécted and applied to the
data. Instead, the type and characteristics of the mappiogld be studied carefully so that

appropriate techniques are applied and combined, or ewesageed from scratch.

Application to novel data: Once the model is learned, the learning algorithms can giredi
valuest of the target properties for novel shapes, by simply applifire learned mappings. As

mentioned earlier, the main goal of learning is successnkgalization to novel input.

Experimentation: When developing a learning technique, it is necessary taatalts per-
formance. It is also very important to compare its perforogawith other learning techniques
as well as methods that do not use learning (i.e., based giesioies or heuristics with fixed
parameters). For this reason, it is useful to design or aegubenchmark dataset. There are
many types of datasets that can be used for evaluation: iigialtdatasets that are created

synthetically based on some simple logic or formulas, b)seadatasets that are created syn-

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 12

thetically based on models with properties similar to whaat be found in real problems, and
c) real datasets that consist of data representing actsabhedtions in the physical world. In
general, it is preferable to evaluate a learning techniqueesal datasets, so that its behavior
is better understood for real-world problems. An issue wéidl datasets is that they might be
very hard to obtain. In addition, they might include some amaf errors and noise. Obvi-
ously, it is better when the learning technique can cope sutth errors and noise. If there are
several outliers and inconsistencies in the acquired egtasnight be unavoidable to perform
some pre-processing to filter out the dataset. Howeversthjs may introduce some bias in

the evaluation.

In order to evaluate a supervised learning technique, ttesdaneeds to be split into a training
and atest seti.e., learning will be performed on the traisiet and then the learned model will
be applied to the test data separately. Since it is impottaetaluate the learning technique
on the whole range of data existing in the dataset, it is baiteepetitively apply the learning

technique on randomly generated training and test setbtiord and resources permit, on all

possible training and test sets that can be created frométtaset. \WWhen comparing different
techniques, any kind of quantitative data can be reporgatdeng the behavior of the proposed
algorithm on this problem, such as learning speed, trais@t@rror, test set error, performance
variance across different training sets and so on. It isyweaucial to report the test set error,
because this is usually a highly informative measure abdmigeneralization capabilities of

the technique.

Examining every possible aspect and specification for bmacking learning techniques can
be a time-consuming and tiresome process for researcherghe®ther hand, it is useful to
properly benchmark new learning techniques in order to rensrderly progress in the field.
Analyzing all the details to create a proper benchmark i®bdyhe scope of this thesis: useful

studies of benchmarking practices for machine learninigriieies can be found in [111, 32].

In the following sections, | will explain some representatiearning techniques for regression,

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 13

classification and dimensionality reduction. | will alse@fs on boosting techniques for classi-
fication and regression, which | found particularly usetulthe applications presented in this
thesis. | will also refer to related work in the field of geomygbrocessing that uses learning

techniques.

2.2 Regression

The goal of regression is to map the input feature vextr one or more continuous target
propertiest. Curve and surface fitting can be seen as a special case o$segre From this
aspect, regression techniques are especially useful ffacgureconstruction (e.g. [1, 15, 146,

75, 106]). Regression has been also used for mesh skinnmg[86, 132, 80, 97, 149, 29)).

The majority of machine learning techniques treat regoesisom a probabilistic point of view
i.e., we assume that the target properties can be expressieteaministic function$(x; w) of
the input featureg plus some noise. Assume for now that we have one target pyapand
the noise model is Gaussian:

t="f(x;w)+¢ (2.1)

wheres is a zero-mean Gaussian random variable with variarfcén this case, given a feature
vector inputx; (i = 1,2,...N), the output value of the target propettyollows the following
Gaussian distribution:

p(ti|xi,w, a%) = A (4| f (x;w), 0?) (2.2)

GivenN training pairs{x;,t;j} , the likelihood of all the training target property valuasem

the unknown parametevs ando? can be expressed as:
p(t|x,w, g?) rlJV (ti] f (xi;w), 0?) (2.3)

Maximizing the likelihood of the above data corresponds tximizing its logarithm. Using

the logarithm of the lihelihood is convenient for transfammthe products into sums, but also

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 14

is also useful for numerical reasons in general:

In p(t|x,w, 0?) = —g(ln o%+In(2m)) — 2Tizi(f(xi;w) —t)?2 (2.4)

As it can be seen from the above equation, maximizing thdikedfhood corresponds to min-
imizing the sum of squares of the residugds= (f(x;;w) —t;)2. If we assume a linear model,
i.e., f(xj;w) =w-Xx;, then we can derive an analytical solution for the paramsetgy_ that

maximize the log-likelihood, which is essentially the omeeg from least-squares:
waL = (x"-x)"LxT -t (2.5)

We may also want to fit the model with an offset, which is usefuen the average value of
the target property is not expected to be 0. In this case, weefitnodelf (x;; w) = w - X; + Wp.

By adding a column of values always equal to 1 to the featuse$], the same Equation 2.5
applies; the parametey is simply incorporated into the vectar in this case. The parameter

W is also known as bias term.

2.2.1 Robust Regression Techniques

A very important remark here is that the least-squares isoluiorrespond to the maximum
likelihood solution for the parameters under the assumpti@t we have gaussian noise on
the data. However, if the data follow different probabildigtributions, or even worse, there
are outliers, least-squares is not the most appropriamiae, since in this case it may yield
bad estimates of the parameters. Estimating parametens thbee are outliers or when the
noise follows non-gaussian distributions can be perforomgdg robust statistical estimation

techniques. Here, we briefly discuss the most widely usdthtgaes for robust regression.

M-estimation: A popular class of these techniques is the M-estimationniecies [46]. M-

estimation aims at minimizing a cost function defined overrésiduals:

argwminip(ri;w) (2.6)

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 15

where p(ri;w) is the cost function. Minimizing the above expression letmsnaximum-

likelihood estimates of the parameters if the cost funcisomterpreted as the negative log-
likelihoods of the assumed probability distributions oe target property values given the
unknown parameters. In least squares, the cost functio(ris= r?/c? and the assumed dis-
tribution is the gaussian, as mentioned above. Other pilitigabistribution functions assumed

for robust M-estimation are the following:

1

1+r2/(202) 2.7)

Pcauchyti|Xi, W, 02) O

In this case, the cost function ri;w) = In(1+r2/(20?)) and the estimator is known as

Cauchy-Lorentzian.

Another popular choice is:

r2

r2+o?

) (2.8)

Pcemarti|Xi, W, 02) O exp(—

In this case, the cost functionggri;w) = rzi% and the estimator is known as Geman-McLure.

The above both estimators result in penalizing outliershmaore than the least-squares ap-
proach. However, minimizing such cost functions requiredtarative Reweighted Least-
Squares (IRLS) procedure, which is much slower. In IRLS, a eteights is kept and up-
dated for the data points and a weighted-least squaresgpndblsolved at each iteration until
convergence. There are many other estimators proposed itetature for M-estimation. An
excellent survey on M-estimation techniques for vision barfound here [134]. In [72, 71],

| suggested the use of M-estimation for robust estimatiocuo¥ature tensors on meshes and
point clouds . In figure 2.1, we visualize the principal ciuvas estimated using least-squares
(left), compared to M-estimation (right). Robust M-estimatyields less noisy curvature val-

ues.

Least-Median of Squares: Another robust estimation approach is to minimize the nmedfa

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 16

Figure 2.1: Left: Visualization of principal curvatures estimated by leagttares fitting of the
curvature tensor based on finite normal differences ([11B]jght: Curvature values computed

using a robust M-estimator [72] that results in less noisiireates.

the squared residuals:

argminmediar(r?) (2.9)
w

This technique is called Least-Median of Squares [113] aredpecially useful when up to half
of the data points are outliers. Minimizing the median of slg@ared residuals is not trivial,
since the median function is not differentiable. Insteadpamon approach is to randomly
select subsets of training samples, fit the parameters @agtisquares for each subset, measure
the median of squared residuals over the rest of the pointsfimally select the model of the
subset that has the least median. Least-Median of Squasdxbka used for piecewise smooth
surface reconstruction [31]. Anissue with Least-MediaB@fiares is that it is computationally

expensive and can select suboptimal models when therelatieely few outliers in the data.

Another similar approach is to again randomly select sslasfétaining pairs, fit the parameters
with least-squares for each subset, find the number of tlaé gotnts that are inliers given a
residual threshold, and finally select the model of the suttse has the largest number of

inliers. This technique is known as RANSAC [30]. RANSAC hasshee issues with Least-

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 17

T
* data points

1.2F . — least-squares fit: ax + b

* — least-squares fit: aC +bx+c

* | least-squares fit: 10" degree polyn.
ground-truth model sin(x)

+ data points
—least-squares
—Lasso
ground-truth model sin(x)

Figure 2.2: Left: Regression with linear models using linear features (reé)lirquadratic
features (green line)10"-order polynomial features (purple line) on data points gexied
by a sine function (cyan dotted line) plus some noise. A quedcurve approximates the
ground-truth function very well in contrast to the linear gerthat underfits the data and the
10"-order polynomial curve that overfits therRight: Regression with linear models using
input features[xi2 Xi 1 & & &3] on the same data points. The last three dimens&ns, &3
contain random numbers, generated by a zero-mean Gausssisiiibdtion with unit-variance.
Least-squares (red line) yields non-zero weights on theerfeigtures which are irrelevant to
the target properties. Hence, it results in noisy estimatgdsing regularization with Lasso
(Section 2.2.3) yields almost zeros weights to the noiseresatind results in a much better

approximation the ground-truth function.

Median of Squares and also requires to tune a parametersimirdinating the inliers.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 18

2.2.2 Non-linear regression

In Equation 2.5, | assumed théfx;;w) = w-X; i.e., the target property is linearly related to
the input feature vectot. However, this might impose several limitations on the nho&er
example, fitting a linear model to data points generated fi@ime function plus some noise is

rather inappropriate, as shown in Figure 2.2(top).

A simple trick to enrich the above model is to apply a fixed imwedr basis on the input features

X. In this case, our model can be expressed as a linear conairditbasis as follows:
f(xi;w) =w-o(xi) (2.10)

where@(x;) is the applied basis function. For example, the basis fanatan be polynomials:
o(x) =[x xi(nfl) ... X2x; 1]. For example, fitting a linear model with quadratic feattieea
much better approximation to the sine function, as showniguré 2.2(top). There can be

many other choices for the basis functions, such as the igausasis:
(%) = exp(—(xi —mj)T - S;*- (x —mj)) (2.12)

wherem;j are fixed locations of centers fgr=1,2,...,M Gaussian functions with covariance

matricesS;.

Another example is sigmoid or hyperbolic basis functiorad t#re particularly useful for mod-

eling sharp transitions of the target property with respethe features:
@;(xi) =tanh(c; - X +Co) (2.12)

wherec; are fixed parameters that control the rate of the transit®urch basis functions are

used in the activation units of neural networks for regi@ssi

We could also select other functions, such as wavelets tat the advantage of being lo-
calized in space and frequency, or Fourier bases that héiméarspatial support but specific

frequency.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 19

Fortunately, applying fixed bases functions on the inpptoduces models that is still linear

with respect to the parametess In fact, they can be solved with least-squares as above:
wyL = (7 @)L -t (2.13)

whered is:

¢o(X1) @1(x1) ... Pm-1(xa)
©_ $o(X2) @1(x2) - Pm-1(X2) (2.14)

Po(XN) Po(XN) - Pm—1(XN)

whereN is the number of training examples aldis the number of bases functions.

However, still, having fixed bases function can be a limitatiFor example, it would be prefer-
able to consider the locations of the Gaussian basis furstd Equation 2.1 as parameters
in our model and learn their optimal locations from the tiregndata. Or it would be preferable
to learn the parametecs of the hyperbolic tangent functions of equation 2.12. Lesgsuch
parameters is common when we perform regression with Né&eslorks that are based on
sigmoid or hyperbolic tangent activation units. Howevihgse formulations result in models
that are non-linear with respect to the parameters, thestifeast-squares cannot be used to
solve for the parameters in this case. Instead, non-line@m@ation techniques need to be
used to minimize the training error. Non-linear technigungght tend to overfit the data, hence,

it is important to incorporate regularization while fittisgch models, as | will describe below.

2.2.3 Regularization

An important remark regarding least-squares is that miimgithe training error in the data
does not necessary yield good models for generalizatioying to make the training error as

little as possible may yield a very complex model that ovetfie training data and generalizes

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 20

very badly to novel data. As shown in Figure 2.2(top), fittmd 3" order polynomial gives
the lowest training error compared to the other fitted modétke figure, but badly approxi-
mates the sine function. Complex models usually fit the nagseell, producing a very poor

representation of the data that is far from the ground-tnudilel.

The problem of overfitting also appears when we have a vety-tigiensional feature space,
where many dimensions might also not be correlated to tlgetgroperty. Using the least-
squares formulation of Equation 2.5 can easily yield largeits on irrelevant dimensions of
the input features. Such complex models will also genexagdizorly to novel data. An exam-
ple is shown in Figure 2.2(bottom), where we least-squateslihear model on the feature
space[xi2 Xi 1 & & &3] whereegy, &, €3 are random values drawn by a zero-mean unit-variance
Gaussian distribution. Least-squares yields non-zerghtgieven for the last 3 dimensions of
the data that contain noise. As a result, the predicted saue also very noisy, far from the

ground truth model.

Therefore, reducing the complexity of the learned modeéry vmportant for scenarios where
we want to discover the most relevant features of the inpia tethe target property. Discov-
ering simpler models also helps decreasing the storag@eeugnts as well as the computation

needed to evaluate the mapping during the runtime.

A common technique to treat this problem in the machine legrliterature is to introduce a
prior probability distribution over the parametevsof the model. Using the Bayes theorem,
the posterior distribution over for the model parametensragortional to the product of the

likelihood function of the target property values and thispdistribution over the parameters:
p(wlx,t, 0%, a) O p(t|x,w,0?) - p(w|a) (2.15)

wherea are called the hyperparameters of the prior distributioar adlie model parameters.
Introducing priors over the parameters and finding the marinof the posterior distribution

is called Maximum a Posteriori (MAP) estimation of the paedens. It is common and conve-

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 21

nient to use a prior distribution which belongs to the sammalfawith the likelihood distribu-
tion. Since we assumed a Gaussian distribution for thelliget (as defined in Equation 2.3),

we also assume a Gaussian distribution over the model pteesne
p(wla) = A (w|m, S) (2.16)

wherem is the mean an8 covariance matrix for the prior. Then, the posterior is &swssian.

Then, maximizing the posterior corresponds to maximiziadagarithm, which is:
N

Inp(w|x,t,02,a) = _T; -Z(f(xi;w) —t)2— %(W— m)T-S{(w—m)+4const (2.17)

where "const.” includes terms that do not depend on the mpaelmeters. Thus, the MAP
estimation requires the minimization of the term corregiog to the least-squares error plus
a term that "pushes” the parameters to a range of values @étbermeamm of the prior distri-
bution. If we aim at finding sparse models, then the modelrpaters should be "pushed” to
0, thus, reasonable choice is to set= 0. For simplicity, assume that the covariance matrix is

diagonal and has all its diagonal values equal to the sanmneas. In this case:

N
Zl(f(xi;w)—ti)z—ZESWT~W+const (2.18)

Inp(w|x.t, o2, a) = ———~
p(|77 7) 20_2i

Thus, in this case, maximizing the posterior essentialjuces to the minimization of two
terms:Ep(w) = (f(xi;w) —tj)2, which is the sum of squared residuals &gw) = Aw'w =
zgzlwg, which is called regularization terrd & 1,2, ...D is an index for each model parameter
in the vectomw):

E(w) = Ep(w) +ABEw(w) (2.19)

The parametek = g2 /2sis called regularization parameter and determines theginéle of the
regularization term. The larger theis, the sparser the feature vectomwill be. Minimizing
2.19 with this regularization term is also known as ridgeresgion (or Tikhonov regulariza-

tion).

There are other regularization terms that can be used taracsparse models. A popular

choice isEy = A S§_; |wg|. Minimizing 2.19 with this choice of regularization termatso

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 22

known as Lasso [140]. The Lasso formulation is useful bezaidts tendency to prefer
solutions with fewer nonzero parameter values than ridgeession. An example of applying
the Lasso formulation is shown in Figure 2.2(bottom). In¢batext of geometry processing,
ridge regression has been used to smoothly fit meshes to & @attool point (called Least-

Squares Meshes [133]) or fit sparse models of surface vigikilth respect to the animation

parameters in [103].

There are limitations to regularization. Regularized msgeald biased estimators e.g, training
the same model with the same regularization parameterdfeyeadit samples of the training
dataset can yield low variance on the predicted hypothesestfie solutions to the individual
datasets vary a little around their average), but unfoteipa@an also yield high bias (i.e., the
average predicted hypothesis deviates a lot than the groutidhypothesis). For example,
using the zero-mean Gaussian distribution for the priatridigtion on the model parameters
(Equation 2.16) might pull several parameters to be smstiéad of generating a few non-zero
parameters that would better approximate the ground trypiothesis. This issue becomes
increasingly important when we have very high-dimensiomalit feature spaces. In this case,
it might be better to use an "aggressive” feature seleceghrique that attempts to combines
models of the selected features. This can be achieved véthdbsting techniques that we will

discuss in Section 2.4.

Setting the parametey for either the ridge regression or the Lasso formulationlss aot
trivial. On the other hand, settin plays a crucial role for determining the model complexity
i.e., the larger th@ is, the sparse the model will be. The paramdteran be set empirically,
however, it would be much more preferable to estimate it fieedata. One way to do this is to
perform cross-validation. Cross-validation involves tiplg the training dataset into subsets.
For each subset, we fit our model using various valuesA\fand measure the error on the
other subsets (called validation error). We select theeviduA that minimizes the average of

validation errors. We can perform the splitting randomipione training and one validation

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 23

dataset and repeat (this process is called repeated randmsampling validation) or split
the dataset into many subsets and use each of the subsely exae as the validation data
(this process is calle®-fold cross-validation wher& corresponds the number of subsets).
Cross-validation is very expensive and also has the diséalyanhat we cannot use the whole
training dataset for fitting all the parameters. Cross-wadiah is reduced to holdout-validation
if we split our exemplar dataset into one training and onelasibn dataset only once, which

can be useful if cross-validation is computationally vexpensive.

An alternative to cross-validation is to perform Bayesiagression that also automatically
selects the complexity of the model to be fitted. In this casejntroduce prior distributions
on the hyperparameters (i.e., tté ands used in 2.18), called hyperpriors. Then we set the
hyperparameters to specific values determined by maximthie marginal likelihood function

p(t|o?,s) which is obtained by integrating over the model parameters:
p(t]o2s) = [plthw, o) p(w|s)aw (2.20)
w

Maximizing the logarithm of above marginal likelihood isllea evidence approximation or
type 2 maximum likelihood and can be achieved with the Exgiemt-Maximization algorithm.
Finally, we can make predictiongor new values ok, by evaluating the predictive distribution,
given by:

p(f]t) = /// p(tlw, 0?)p(w(t, a2, s)p(a?, s|t) dwds do? (2.21)

g2 S W
in whicht represents the target values from the training set. Mowrglde@tbout Bayesian regres-

sion can be found in [11]. Bayesian Regression has also sofimuliiés. Although its main
advantage is that the inclusion of prior knowledge arisésrally in many cases, a general crit-
icism is that the hyperpriors are selected on the basis dienadtical convenience rather than
representing beliefs about true facts regarding the moaepeters. Another disadvantage
of Bayesian Regression is that it is computationally expensspecially in high-dimensional
feature spaces, since it involves computations that deperall the dimensions of the input

data.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 24

2.2.4 Mixture of Regression Models

In some cases, it turns out to be that the target propertylaseceto the input features with
multiple different regression models. The observed datacoane from all the models at once,
thus it is not possible to fit one model at a time (Figure 2@tolnstead, we need to find a

way to use a mixture of regression models for fitting the olegtdata.

The probabilistic interpretation of regression describe8ection 2.2 can be used as a com-
ponent to formulate a solution to this problem. Assuming ass&n noise model, the output

value of the target propertyfollows a mixture of Gaussian distributions in this case:

A

p(ti|xi,0) = S 1A (4] f (xi;Wy), 02) (2.22)
K=

where 6 denotes the set of all adaptive parameters in the model, Ipairee parameters of
each regression modély}, the variance of the Gaussian distributios®} and the mixing
coefficients{ ri;} that adjust the "weight” of each Gaussian component. Thémgizoefficient
T, can be also seen as a prior of picking #ieth component to generate a sample from the
above mixture distribution. GiveN training pairs{x;,t;} , the log-likelihood of all the training
target property values given the unknown parameiezan be expressed as:

N K

Inp(t|x,0) = _len(z TR (4] F (Xi; Wk), 02)) (2.23)

i=1 K=1
Maximizing the above log-likelihood cannot be done with aseld-form solution, since the
problem is that we do not know which of the components geadraach sample. In order to
maximize this log-likelihood, we introduce binary latemiriableszy € {0,1} which indicates
which component of the mixture is responsible for genegagiach data point. Hence, for each
data point, all zx’s are 0 expect to one which is equal to 1 and indicates the oasmg of the
mixture that generated this sample. The probability of siagpa component for a sample point
is equal to the corresponding mixing coefficient iz, = 1) = i, and p(zx = 0) = 1 — 1%

and alsoyK_; 7§ = 1 holds.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 25

50

)
+~ -100f . \

-150f N
.

-200F

2250 1 1 1 1 1 1 J
) . E

50

50k

-150

-200F

—25(_)6

50

50k

-150F

-200f

-250;

Figure 2.3: Example of a synthetic dataset where a mixture of regressatets is applicable.
Left: Fitting one model fx) = ax? (green line) to the data points is rather inappropriate for
capturing the underlying mixed componentdiddle: Random initialization for a mixture of
two regression modelRight: Optimizing the mixture model with Expectation-Maximizatio
after5 iterations successfully converges close to the two grownti-models used to generate

the data points

The complete-data log-likelihood can now be rewritten dsvs:

Inp(t,z|x,8) = Z Z Zi In (T (8] £ (Xi3 Wi), G2)) (2.24)
i =1

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 26

or:

Inp(t,z|x, 0) = i % Zie(IN TR+ In A (4] £ (xi; Wk), 2)) (2.25)
=1

This log-likelihood can be maximized using the Expectafiéaximization (EM) algorithm. In
general, the EM algorithm can be applied in problems whezgtal is to maximize the likeli-
hoodp(t|8) with respect tdd, given a joint distributiorp(t,z|0) over the observed variablés
and latent variables governed by these parametétsThe EM algorithm iteratively alternates
between performing an expectation (E) step, which comphegxpectation of the posterior
distribution of the latent variables evaluated using theenut estimate of the parameters, and
a maximization (M) step, which computes the parameters maig the log-likelihood. The
iterations keep running until a convergence criterion tssBad. It should be noted, that this
iterative scheme might converge to a local maximum. Belowgeszribe the steps of the EM

algorithm and how they can specifically be applied to the unxinodel problem:

Step 1 - Initialize the parameters6: Let 68°¢ the initial setting of the parameters. The
parameter$°9 can be initialized randomly in general, but this might notabgood strategy,
since the EM algorithm can get stuck to a local maximum. Angtegy to find a good initial
guess (e.g., with random restarts, a greedy initial seancth® parameter space etc) can be

helpful for pushing the algorithm to converge to a betteuson.

Step 2 (E step) - Evaluatep(z|t,x, 8°9): In the case of the mixture model, using Bayes’

theorem, we have:
p(zi) p(ti|Xi, Ok, Zik)

p(ziklt,x, 0) = (2.26)
551 p(z))p(ti|xi, 6;,2;)
The above equation can be rewritten as:
N (| F (Xi; W), 02
p(zult,x, 8) = — e T W) 7 (2.27)

S A (6] F (i wi), 02)
The above posterior probability corresponds to how likelig ifor each poini to belong to

each componerit It is also known as responsibility of each comporiefdr generating every

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 27

data pointi. For notation compactness, it is common to represent thmonssbilities with

Vik = P(zik|t,x,).
Step 3 (M step) - Evaluate"®W = argema>Q(9, 6°9) where:
Q(6,6°%) =Y p(z]t,x,6°¢)Inp(t,z|x, 6) (2.28)
Z
For the case of the mixture model, we have:

N K
Q(6,6°%) = >2 Vic(In 7R+ In A7 (5] £ (xi; wi), 0%)) (2.29)
i=1k=1
Setting the derivative of) to 0 with respect torg, and taking into account the constraint
SK_ ;T =1, we can find that:
1 N
k=5) Yk (2.30)
3
Setting the derivative d to 0 with respect tov, results in least-squares fitting thkefunctions
f(x;wg) to the data points, using the responsibilitigsas weights. For example, if we use
linear models of the fornt (x; wy) = wy - ¢(x) (including kernel transformations as described

in the above section), then we solve the following weigheast-squares problem:
Wyl = (@)1 ot (2.31)

wherel y = diag(yi) is a diagonaNxN matrix.

Finally, setting the derivative oD to 0 with respect tas? results in obtaining the following

solution:

2_ AP Vlk(Nti — FO5wi))? (2.32)

Step 4 Check for convergenceilf the log-likelihood or the parameter values are the same

o

or changed very little with respect to the previous itemtithen terminate. If there is no

convergence, go to Step 2 and repeat il < "W,

An example of applying a mixture of regression models is showFigure 2.3. Although the
initial guesses for the models are far from the data pointu€ 2.3(middle)), the models are

correctly found after a few EM iterations (Figure 2.3(bati).

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 28

2.2.5 Mixture of Experts

The mixture of regression models that we described abovéeatill very limited. In many
cases, the target property is related to the input featurés multiple different regression

models that vary according to the values of the input featareeven some other features.

We can extend the mixture of regression model describedealbgvallowing the mixing coef-

ficients to be functions of the input variables:
K
p(ti|xi, 8) = k;ﬂk(xi) pr(ti[xi, 6) (2.33)

The above model is known as mixtures-of-experts model j6@}hich the mixing coefficients
Ti(Xi) are known as gating functions and the probability densfiigs|x;, 6) are called experts.
This formulation results in having different componentsp@nsible for different regions of
the input space (i.e, the probability densitiggti|x;, 6) are experts at making predictions in
their own regions and the gating functions determine wharhgonents are more important in

which region).

The whole model can be fitted again with the Expectation-khgzation algorithm [65], fol-

lowing the general steps described in the above sectionmixteire-of-experts of model can
be extended even more, by having a mixture distribution &@hey(t;|x;, 0) i.e., each compo-
nent is mixture itself in a mixture distribution. This modelcalled Hierarchical Mixture-of-
Experts [65] and can be fitted with the EM algorithm, startirggn the lowest level and then

sequentially proceeding with the upper levels of this higrecal model.

2.3 Classification

When the target property is categorical, then the goal oféhening step is to map the input

feature vectoi to the discrete values that the target property can takeseldescrete val-

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 29

ues are also known as class labels. In the most common stethariclasses are taken to be
disjoint, so that each feature vector is assigned to onlyotass. In this case, what classifica-
tion does is to split the input space into a set of decision regions. Each decision region
is assigned to one class. The boundaries of these decigjmmmseare called decision bound-
aries or decision surfaces in higher than 2-dimensionaespd_inear classification techniques
yield linear decision surfaces, while non-linear techemyield non-linear boundaries. Classi-
fication techniques have been widely applied to 3D objeatnsggjation and recognition (e.g.,
[3, 88, 98, 42]). In non-photorealistic rendering, a fewssléication methods haven been ap-
plied to learn locations of feature curves based on 3D gegnaetta. Lum and Ma [92] use
neural networks and support vector machines to learn lmesif feature curves and Cabe
al.. [18] study feature curve locations using decision treekle@ar regression. Fet al. use

a combination of Random Forests and Support Vector Machaneetict the upward orienta-

tion of objects [36].

We show an example of a categorical property in Figure 2.4higiexample, the target prop-
erties we wish to predict are the part labels for each face3n anesh. For humans, the part
labels take values from the sftead, torso, upper arm, lower arm, upper leg, lower leg, hand
foot} and for animals they take values from the Se¢ad, torso, neck, leg, tail, gatOur goal

is to learn a classification function that maps from shap&feax to the segment labels so
that we reliably predict the labels on novel unlabeled inpeshes. For this reason, we are

provided training labeled meshes, whose mesh faces asslgll@beled (Figure 2.4(left)).

Least-squares for classification: One naive approach to classification is to least-squares fit a
linear function of the fornT (x) = wx 4+ wp to the the training datéx;, t; }, wheret; represents

the indices of the labelq{,2,3,4...}). The values predicted by this function would be contin-
uous and in fact, they could also be negative or much largar the number of class labels.
However, this does not make sense for a classification prghdere we want to predict class

labels, rather than continuous values. A more reasonabpli®agh is to least-squares fit a lin-

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 30

: ! | l ! l Bhead
Eneck
ﬁm .torso

mleg
Training Meshes

m&

mear
Least-Squares Decision Tree

Bayes classifier Logistic Regression ointBoost
Mhead
[torso
P upper a
[llower ar
M hand
Il upper leg
Il lower leg
Il foot
Least-Squares Decision Bayes Logistic jointBoost
Tree classifier Regression

Training Meshes
Figure 2.4: Results of applying various classifiers for labeling animal and human esedihe goal is

to learn a classification function that maps from shape featuraspart labels given labeled training
meshes. We show results of least-squares, decision trees, SVMskéinezl), Gaussian Bayes, Logistic
Regression and JointBoost classifiers. For all classifiers, the sam# fepturesx are used. These
include curvature, PCA, shape diameter, medial surface, geodesandes shape context, and spin
image features described in Appendix A.1. The regularization paramet&¥Ms, Gaussian Bayes,
Logistic Regression are estimated by hold-out validation; the validation esesife selected to be the
bottom-right training mesh for humans and the two rightmost training me@lagsel and small goat)
for animals. The validation meshes are also used to terminate the boostintjoitaréor Jointboost.
The rest of the training meshes are used for learning the main paranfeterach of the above methods

(see text for details). Least-squares and decision trees use all the gaiteshes.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 31

ear model of the fornf(x) = wex + weo for each class separately. In this case, the training
pairs are transformed 0, 1} if tj = c (the data point has training lab&land{x;,0} if tj # ¢
(the data point does not have training label A new inputx is assigned to the class lakbel ~
for which the output of the fitted modéf(x) gives highest value. However, the model out-
puts do not have any probabilistic interpretation, and dtsaot lie in the interval0, 1]. Also,
least-squares assumes a gaussian model of noise that shlaegalues of the target properties
continuously (e.g., from 2 to 2.1), while for classificatioise essentially alters the label of a
data point (e.g., from "head” to "torso”). A few outliers caasily cause unpredictable effects
to the classification, as the sum of squares error heavilgl@eEnpredictions that lie far away
from the decision boundary, but they are still in the cordatision region. Figure 2.4 shows
the rather unpredictable behavior of least-squares fasiflaation: in the animals example,

least-squares provides reasonable results, howevegdyefails in the humans example.

Instead, a more correct approach to classification is toigirdiscrete class labels or to com-
pute posterior probabilities for each class label thatri¢hie interval[0,1]. There are three

approaches for achieving either of these two:

 construct a discriminant function that directly assigms input vectorx to classes by
minimizing some loss function corresponding to the classiion errorziN G #CG.

» model the class-conditional distributions given pix|t = c), together with prior dis-
tributions p(t = ¢) and then compute posterior probabilities using the Bayesjrgm:
p(t =clx) = % (this is also known as probabilistic generative models)

« directly model the conditional probability distributigait = c|x) (this is also known as

probabilistic discriminative models)

Below, we show characteristic techniques for each of the@abpproaches.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 32

2.3.1 Discriminant Functions

The classification techniques that are based on discrirhfoantions aim at directly mapping
the input vecto to classes. They do not explicitly provide probabilisti¢mu, but they can
provide very good results, when they minimize a quantity thaelated to the classification
error. Unfortunately, minimizing the classification eriorterms of the total number of mis-
classified points in the training data, does not lead to alsit@arning algorithm. Such error
function is piecewise constant function with respect to itiedel parameters and gradient-

based optimization methods would fail to minimize it, siftsegradient is zero or undefined.

Perceptron: Let us focus for now for binary classification problems wityotclasses (i.e.,
ti € {—1,1}). An alternative error function for classification, calleerceptron criterion, is the

following:
E(w) = —_Zw (W't (2.34)

whereM is the set of misclassified training paifs;,ti}. The above error function penalizes
misclassified examples and associates zero error for ¢lyrtassified examples. The error
function is piecewise linear, but can be minimized with btstic gradient descent. At each

step, we update the weights as follows:
W = W+ Nxtj (2.35)

wheren is the descent step size (it is called learning rate). Naéwe can replacg with

@(x;) whereg@ is a basis function, as explained in Section 2.2.2.

This algorithm is called Perceptron and is simple but poweiit can be proved that it can
converge to the exact solution in a finite number of stepsigfé is such exact solution [112].
However, if there is no such exact solution (i.e., the dateseot linearly separable or in
other words there is no linear decision boundary that stilgsdataset into two regions where

all points are correctly classified), then the perceptrolh néver converge. However, it can

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 33

find an approximate solution. Also, the perceptron does rotrnlize readily to multi-class

classification problems (i.e., when the number of classe®i® than 2).

Decision Trees: Another method to construct a discriminant function is teedily split the
input feature space so that each region represents eash c&p; the current proportion of
training points in regiorR; that is assigned to class Then, the following error functions are

commonly used to determine how to split the input featurespa

Q(Rr) = Prelnpre (2.36)

which is known as cross-entropy, and:

Q(Rr) = Pre(1—Prc) (2.37)

which is known as Gini index. The above error functions canmi@mized iteratively. At
each iteration, a threshold on one of the features is seléatgplit the corresponding region of
the feature space into two regions so that the above errotifumis minimized. The goal is to
partition the input feature space with each region havinigla proportion of points assigned to
a specific class. This partitioning leads to a formation alecision tree”. For a new input data
point, we can find the region it belongs to by traversing tee tin a depth-first style according

to the decision criteria that are associated to each node.

There have been many versions of decision trees for clee#oiicthat define alternative error
functions along with some pruning criteria for the trees Yoid overfitting. For a survey
on decision trees and pruning criteria, see [99]. Decisieas have the advantage that their
learned structure is easily interpretable by humans. Hewdéis structure may not correspond
to meaningful classification rules. In practive, it has bémmd that small changes to the

training data may result in a different series of splits [47]

In figure 2.4, | show the result of applying a decision treedassification in the humans and

animals example. | experimented with all the types of emactions provided by Matlab: Gini

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 34

index, twoing rule and deviance (automatic pruning is ugedllicases). | show results for the
error function that had the least training error. As it caarbseen, the classification results are

not that satisfactory compared to other methods.

A more stable approach is to to use random forests. Randorst$csee ensemble classifiers
that consists of many decision trees and outputs proliabiliter class averaged over the leaf

nodes of all the decision trees [13].

Support Vector Machines: Another method for classification is to attempt to maximize t

distance between the decision boundaries and any of tienigesamples. This distance is also
called margin. The main assumption is that if there are mauwistbn boundaries offering exact
solutions, it is better to select the boundary that maxisitbe margin to achieve the lowest

generalization error. This types of classifiers are alsamknas support vector machines.

Let us assume for now that decision boundary is linear, hetheeboundary is given by a
hyperplane defined by the implicit equatidfx) = w' -x +wg = 0. Assume that we have a
binary classification problem with training data poifis, t; }, wheret; = {—1,1}. The distance
from a training data point; to the decision hyperplane j$(x)|/||lw||. Each point is on the
right side of the decision boundary, whgh(x;) > 0. The maximum margin solution is given
by solving:

argmax
wwo | W]

minftif (x) (2.38)

This problem can be posed as the following constrained opdithon problem:

argmin||w]|? (2.39)
W,Wo
subject to the constraints:
Vi, tif(X) > K (2.40)

The above constraint ensures that the margin of each datbipat leask. The above equation

can be simplified by rescaling it with division withwithout loss of generality:

Vi, tif(x)>1 (2.41)

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 35

The solution to the above constrained optimization probkemfeasible when the data points
are not linearly separable. Thus, we can loose the aboveraonts by introducing a slack
variable& which is 0 for correctly classified training data points dne- f(x;)| for the rest. In

this case, we solve for the following constrained optim@aproblem:

argmim ' & + ||w| |2 (2.42)
W,Wp]
which is equivalent to:
argmind 5|1 — £ (xi)ti[+ [|w|[? (2.43)
W,Wo]
subject to the constraints:
Vi, ti(w' X +wo) >=1—§ (2.44)

whereA is a regularization parameter.

The above formulation can be extended by performing theeterick and replacingg with

(%) whereg@ is a basis function, as explained in Section 2.2.2.

A limitation of support vector machines is that they do naiyide posterior probabilities for
their outputs. In addition, the parametemeed to be cross-validated for each case. These

limitations can be overcome with the Relevance Vector Mazhiamework [141].

The support and relevance vector machines can be also @pplisulticlass classification
problems. This is usually done by constructi@grector machines (where C is the number
of classes), where for each of them, we attempt to discriteinae class from the rest. This
strategy is called one-versus-the-rest and has the disedy@that discriminating each class
from the others is posed as different optimization probléhad do not share any common
terms or features. | show results for the mesh labeling prabh Figure 2.4, where SVMs are
trained using the one-versus-the-rest strategy. Theat&itl meshes are used to estimate the
A regularization parameter using the L-BFGS numerical op@tnon technique provided by

Matlab.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 36

2.3.2 Probabilistic Generative Models

The generative models aim at modeling the class-conditidis&ibution p(x|t = ¢), as well
as the class priorp(t = c), then compute posterior probabilities using the Bayes’ rr@o

p(t =clx) = % This can be rewritten as follows:
p(x|t=c)p(t =c)

Pt =) = & oxit = 1)pt = 1) (249)

By settinga; = In(p(x|t = j)p(t = j)) (wherej = 1,2,...C), the above distribution can be

rewritten as:

expac
p(t =clx) = _eXa) (2.46)
Y jexp(a;j)
The termz‘fz)‘f‘f‘aj) is known as normalized exponential and is the generalizatithe sigmoid

function. It is also known as softmax function, as it représea smoothed version of the
'max’ function. Intuitively, what it means is that for largmsitive values o8&, the posterior
is saturated close to 1 while for large negative values, #daisirated to 0. There is a sharp
transition for values oé&. close to 0. This "squashing” form of the sigmoid function regakt

very useful for classification tasks.

In order to find the posterior probabilities for some inputve have to assume some distribution
for the class-conditional densitiggx|t = ¢) and set some value for the prigpgt = c) = re.
It is popular to use assume a Gaussian for the class-comait@ensities. In this case, the

classifier is known as Gaussian Bayes classifier:

p(xlt=c Tt (xi—me)) (2.47)

1 1
) = W exp(—é(xi —mg)

whereD is the dimension of the feature vector Let us transform the training pairs into
{Xi,tic}, wheretic = 1 if tj = c andtic = 0 if tj # c. In this case the likelihood function is:
N C

p(tjr,m,S) = |_l|_| [rjA (Xi|mg, S))te (2.48)

i=1c=1

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 37

Using maximum-likelihood (i.e., setting the derivative tbe log likelihood with respect to

each of the parameters), we find that:

rc - %
1 N
Me = ¢ izlticxi (2.49)
1 < T
S=43 5 (G—mox—mo)
c=1li:{tc=1}

whereN; is the number of samples that haye= 1.

A problem using maximume-likelihood is that when the numbesamplesN; is small for a
class, the priorc = % will be very small for this class. This results in very biagstimates of

the parameters. In this case, we need to incorporate a @ief bb modulate the priors:

Nc+ U
N+Cu

re= (2.50)
where i is the number of "pseudo-counts” used to smooth the priofiso,Ahe covariance

matricesS; can be smoothed:

§=01-2)S+AS (2.51)

whereA is a regularization parameter afds the covariance matrix for all samples.

A problem with the Gaussian Bayes classifier is that the assomihat we have a Gaussian
distribution assigned to each of the classes is not ap@tepwhen there are outliers. Also,
the distribution of the samples per class might not be Gangsiin general can be poorly ap-
proximated with any analytically defined distribution. lbshthe results of using the Gaussian
Bayes classifier for the mesh labeling problem in Figure 2l4e Walidation meshes are used
for estimatingu andA in this case. The classification results are relativelyopable for the

humans, but not as good for the animals case.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 38

2.3.3 Probabilistic Discriminative Models

The discriminative models attempt to directly maximize likelihood of the conditional dis-
tribution p(t = c|x). The advantage of such approach is that it does not need tiwityp
model the distribution of the samples per class, and thismarove the generalization perfor-
mance. On the other hand, discriminative approaches tjypreguire more training examples
per class; for scarce training data, generative models are appropriate since they model the
input instead. For the same reason, generative modelsxigmtdower variance of parameter

estimation, at the expense of possibly introducing biaséichators.

As we saw in generative models (Equation eq. 2.46, the pospgpbabilities can be expressed

using a softmax transformation involving functions of thput features:

p(t =clx) = _eXHa) (2.52)

- yjexp(a))
The goal of discriminative models is to directly maximize tlikelihood of the conditional
distribution p(t = c|x). Let us assume thai are given by linear functions on the features:

ac = WeX. By performing the kernel trick, we can also replaceith basis functions, so that

ac = Wc@.

Our goal now is to determine the parametersising directly maximum likelihood on this
model. This approach is known as "logistic regression”, &essentially attempt to fit a

sigmoid function for each class. The likelihood functiomgigen by:

N C
p(tiw) = p(t =clp)* (2.53)
igcﬂ
whereti; is defined as above. The negative log-likelihood is given by:
N C
—Inp(tjw) = — Zl Z ticInp(ti = cle;) (2.54)
=1c=1

Due to the nonlinearity of the sigmoid function, we cannodl fanclosed-form solution, as we

did in the case of maximum likelihood for regression. Thihg, megative log-likelihood can

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 39

be minimized using an optimization technique, for which Wwewdd also provide its analytic

gradient.

Similar to the case of regression 2.2.3, we can also add &arégation term to avoid overfitting
the parametens. Based on the ridge regression approach, we can minimizellbe/ing cost

function:

N C D
Lw)= =3 3 telnplt = clg) +A dzlwé (2.55)

The Lasso formulation can provide an even sparser moddhidricase, we minimize:

N C D
L(w) = —_zi thicm pti=clg)+A dz %] (2.56)
i=1c= =1

The parameteA needs to be cross-validated. An alternative approach isetoela prior
distribution over the weights, as in the case of Bayesiaressgon (section 2.2.3) and perform

Bayesian inference [11].

Logistic regression is a pretty powerful approach for dfasgion, however, estimating the
parametersv relies on the solution of a non-linear optimization problémat could also be

computationally expensive especially in very-high dimenal spaces. As in the case of re-
gression, regularization might pull several parametefsetemall instead of generating a few
non-zero parameters that would better approximate thengrouth hypothesis. In this case,
it might be better to proceed with an "aggressive” featutecmn technique that attempts to
combines classification models of selected features. Tdmsbe achieved with the boosting

techniques that we will discuss in section 2.4.

| show the results of using the Logistic Regression classifi@uding the Lasso regularization
technique for the mesh labeling problem in Figure 2.4. Tlasgification results are good for

humans, but for animals, several parts are mislabeled (@edkail).

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 40

2.3.4 Conditional Random Fields for Classification

In some cases, we want to classify multiple target propettiat have interdependencies on
their discrete values. For example, this can happen in inageesh labeling problems when
we want to classify image or mesh elements (e.g., pixelsices; triangles) respectively into
a set of categories according to their features. One optmudibe to classify each element
separately based on its features. However, in such stedcata, assigning a label to an
element strongly depends on the labels assigned to its Iomigh Even if the features are
locally continuous, classifying each element indeperigdntm the others can easily yield
discontinuous and noisy results especially for elementsseteatures lie close to decision

surfaces.

A naive solution to this problem would be to find all the labassigned to the neighbors of
each element and then assign the most common label to it. Wowsich solution would be
strongly dependent on the parameter that determines tbetthe neighborhood, would not

have any probabilistic interpretation and would still digloisy boundaries.

A much better way to treat this problem is to find a probabdigbrmulation such that the

decision for the label assigned to an element takes intouatdbe assignment of labels of its
neighbors. Since the labels of its neighbors also depentieiabels of their neighbors and
S0 on, this labeling problem should be solved in a globalitasisuch that the labels of all the

elements are jointly optimized.

When there are such probabilistic dependencies betweearidem variables in our problem,

structured probabilistic models are more appropriate ¢ lrssthe machine learning literature,
these models are usually represented by graphs; the graptmise of nodes representing the
random variables and links which express the probabilistationships between the variables.
As a result, the graph encodes the joint distribution overrémdom variables as well the

factorized representation of the set of independencesittadin the joint distribution.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 41

There are two main classes of graphical representationgefBeltworks and Markov Random
Fields. The Belief Networks use directed acyclic graphs poagent a factorization of the joint
probability distribution of the random variables into a gwet of local conditional distribu-
tions. They are more useful for expressing causal relatipsbetween random variables. The
Markov Random Fields use undirected graphs that specify &dd#ttorization and induced
dependencies between the random variables. These are figteel to express constraints
between random variables. For more information on Beliefndets and Markov Random

Fields, see [11].

Here, we focus on a variant of Markov Random Fields (MRFs)gedaonditional Random
Fields (CRFs) [82] which are undirected graphical model esfigsuited for classification.
CRFs are often used for the labeling or parsing of sequenttal dach as natural language
text or biological sequences and have been also used foresggtion and labeling of images

in computer vision [127, 88].

Each node in a CRF graph corresponds to a random vargaltaich represents an element
to be labeled and whose distribution is to be inferred, amkklrepresent label dependencies
between the random variables. Each random variable maybalsonditioned upon a set of
observationx. The links form cliques in the graph that are defined as a sufs®des such
that there is a link between all pairs of nodes in the subsehafimal clique is a clique such
that it is impossible to include any other nodes in the setouit it ceasing to be a clique. For
example, in Figure 2.5, we show a portion of a CRF graph defined @wesh whose faces
we want to label according to some underlying featwe¥he nodeg; represent mesh faces
that are connected for adjacent faces. The labels of mesis @ conditioned upon a set
of observed featurelgx, on the faces. The choice of labels for adjacent faces isiaddlty
conditioned upon a set of some other observed feahxgeelated to these adjacent faces. The
maximal cliques argci,Cj1,Xij1}, {Gi,Cj2, Xij2}, {Gi,Cj3,Xij3}, {Ci,Xi}, {Cj1.Xj1}, {Cj2,Xj2},

{cj3,%j3} etc (not all nodes for the mesh faces are shown in the graptidoty reasons).

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 42

3 '

- g 14 '
H . & o \ g N
[I LS “ '
' 2 ! ' LA . '
> g , B :

1 T ’ o . S

’

. . o . S '
. 1 . . '
R ' N K R ., ' !

i ' ' '
- ' N ' '
' J ' '

'

' ' '
H '
H '
H '
H '
H '
H '

Xij1 ;Xijz Xij3: .
Q @ 0o
Xj1 Xi Xi3 Xj2

Figure 2.5: A CRF graph defined mesh faces we wish to label according to sodezlying
unary featuress; and pairwise features;j. The open circles represent the nodedacbe
labeled. There are links for nodes that have their corresidog mesh faces adjacent. The

shaded circles represent the observed features and areematrgted by the CRF model

The conditional probability of the set of labats= {c1,cp,...,0v } is written as a product of

potential functionsfq(cq,Xq) over the maximal cliquegin the graph:

P(el.6) = 5 g [Yoleaxa (257)

ge?
where 6 are the parameters governing the conditional distribupeix, 8) and Z(x, 0) is

called the partition function, which ensures that the ctodal distribution is correctly nor-

malized:

Z(x,0) =73 [WalCa:Xa) (2.58)

C ge?¢
Note that the potential functions are not restricted to lzaspecific probabilistic interpretation.
Thus, they are not necessarily probability functions. lteorto ensure that(c|x, 8) > 0, we
are restricted to potential functions that are strictlyipes, thus it is convenient to express
them as exponentialgy(Cq,Xq) = exp(—E(Ccq,Xq), WhereE(cq,Xq) is called an energy func-

tion. The energy functions play the role of expressing wiaddeling settings of the random

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 43

variables in a clique are preferred to others. In the exampléigure 2.5, the conditional

probability can be rewritten as:

v v N(i)
Z(xl, 8) exp(i;l Ei(ci,Xi) + i; gl Ex(ci,cj,Xij)) (2.59)

p(clx,) =

whereN(i) is the set of faces that are adjacent to the face with imnd&ke termE; measures
consistency between the featurg®f mesh face and its labek;. Such terms involving one
random variable and the related observations are usudlgdcanary terms. The terrk;
measures consistency between adjacent face lapatslc;, given features;j. These terms
involving two linked random variables are usually calledrwée terms. In this thesis, we
will show applications of CRFs of the above form. Examples gilgpg CRFs for labeling

problems are shown later in the thesis (Figures 3.2 and 4.3).

The main limitation of CRFs (and similarly MRFs in general) iattif we haveV nodes for
labeling, and each of them ha@gossible labels, then the evaluation of the normalizatomt
requires summing over all¥ possible assignments, as it can been seen in Equation h&g, T
inferring the most probable assignment of labels for gdrgnaphs (including the example
graph of Figure 2.5) is aRtcomplete problem, and thus computationally intractabl¢hie
general case. If the graph has a simple structure as e.ge@richain CRFs, where each node
is linked to exactly one other node, the forward-backwagdalhm can be used for inference
which has polynomial time complexity. For general graplpgpraximate inference techniques
are used, such as variational inference, loopy belief gapan and Monte Carlo sampling

methods and graph-cuts. Detailed discussion of these gombtiehe scope of this thesis.

Learning the parametesin CRFs based on training data ¢; involves maximizing the log-
likelihood for the CRF which is expressed as follows:
1

N
L(O) :i;InerqéE(ciq,xiq)) (2.60)

For general graphs, it is also not possible to analyticadfiedmine the parameter values that

maximize the log-likelihood. Setting the gradient to zeoeslnot yield a closed form solution.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 44

Parameter estimation can be performed approximately mguegpproximate techniques such

as pseudo-likelihood, piecewise training [136] or corttvasdivergence [48].

2.4 Boosting techniques

Boosting is a class of techniques for combining multiple #adassifiers to produce predic-
tions that are better than any of the "base” classifiers. Hvthre "base” classifiers perform
slightly better than random guesses, boosting can stillbseenthem appropriately to yield
much better classification performance. The "base” classifire called "weak learners” and
their resulting combination is usually called "strong leen”. The weak learners can be any
classifiers, however, most commonly, it is sufficient to usg#e ones, such as decision stumps
or decision trees. Most commonly, these simple classifiexg afso use only one of the fea-
tures (dimensions) of the input vecter As a result, boosting combines weak learners that
select specific features, that are more relevant for theifilgation task. This kind of feature
selection makes boosting ideal for handling very high-disienal input spaces, when only a

few dimensions are relevant for each task.

The key idea of boosting is to train the "base” classifiersequence, where each "base”
classifier is trained using a weighted form of the trainin¢gpdat. At each boosting iteration,
one "base” classifier is selected that yields the best ¢leason performance among all other
"base” classifiers based on the current weighted form ofrtirihg dataset. Then, the training
data points are re-weighted so that each weight associatie@ach data point depends on the
performance of the previously selected classifier. Misifeexl data points are associated with

higher weight, so that subsequent classifiers have the etiaratassify it correctly.

Boosting was originally developed for classification task$beund and Schapire [34]. Later,

it was also extended to solve regression problems, wheradrcase, the "weak learners” are

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 45

simple regressors that are combined to yield a much betggpanating regression function.
Here, | will briefly refer to the most popular version of baogt called AdaBoost (Adaptive
Boosting), and then | will focus on multiclass classificatwith JointBoost [142]. Then, | will

refer to a boosting algorithm for regression [155].

2.4.1 Adaboost

The original version of Adaboost deals with binary clasaiien problems. Givei training
samplegx;,t}, wheretj = {—1, 1}, we associate a weigh for each sample, which is initially

set to ¥N. Then, at each boosting iteratiom= 1,2, ...,M, we perform the following steps:

* select a base classifieg(x) which best minimizes the weighted classification error func
tion: Jn = ZiN:1Wi| (hm(Xi) #t;) wherel (hm(X;) # t) is an indicator function that equals

1 if hym(X;) # ti and O otherwise.

wil (hm(xi)#ti)

N
e evaluate the normalized error of the weak learmgr= 2i=1 SN w
i=1""

IN(1—&m)/&m

* update the weightsy = w; exp(aml (hm(Xi) # tj) and normalize them so that they sum

and thenoy, =

to 1.

Finally, the predictions are done by linearly combining pinedictions of the weak classifiers:

H (xi) = sign(%1 Omhm(X)) (2.61)

The choice of the above weights on the sampleand weak learnerg,, were motivated by
findings in the statistical learning theory. It can be protret if there is a bounded probability
that the error of the weak learners is less than 50%, thee iteex bound on the training and
generalization error. More specifically, suppose tRetey, < 0.5 — ym) < d, whereyy, is a
constant that measures how much better than random thecpoedi of the weak learnen

are, andd is a constant the bounds this probability. Then, it can begudhat training error

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 46

E <expg—23M ,\2). Practically, this means that if the weak learner is sligbgtter than
random, then the training error drops exponentially faster€ is also an upper bound for the
generalization errof’ < E +O(,/(M -V /N), whereM is the number of boosting iteratiors,

is the number of samples akdis the VC-dimension of the weak learner. The VC-dimension
corresponds to the largest set of data points in the feapargesthat can be split by the weak
classifier in any possible labels assignment and arrangeofighem. This bound is rather

loose and practically may not be that useful.

A different interpretation of Adaboost was given by Friedaned al. [35]. It can be proved
that based on the above formulation, Adaboost minimizexpareential error function corre-
sponding to the classification error:

N

E= z exp(—tihm(X;)) (2.62)

n=1
The exponential error function heavily penalizes data tsdimat are misclassified. There are
other variants of Adaboost that can be used to minimize tbgeabxponential error function.
A patrticular variant that is more numerically stable is GeBbost [35]. Gentleboost performs

each boosting iteration, as follows:

* select a base classifim(x) to the training data which best minimizes the weighted
classification error function.

* update the weightsy; = w; exp(—hm(Xi)ti) and normalize them so that they sum to 1.

The output of the strong learner is given by:

M
H (xi) = sign(Zlhm(x)) (2.63)

Both Adaboost and GentleBoost have been extended for mskidkssification problems.
Below, we focus on perhaps one of the most powerful versionsnidticlass classification,

called JointBoost.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 47

2.4.2 JointBoost

Jointboost was introduced by Torralbaal. [142] and its main characteristic is its ability to
deal with multiple overlapping subsets of classes in théufeaspace. For example, in the
case of part labeling of a hand, imagine that a feature (shgpe diameter) is excellent for
distinguishing the index, middle, and ring fingers from ttanp and the thumb, but not for

distinguishing the index from the ring fingers, since theyrhave approximately the same
values for this feature (e.g., shape diameter). Many masigcclassifiers (e.g., SVMs) adopt
a one-against-the-rest strategy, which attempts to stepaagh class from all the rest. Such
classifiers would not be able to benefit from this feature ia tiase, since its values are not
clearly discriminating all classes. In fact, there mightioeclass-specific features at all. Joint-
Boost can exploit this feature to distinguish these fingess, fand then in the next rounds of
boosting, other features can be selected to further digtaiie them. This process of finding
commonalities between classes substantially improvegdmeralization error as shown by

Torralbaet al. [142].

The classifier is composed décision stumpsA decision stump is a very simple classifier that
scores each possible class labgebiven the feature vector, based only on thresholding its

f-th entryx;. A JointBoost decision stump can be written as:

a Xxj>rtandce %s
h(x,c;¢) =1 b x <Tandce %s (2.64)
kc C¢ cgs

In other words, each decision stump stores a set of classedf ¢ € %5, then the stump
compares; against a threshold, and returns a constaatif x; > 1, and another constabt
otherwise. Ifc ¢ és, then the comparison is ignored; instead, a condaistreturned instead.
There is onék; for eachc ¢ 4s. The parameterg of a single decision stump affea, b, 7, the

set%s, andk, for eachc ¢ %s.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 48

The probability of a given classis then computed by summing the decision stumps and then

performing the softmax transformation:

H(x,c) = Z hm(X, C; @) (2.65)

P(clx) = expH (x,0)) (2.66)

ySiexpH(x,)

GivenN training pairs(x;,tj), JointBoost minimizes the weighted multiclass exponeifiss

over the training set:
N

J= w; cexp(—I(ti,c) H(xi,c)) (2.67)
i;c;f
where each training pair is assigned a per-class weightH (z,1) is defined in Equation 2.65,

% is the set of possible class labels, df(tg) is an indicator function that is 1 when= c and

—1 otherwise.

The algorithm proceeds iteratively as Adaboost. The algaristores a set of weights; &~
that are initialized to the weights; ¢, representing the confidence for each sample. Then, at
each iteration, one decision stump (Equation 2.64) is adlolé¢ide classifier. The parameters
(@ of the stump at iteratiom are computed to optimize the following weighted least-sgsia
objective:

Jusd @) = 5 iwi,ca (t,©) — (i, C; @) (2.68)

CE¥i=

where% are the possible class labels. The optiadd, k. are computed in closed-form, and
f,7,%s are computed by brute-force. When the number of laj¥#|ss large, then a greedy
heuristic search can be used #[142]. Once the parametegs, are determined, the weights
are updated as:

Wi ¢ <— Wi cexp(—I(t,c) h(xi,C; @n)) (2.69)

and the algorithm continues with the next decision stump.

The complexity of JointBoost i©(|%|?>-N-D-T), if greedy search is used for findirgs, and

O((21“1y.N-D-T) if brute force search is used, whef#| is the number of labelsy is the

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 49

number of training sample® is the number of dimensions &f T is the number of boosting

rounds.

We show results of applying the JointBoost algorithm for thesimlabeling problem in Fig-
ure 2.4. The validation meshes are used to determine wheangdle boosting iterations; at
each iteration, the classification error is measured on #fidation meshes. We stop at the
iteration where the validation error is minimized. Joirdbbhas reasonable results in both the
humans and animals example. However, | have to emphasizbythied means Jointboost or
boosting are the best classification techniques for anyitagleneral. In the problems pre-
sented in this thesis, boosting was an appropriate choexguse we are dealing with very
high-dimensional input feature spaces, where only a feferdint features might be relevant
for each task. Boosting also offers fast sequential learaliggrithms that was also important in
our problems, since we were dealing with large training sletta Jointboost also produced out-
put probabilities suitable for combination with other term the Conditional Random Fields

models that we used in our problems.

However, boosting also has a number of limitations. Thedy@eak learner selection strategy
may not always yield the optimal set of features that arevagiefor a task. The exponential
cost function that boosting mainly deals with, is not roliosiutliers. The number of boosting
iterations is a parameter that is usually user-adjusted.niRgrtoo many boosting iterations
might result in overfitting, although Adaboost has been shimahave very good generalization
performance in many applications. Alternatively, the lipmgsiterations can be terminated
when the error measured in a validation set reaches to a mamirklowever, using a validation

set prevents us from using the whole training dataset angtheralization performance might

strongly depend on the specific selection of the validat&in s

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 50

2.4.3 Boosting for regression

Adaboost has been extended for regression as well. If weidema sum-of-squares error
function for regression, then the iterative minimizatidraa additive model of the form 2.61
simply involves fitting each weak learner to the residuabest; — f,,_1(x) of the previous
model [35]. Here, the weak learner can be a simple regres$siarion involving one of the

input features, as also in the case of boosting for clastdita

Here we will focus on a technique, that aims at approximatiegtarget property itself rather
than the residuals at each boosting iteration, since itttebfor learning complex target prop-
erties and is less prone to overfitting. This technique wiasdiniced by Zemel and Pitassi [155]
and is known as gradient-based boosting for regressiomyrétient-based boosting technique

aims at learning an additive model of the following form t@egximate a target property:

F(x)= Z Om@Pn(X) (2.70)
m
where the functiongi(x) are the weak learners amwgh are their corresponding weights. The

functions @n(X) can be selected to be linear functions of single featuresn #se case of

boosting for classification with decision stumps.

GivenN training pairs{x;,ti},i = {1,2,...,N}, wheret; are exemplar values of the target prop-
erty, the gradient-based boosting algorithm attempts tomize the average error of the weak

learners with respect to the weight vector

N M M
L(r) = i;(rr|;|lrm—°~5> exp(n;rm- (t — @n(x))?) (2.71)

This objective function is minimized iteratively by updagia set of weightgw; } on the train-
ing samples. The weights are initialized to be uniform i = 1/N, unless there is a prior
confidence on each sample. In this case, the weights cantiadized according to this confi-

dence. Then, we initiate the boosting iterations that hagddllowing steps:

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 51

« for each weak learner, we minimize the following function:

Lm—ZlWI Sexp(rm(ti — @n(x)))?) (2.72)

with respect ta, as well as the parameters of the weak learner functions. ataeter
rm are optimized with line search. For the first boosting iferatin= 1, we setr,, = 1
always.

» we select the weak learner that yields the lowest valuéfpr

» we update the weights on the training pairs:
Wi = W - exp(rm(%(Xi))z (2.73)

» we normalizen; = w;/ 5 w; so that they sum to 1.

Finally, we normalize the weights, = rm/ 3 kIm S0 that they sum to 1. The final prediction is
given by Eq. 2.70. The number of boosting iterations can tsergas a parameter or we can
measure the hold-out validation error at each round andinetsboosting when it reaches a

minimum.

As in the case of boosting for classification, boosting fgression has the same limitations.
The greedy weak learner strategy might be suboptimal aneikienential cost function (Equa-
tion 2.71) is not robust to outliers. Terminating the baagiterations using hold-out validation

error may also be suboptimal and is not using the whole trigidataset.

2.5 Dimensionality Reduction

For many problems, the input dateor target property datamay be very high-dimensional.
On the other hand, our data points may lie close to a manifofduch lower dimensionality
than our original data space. For example, consider the @fagevertex attribute on an ani-

mated mesh. The attribute data &heD matrices, wherd\ is the number of animation frames

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 52

andD is the number of vertices on the mesh. The vertex attribute mage significant spatial
correlations on the mesh during the animation e.g., theipasithe normal or the high-order
derivatives of a vertex of nearby vertices are significantiyrelated. Thus, we can apply a
transformation to project the vertex attribute data to aglosubspace of much lower dimen-
sionality M << D. As a result, we can now perform processing of this reducéal idathis
subspace. For example, if we want to predict surface cumdtom animation parameters,
instead of learning a function for each vertex, we can leannhfewer functions for the com-
ponents of this subspace. This results in more compact mtuk can also be evaluated more
efficiently during runtime. We can re-project the reducethdzck to the original space by
applying the inverse transformation. There are many otbenarios, where dimensionality
reduction can be useful and has been used extensively. Elmtakbased mesh animations,
the vertices positions are heavily correlated spatiallgmvtihey are displaced according to the
rotations of joints, thus dimensionality reduction can Bedito avoid computing coordinates
of each single vertex [149]. Dimensionality reduction canatso applied to the space of dis-
placement fields that move the vertices from a referencegoséo their redundancy e.g., skin
bulging in similar directions [2, 80, 121]. Similarly, dimsionality reduction is employed to
reduce the space the state space parameterization of @dfiershapes and also find low-rank

approximations of diffuse radiance transfer for low-freqay lighting [61, 104, 102].

The most common technique for dimensionality reductiondmputer graphics is Principal
Component Analysis. PCA can be defined as the orthogonal pimjeof the data onto a
linear subspace, known as principal subspace, such thaatf@nce of the projected data is
maximized. Alternatively, PCA can be defined as the lineajegtmn that minimizes the
squared error between the original data points and thejegiions. In both cases, the solution
is the same. Given a training data ¥&tfirst, we subtract its mea¥ — LsN.Yi from it.
Then we compute the eigenvectors of the covariance m&x= & yN 1 (Yi = Y)(Yi —Y)T

and retain a subs&t of them corresponding to the largest eigenvalues. The awduwh this

subset are orthonormal basis vectors. The a#ae projected to their linear subspace using:

CHAPTERZ2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 53
Ys=VTY.

Here, we will present PCA from a probabilistic point of view.eWill show that PCA gives

the maximum likelihood solution to a particular form of lareGaussian latent variable model
(Section 2.5.1). Then, we will see another dimensionakjuction technique, called Inde-
pendent Component Analysis, which is based on the compldiiééyent assumption that the
latent variable model is non-Gaussian. Finally, we wilEffisi refer to non-linear dimensional-

ity reduction techniques.

2.5.1 Principal Component Analysis

Lety be theD—dimensional variable whose dimensionality we wish to reducetz be the
unknownM —dimensional latent variable witkl << D onto whichy is projected. We assume
that the variable is Gaussian-distributed, has zero mean and unit covarigize= .4 (Q,1).
Based on the PCA model, we wish to find a linear transformatiahrttaps frone to y plus
noise:

y=Wz+4pu+e¢ (2.74)

whereW is the unknowrDxM re-projection matrixg is aD—dimensional zero-mean Gaussian
distributed noise variable with covariancél. This corresponds to a linear-Gaussian model,

thus the distribution of is also Gaussian with the same mean:
p(y) = A (y|u,C) (2.75)
The covariance matri€ can be expressed in terms\af as follows:
C=E[(Wz+€)(Wz+¢)]|=EWzz"W']+E[ge"] = WW T + 02| (2.76)

(E here represents expectation). The posterior distribyg{afy) will have the following form
[11]:
p(zly) = A (2| WTW + a?1) " TWT (y—), 0 2WTW +1) (2.77)

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 54

We wish now to estimat®é/, i, o with maximum-likelihood. Given a training data séf the

corresponding log-likelihood is given as:

s Tr-1

=52 (Yim) C(Yi—p)
1=

(2.78)

N
INB(Y 1. W, 0%) = 5 Inp(yi W/, ,0%) =~ In(2r) - IndeiC)
i=

Setting the derivative of log-likelihood, the followinglstions for u, g2, andW can be found:

GiL=m > A (2.79)

whereU is aDxM matrix which is any subset (of si2é) of the eigenvectors of the covariance
matrix Syy of Y, A; are its corresponding eigenvaluess aMxM diagonal matrix that has the
eigenvalueg; as diagonal elements, aRds an arbitrary rotation matrix. This means that the
maximum-likelihood estimation &&V is uniquely defined up to a rotation i.e., the distribution
of y is left unchanged if we apply rotations to the latent spaseesthe distribution of the
latent variablez is isotropic Gaussian. In the classical PCA, it is assumedRhal. In this
case, the columns &)y are scaled versions of the eigenvectors of the covariantexnt
(known as principal components). The maximum of the likadith is obtain by selecting thd

eigenvectors corresponding to thielargestA; eigenvalues of the covariance matix

From the above, in order to project thigo the corresponding linear subspace based on PCA,

we find the mean of the posterior of Eq. 2.77:

Elzly] = (W W +0%1) Wy (y = Y) (2.80)
In the special case where we assuarfe— 0 i.e., there is no noise in Equation 2.74, then the
posterior mean is simplified as follows:

Elzly] = (Wi W) Wi (Y —Y) (2.81)

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 55

If we computeW based on the eigendecompositionSoivhich results in orthogonal columns
for W, thenE [z]y] =Wy, (Y — Y), which is the result of the classical PCA (assuming an orthog-
onalW also results in much faster projections since there is megshdomputation involved).
Thus, classical PCA is a special case of this probabilistimédation. The probabilistic for-
mulation of PCA is also called Probabilistic PCA (PPCA) andw#ido handle missing values
in the training data. It also allows to compute the princigahponents using other algorithms
(such as Expectation-Maximization), that are more efficiean performing eigendecomposi-
tion in the covariance matrix (or alternatively, Singulaie Decomposition olf), especially

whenD is very large.

An issue with PCA and its probabilistic formulation is how telextM i.e., assuming that
we perform eigendecomposition on the data covariance xpdtow many eigenvectors we
should keep. A typical solution is to retain the first eigestoes that correspond to a prescribed
variance of the data. This threshold however assumes thahaxe how much percentage of
the variance corresponds to noise. This might not be alwagsiple. Another technique is to
use a hold-out validation set, and check for which valuelgl dhe log-likelihood of Equation
2.78 is maximized for this set. This can be however costlyasd enforces us not to use the
whole training dataset. A different approach is to use a Bayespproach for PCA, where we
marginalize out the model paramet®¥s 11, o2 with respect to prior distributions. Specifically,
it is common to use a Gaussian prior over each columWpthat could also lead to a sparse

solution for it. More details for performing Bayesian PCA canfbund here [11].

This version of PCA has also several limitations. First, id§ithe principal components of the
data under the strict assumption that we have a linear Gaussodel of the form 2.74. How-
ever, there might be no appropriate subspace that is lynesdted to our data and even worse,
the latent variables might not follow Gaussian distribngoPCA is also based on the assump-
tion that the high-variance principal components corragio the interesting dynamics of the

data while the low-variance ones correspond to noise. Thghtmot be also true, especially in

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 56

PCA base 2

ICA base 1 ICA base 2 ICA base 5

Figure 2.6: Cloth curvature-bases found by PC#oyf) and ICA pottom). The ICA bases
exhibit much greater sparsity and locality, capturing faldd wrinkle structures. Colors cor-

respond to magnitude, with white for zero and red for the largesgnitude.

the case where we have geometry data that have some stregjyriaey are correlated locally.
For example, in the case of data-driven curvature, in Figueve show that PCA yields basis
vectors that are rather global, and does not corresponcettmdialized structure of curvature
on a mesh. "The main reason for this is that it chooses ortmalgoasis vectors that mainly

correspond to high-variance in the data. These are optimi@rms of minimizing the mean

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 57

squared error between the original data points and thejegtions, however this version of

PCA does not impose any requirements for them to be sparseaizied.”.

2.5.2 Independent Component Analysis

As we saw above, PCA assumes models with latent variables loasinear-Gaussian distri-
butions. This limitation lead us to search for other forniolas of dimensionality reduction
where the distributions of the latent variables are nongSi@m. A particular class of such
models attempts to find models of the forma= Qy by assuming that the distributions over the

latent variables factorizes so that:

M
_ - (2.82)
p(z) J]:L p(z)

In this case, the latent space consists of statisticallgpeddent latent variables represented
by zj. This class of models is also known as Independent Componsadysis. Finding such
independent components is not possible with PCA that assani&@sussian distribution on
the latent variables i.e., the PCA model cannot distinguestfivben two different choices of
latent components that differ by a rotation in latent spaostead, in order to estimate the
independent latent components, we need to assume thatrheypia-gaussian. One popular
way to find independent components is to find the transfoonati= Qy that maximizes non-
gaussianity. There are many different ways to measure aossianity. One way to measure
it is by estimating the kurtosis @y. The kurtosis is a statistical measure of the "peakedness”
of the probability distribution of a real-valued random iabte. The kurtosis is zero for a
gaussian random variable. For most (but not quite all) nemsgian random variables, kurtosis

is nonzero. Thus, the goal in this formulation would be to muaze the absolute kurtosis.
argmaxE[zY] — 3(E[z%]))%} (2.83)
Q

whereE represents again expectation. In practice we would stam fin initialization ofQ,

compute the direction in which the kurtosis is growing masbrsgly (if kurtosis is positive)

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 58

or decreasing most strongly (if kurtosis is negative) base@n optimization technique. A

problem with using kurtosis is that it is very sensitive tdli@n samples of.

Another way to measure non-gaussianity is to maximize tlgemteopy of the distribution

associated witlz, which is defined as follows:
wherezgaussis the Gaussian random variable of the same covariancexnaatziandH (z) is
the entropy of the distribution af

H(z) = = p(2)logp(2) (2.85)

Negentropy has the property to be always non-negative, azéro if and only ifz has a

Gaussian distribution.

Another option is to use maximum-likelihood by assumingecsic non-Gaussian distribution
on the latent components. In practice, a common choice ®latent-variable distribution is

the following:

1 1
- ricosh(z;) - n(efi +e %) (2.86)

p(zj)

There are many more techniques to estimate the indepenadponents in the latent space;
a tutorial can be found here [57]. In general, ICA is more appate to use than PCA in

geometry processing applications for which we expect thatgeometry signal is a linear
superposition of other signals, possibly localized. It haen often noted in the literature of
image processing that ICA applied to image data yields Ieedlibasis, e.g., [7, 9]. In the
case of data-driven curvature, in Figure 2.6 we show that @Ry more localized and sparse
basis vectors corresponding to structure in the data, ssifbids, wrinkles, and other similar

structures.

ICA also has its limitations. First, depending on the speddrenulation of ICA, different

sets of independent components can be found. Finding istedsndependent components is a

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 59

non-linear problem in contract to PCA. In practice, diffdr@chniques should be tested. In ad-
dition, in contrast to PCA, we cannot also determine the ooflére independent components

or their associated variance.

2.5.3 Non-linear dimensionality reduction techniques

PCA and ICA assume linear subspaces for dimensionality rexfuicé., the projected data are
linearly related to the original data. However, there ccaddcases where the data points may
lie close to a non-linear manifold of much lower dimensidgalThe PCA and ICA models
can be extended to learn non-linear manifolds, by applyiegkernel trick on the input data
points, using various kernels, such as the ones descrilfgeltion 2.2.2. This gave rise to the
kernel PCA and kernel ICA models. Kernel-based techniquasnequch more training data
to reliably learn a non-linear manifold and require sig@ifitmore computation. Fortunately,
in many cases, much of the computation may not need to berpeztbin feature spaag(y),

since the kernel trick can factor away much of the computdtd].

Other techniques attempt to compute a non-linear embedstinat relationships in local
neighborhoods of data-points are preserved, such as dealiktances (Isomap [138], Curvi-
linear Distance Analysis ([24]). Alternatively, a graptcisnstructed so that neighborhood in-
formation of the data points is incorporated and then thddagn of the graph is used to com-
pute a low-dimensional representation of the data (Lapia&igenmap [8]). The method of
Locally-Linear Embedding similarly expresses each poérd inear combination of its neigh-
bors and then an eigenvector-based optimization techmsqueed to find the low-dimensional
embedding of points [114]. A different approach to nonlindamensionality reduction is

through the use of autoencoders, a special kind of feedafi@weural networks [54].

A complete analysis of non-linear dimensionality techeisjis beyond the scope of this thesis.

More information on non-linear dimensionality reductiectiniques can be found in [11].

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 60

2.6 Other learning topics

The literature in machine learning is vast and it is worthlespg many different topics and
techniques for applications in geometry processing. Thapter focused on several impor-
tant concepts in machine learning in regression, classditaboosting, and dimensionality
reduction that are common in problems that we want to learrapping from a input fea-
ture space to a set of continuous or categorical properfiégre are several other areas in
machine learning that are beyond the scope of this thes, &1 Bayesian inference, neural
networks, Bayesian networks, sampling techniques fromaimiby distributions (e.g., Monte
Carlo sampling techniques), dynamic graphical models,(Bligden Markov Models), mod-
eling of probability distributions (e.g., density estinoai) to name a few. On the other hand,
possible applications of techniques from these areas fomgé&y processing and computer

graphics in general can be worth exploring in the future.

Chapter 3

Learning mesh segmentation and labeling

In this chapter, | present a machine learning approach fond8Bh segmentation and labeling of
partsl. Segmentation and labeling of shapes into meaningful aftsidamental to shape un-

derstanding and processing. Numerous tasks in geometdeling, manufacturing, animation

and texturing of 3D meshes rely on their segmentation inttsp&any of these problems fur-

ther require labeled segmentations, where the parts areealegnized as instances of known
part types. For most of these applications, the segmentatid labeling of the input shape is
manually specified. For example, to synthesize texture fumaanoid mesh, one must identify
which parts should have “arm” texture, which should havg™texture, and so on. Even tasks
such as 3D shape matching or retrieval, which do not direethypire labeled-segmentations,
could benefit from knowledge of constituent parts and labelswever, there has been very
little research in part labeling for 3D meshes, and 3D olgegmentation likewise remains an

open research problem [16].

1The work presented in this chapter is also published in ACMnZactions on Graphics, Vol. 29, No.
3, 2010 [68]. Project web page: http://www.dgp.toronto/ettalo/papers/LabelMeshes/, ©ACM, (2010).
This is the author’s version of the work. It is posted here lgrnussion of ACM for your personal
use. The definitive version was published in ACM Transactiom Graphics, Vol. 29, No. 3, 2010,
http://doi.acm.org/10.1145/1833349.1778839

61

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 62

Labeling of mesh parts is expressed as a problem of learnm@ping from shape-based
features to segment labels for each face. The segment ateetategorical target properties,
thus, this mapping is a classification problem (Section. Z.Bg labels of neighboring faces are
strongly correlated, thus, the labeling is expressed a®lalgm of optimizing a Conditional
Random Field 2.3.4. The CRF objective function includes unamys that assess the consis-
tency of faces with labels, and pairwise terms between $afifehdjacent faces. The objective
function is learned from a collection of labeled trainingghes. The basic terms of the CRF
are learned using JointBoost classifiers 2.4.2, which autioatly select from among hundreds
of possible geometric features to choose those that areargléor a particular segmentation

task. Holdout validation is used to learn additional CRF patans.

We evaluate our method on the Princeton Segmentation Bemkhmigh manually-added la-
bels. Our method yields 94% labeling accuracy, and is theléileling method applicable
to such a broad range of meshes. In segmentation, our metblold ¥.5% Rand Index er-
ror, significantly better than the current state-of-thigaith results similar to human-provided
segmentations for most classes. No manual parameter tigniaguired. The main limitation
of our approach is that it requires a consistently-labelaithing set; however, we find that, for
many cases, just a few training meshes suffice to obtain dpigttity results. Different seg-
mentation tasks can be specified by providing examples afehetask, without requiring any
manual parameter adjustments. Once learned, the algocdirbe applied to databases of the

same type of objects to automatically segment and label.them

To date, nearly all existing mesh segmentation methodspttsegmentation without recogni-
tion. When the goal of segmentation can be formulated mattieaiig (e.g., partitioning into

developable patches), low-level geometric cues may bemiriti However, many tasks require
some understanding of the functions or relationships afsparhich are not readily available
from low-level geometric cues. It is unknown whether huntarel 3D mesh segmentation is

possible without the benefit of higher-level cues. It is Warbting that, in computer vision,

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 63

after decades of research on performing image segmengdtina, most work has turned to the
joint segmentation and recognition of images. Furthermowerent models are learned from
training data, allowing them to employ much more sophistidanodels than are possible with
manually-tuned models. These methods produce statesedrtiresults on several benchmark
tests. Hence, it is worth asking: is part recognition us&fuBD mesh segmentation? Further-
more, can segmentation algorithms benefit from models éebimom human-labeled meshes?

Our work provides positive evidence for both questions.

3.1 Related work

Mesh segmentation has been a very active area of researomjputer graphics. Most effort
has focused on finding simple geometric criteria for segatemnt of a single input mesh [93,
125, 74, 90, 73, 128, 6, 89, 40, 87, 83, 84, 55]; see [5, 123fdt&urveys. Such approaches
employ simple, interpretable geometric algorithms, bt lamited to a single generic rule
(e.g., concavity, skeleton topology, fitting shape priveis) or a single feature (e.g., shape
diameter, curvature tensor, geodesic distances) toiparét input mesh. Our method employs
many of the geometric features proposed by these methodsmé&ay problems, different
types of surfaces and different surface parts may requiferelint features for segmentation.
Because our model is learned, it can employ many differeningéac features to partition
the input mesh. Our algorithm learns problem-specific patars from training examples,
rather than requiring manually-tuned parameters. Furtbez, our method jointly segments
and labels meshes. Simat al. [129] perform segmentation and labeling jointly. However,
this method requires manual definition and tuning of obyectiinctions for each type of part,

and is sensitive to local minima.

A few approaches make use of part matching for segmentadiah,can transfer part labels

based on the matches. Kraewatyal. [79] and Shapir&t al. [124] perform an initial segmenta-

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 64

Mhead marm
[Etorso Elens
@ upper arm Wbridge

Cllower arm

Hfin

=Eangr le Wstabilizer
[| |or\)/\?er |egg Mantenna Mbody
M foot Ehead [wing

M thorax

mtop
mleg

Oleg m
B abdomen

W ear
cu
I head meup
W torso M handle
[arm

W leg

Bthumb
Eindex
l middle
[ring

W pinky
W palm

[Ecup

mtop

Fbase Bface Wbig roller
E hair B medium roller
M neck Maxle

HMhead Whead
Eneck Ewing
Wtorso Wmbody
[Mleg Mleg
M tail Wtail

mear ' W big cube
Whead Fsmall cube
Hltorso

Oback

mupper arm

Hlower arm
Ehand
Wupper le
W lower leg
Wfoot
Htail

Hhandle

M back
B middle
M seat
D leg

Bhead

M handle Mtentacle

M joint
W jaws
Figure 3.1: Labeling and segmentation results from applying our altjon to one mesh each

from every category in the Princeton Segmentation Benckifd&i. For each result, the algo-

rithm was trained on the other meshes in the same class.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 65

tion, and then match segments and transfer labels baseds@etimentation. These methods
require the initial segmentation to be sufficiently relaPekelny and Gotsman [108] track and
label rigid components in sequences of 3D range data thrtheglterated Closest Point reg-
istration algorithm, given an initial user segmentatiomirly, Golovinskiy and Funkhouser

[41] simultaneously partition collections of 3D models byteching points between meshes
based on rigid mesh alignment. A user may provide examplmeetations to be included

in the matching. These methods are limited to cases whereamade rigid correspondence

exists.

Joint image segmentation and recognition has recently &eeative topic in computer vision
research. Early works in this area include [26, 48, 78, 84, 1£22]. Our method is most
directly inspired by TextonBoost [127], which performs joimage segmentation and recog-
nition, using a model learned from a training database. Agktonboost, we also make use of
JointBoost and Conditional Random Fields. We add new compsnerie model, including
3D geometric feature vectors, 3D contextual features,achesc of classifiers, and a learned

pairwise classifier term, all of which we find to be essentadlbtaining good results.

Our work is also related to segmentation and recognitiorDoféhge data [3, 88, 98]. These
methods employ small sets of features, such as local pomgitgeor height from ground,
which are specialized to discriminate a few object categgon outdoor scenes, or to separate
foreground from background. Golovinskiy et al. [42] segiaiban range data using a graph
cut method, and then apply a learned classifier, based onejgomnd contextual shape cues.
Range data methods aim to identify large-scale structuoes floint clouds, such as separating
cars from roads, whereas we aim to distinguish smaller par8> meshes. Hence, unlike
these methods, we employ a large variety of shape-basedfesshes along with appropriate

contextual features, and also use sophisticated clasdifiethe unary and pairwise terms.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 66

o\

HMhead
Etorso

Eupper arm
Clower arm - 06
W hand b ol
W upper leg 04
W lower leg -
Efoot e | 02
»
%} 0.0

(b) Result using only (c) Entropy of (d) Geometry-dependent
the unary classifier the unary classifier pairwise term

444

(e) CRF w/o boostingf) CRF w/o contextual (9) Full CRF
for pairwise term features result

(a) Training meshes

Figure 3.2: Components of our algorithnfa) The entire training set for this example consists
of four meshes. The bottom-right mesh is used as the validaét.(b) Labeling result using
only the unary classifiefc) Visualization of classifier uncertainty, computed as thieogry of

the probabilities output by the unary classifier. Red valmelscate greater uncertainty. The
classifier is uncertain mainly near object boundaries, anakehcorresponding parts in the
training meshes have inconsistent boundarigh.Geometry-dependent pairwise term (expo-
nentiated and normalized). This term prefers boundariesdrur at specific locations(e)
Result of applying a CRF model without JointBoost for the paenerm.(f) CRF result, but
omitting contextual label feature¢g) Result of applying our complete CRF model. Note the
accuracy of the result, despite the mesh having differes¢ pmd body shape from the training

meshes.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 67

3.2 CRF model for segmentation and labeling

We now describe our algorithm for segmenting and recoggiparts of a mesh; the procedure
for learning this model is described in Section 3.3. Our go# label each mesh facavith a
labell € €, where¥ is a predefined set of possible labels, such as “arm,” “leg'farso.” Each
face has a vector afnary features;, which includes descriptors of local surface geometry and
context, such as curvatures, shape diameter, and shapxicohhese features provide cues
for face labeling. In addition, for each adjacent pair ofeflscwe define a vector @lairwise
featuresyij, such as dihedral angles, which provide cues to whethecawljaces should have
the same label. Then, computing all mesh labels involvesmiimg the following objective

function:

E(c;0) = aiE1(ciixi, 61) +) £ijE2(Ci,Cj;Yij, 62) (3.1)
0

.
where the unary terrt; measures consistency between the featyre$ mesh face and its
label ¢j, the pairwise ternE, measures consistency between adjacent face lapaisdc;j,
given pairwise featuregj. The model parameters abe= {61, 6-}. The terms are weighted
by the areap; of facei, and the length of the edgg between facesandj. In order to make
energies comparable across meshes, the ayeas normalized by the median face area in the
mesh, and the edge lengthsare normalized by the median edge length. Details of theggner

terms and feature vectors are given later in this section.

As mentioned in Section 2.3.4, this type of model is refetoeaks a Conditional Random Field.
The conditional probability of a labeling given the meshhswn in Equation 2.57. The CRF
model is more appropriate for segmentation and labeling éhislarkov Random Field model
that would define a joint probability over the mesh and thelskfrom which the conditional
may then be derived. CRFs have two advantages over MRFs for a&gjina and labeling.
Since the CRF allows the labels to be conditioned upon a setsafrebd features, the pairwise

termE; in a CRF can depend on the input data, which is not true in an MRE.allows us, for

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 68

example, to express that segment boundaries are more lkelgcur between a pair of faces
with a small exterior dihedral angle. Second, CRF learningréttyms optimize for labeling
performance, whereas MRF learning algorithms attempt toaetooth the input features and

the labels, and thus may have worse labeling performance.

The objectiveE(c; 0) is optimized using alpha-expansion graph-cuts [12]. Tkeltig label-
ing ¢ implicitly defines a segmentation of the mesh, with segmenindaries lying between
each pair of faces with differing labels. Note that this neetrat our method cannot separate
adjacent parts that share the same label. Furthermore, ethiothis only suitable for learning
segmentations that have attached labels. However, we dequite the number of segments

to be specified in advance.

3.2.1 Unary Energy Term

The unary energy term evaluates a classifier. The classikestthe feature vectarfor a face
as input, and returns a probability distribution of labelsthat face:P(c|x, 61). Specifically,
we use a JointBoost classifier [127, 142], summarized in &e2ti4.2. Then, the unary energy

of a labelc is equal to its negative log-probability:

Ei(c;x,61) = —logP(c|x, 61) (3.2)

The unary classifier is the most important component of ostesy. As illustrated in Figure
3.2(b), labeling using just this term alone gives good itssml part interiors, but not near
boundaries. This is accurately reflected by the uncertahtye classifier (Figure 3.2(c)).

Next, we add a pairwise term to refine these boundaries.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 69

3.2.2 Pairwise Energy Term

The pairwise energy term penalizes neighboring faces lsssgned different labels:
Ex(c,c;y,0:) = L(c,c) G(y) (3.3)

This term consists of a label-compatibility tetmweighted by a geometry-dependent t&em
The main role of the pairwise term is to improve boundarigg/ben segments and to prevent
incompatible segments from being adjacent. The pairwiseggrterm is always zero when
andc’ have the same label. Hence, the pairwise term cannot be nsedawvn, since it assigns
zero energy when all faces have the same label. The geonhegndent term is visualized in

Figure 3.2(d).

The label-compatibility terni(c,c’) measures the consistency between two adjacent labels.
This term is represented as a matrix of penalties for eac$ilplegair of labels, which allows
different pairs of labels to incur different penalties. Egample, head-ear boundary edges may
need to be penalized less than head-torso boundary edges &irs might be much smaller
parts and less common in the training examples) while heatlsioundaries might never occur.
The costs are non-negatiy@ < L(k,l)) and symmetrigL(k,l) = L(l,k)), for labelsk,| € %
Furthermore, we constrain there to be no penalty when tiseme discontinuity:L(k,k) =0

for all k.

The geometry-dependent ter@(y) measures the likelihood of there being a difference in

labels, as a function of the geometry alone. This term ha®tlmeving form:
G(y) =—«klogP(c#C'ly, &)
—Alog(1—min(w/m1)+¢€)+u (3.4)

The first term is the output of a JointBoost classifier that catesP(c = |y, £), the probabil-
ity of two adjacent faces having distinct labels, as a fuorcof pairwise geometric featurgs

This classifier helps detect boundaries better than usilygdiimedral angles (Figure 3.2e). The

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 70

second term penalizes boundaries between faces with highadihedral anglev, following
Shapira et al. [124]. Tha term penalizes boundary length and is helpful for preventggy
boundaries and for removing small, isolated segments [24)]. 1A small constang is added

to avoid computing logO.

3.2.3 Feature vectors

We do not know in advance which features will be useful fomsegtation. Furthermore, it
may be that different features are informative for différeresh parts and for different styles
of segmentation. As a result, we construct our feature veaat of as many informative
features as possible. Since the JointBoost algorithm pad@automatic feature selection, each
classifier only uses a subset of the provided features. lexpgriments, we have not found a
case where adding informative features led to worse reddéisce, one may add other features
besides the ones listed here. We find that the precise forhedeatures is important: careful
selection of details, such as binning strategy and nor@au#ba, can improve results. Adding
features does increase computation time, especially é&prpcessing and learning. Hence, we

have attempted to design features that are as informatipesssble.

Unary features. We use multi-scale surface curvature, singular valueseted from Prin-

cipal Component Analysis of local shape, shape diametef[ti&tances from medial surface
points [91], average geodesic distances [53, 157], shaptexts [10], and spin images [64] to
form a basic 651-dimensional feature vectpper facei. Full details of our implementation

for these features are given in Appendix A.1.

Contextual label features. Training a classifier using only the above features is oftdn s

ficient for labeling. However, in many cases, better restdis be achieved by re-training an

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 71

additional classifier that uses information about the dlalgtribution of labels around each
mesh face. Since the labels are not known in advance, theggpareximated by an initial ap-
plication of the classifier with the above features. We idtrcecontextual label featuresased

on these initial labels.

We first train an initial JointBoost classifier using the @lifieature vectox. This classifier can
be applied to each training mesh to produce per-face clagmpilitiesP(c|X). Then, for each
facei, we compute a histogram of these probabilities, which aagtthe global distribution of
part labels relative to the face, in a manner inspired byeslaptexts [10], and similar to image
auto-contexts [143] and bags of semantic textons [126].Histegram bins are determined as
a function of geodesic and euclidean distances. Theseésallow the algorithm to make use
of estimates of labels from the global context of each faagalls of the histograms are given

in the Appendix.

The values of these histogram bins form axsebdf contextual label features that are concate-
nated withX to produce the full feature vector = [X',X]]T. The new feature vector has
651+ 35 |¢| features, wheré?'| is the number of labels. Then, we train a new JointBoost
classifier fromx; to class probabilities. The new classifier will now take iat@ount the gener-
ated contextual features to further discriminate partshasvn in Figure 3.2g, compared to the
result of Figure 3.2f, where only the initial JointBoost didier is used (without the contextual

label features).

After training the second classifier, we bin the newly pragtliclass probabilitieB(c|x1) to
produce new contextual label featuses These are concatenated witko produce a third fea-
ture vectorxe. Then, we can train a third classifier based on the featurtewveg This process
can be iterated to further refine the discrimination of @assimilar to cascade generalization
[39]. This approach may be iterat®ttimes to producé\ feature vectors, until the error on
the validation set does not increase. In our experimengsalgporithm usually selectd = 3.

Computing the feature vectors for a new surface entails teygte same process as aboxe:

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 72

is computed for each face, then the first JointBoost produmeBrst set of contextual features
X, and the process repeats until gettiag which is used as the complete feature vestoe
find that using these contextual features produces a signifimprovement in performance,

about 3— 10%, depending on the mesh category.

Pairwise features. The pairwise feature vectgrj between facesand j consists of the dihe-
dral angles between the faces, and differences of the foltpfeatures between the faces: cur-
vatures and surface third-derivatives, shape diametfareifces, and differences of distances
from medial surface points. We note that dihedral anglesradleded in both the pairwise
features and in Equation 3.4. The reason is that the pratyabiltwo adjacent faces having
distinct labels, as outputted by the pairwise classifieghtinot be very well localized around
a potential boundary. This especially happens when thedaoies of the training human seg-
mentations are noisy. Including the dihedral angles in Eqna.4 may further "move” the

segmentation boundaries towards faces with high exteifi@ddal angle more accurately.

We also use contextual label features, similar to the featabove; however, we found in
our experiments that these contextual features have ilitiact on the results (about3%
improvement). The complete feature vecyors 191-dimensional. Details of the pairwise

features are given in Appendix A.2.

3.3 Learning CRF parameters

We now describe a procedure for learning the parameterseoCRF model, given a set of
labeled training meshes. The natural approach to CRF learsiMaximum Likelihood or
MAP, e.g., maximizing Equation 2.57 over all training meshdnfortunately, as mentioned in
2.3.4, computing the normalizatiahis intractable. While contrastive divergence can be used

for this optimization [48], this method is computationadypensive, and would not be feasible

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 73
at the scale of mesh processing.

Instead, we perform the following steps, based on the approBShotton et al. [127]. First, we
randomly split the training meshes into exemplar seand avalidation setin a proportion of

approximately 4 : 1. We then learn the JointBoost classif@réie unary term and the pairwise
term from the exemplar set. Finally, the remaining CRF pararsedre learned by iteratively

optimizing segmentation performance on the validation Beese steps are described below.

3.3.1 Learning JointBoost classifiers

Here, we summarize the JointBoost learning algorithm, farrlimg classifiers of the form
described in Section 2.4.2. See also [142] for an excellgplaeation and derivation of the

algorithm.

The input to the algorithm is a collection & training pairs(z,c;), wherez is a feature
vector andg; is the corresponding class label for that feature. Furtbeseach training pair
is assigned a per-class weightc. JointBoost minimizes the weighted multiclass exponential
loss over the exemplar set:

M

J= ZZWLCexp(—I(ci,I) H(z,!1)) (3.5)

i=11€%

whereH (z,1) is defined in Equation 2.6% is the set of possible class labels, dfclc’) is an

indicator function that is 1 whea= ¢’ and -1 otherwise.

For the unary terms, the training pairs are the per-faceifeatectors and their labe(s;, ¢)

for all mesh faces in the exemplar set. For the pairwise tgitmedraining pairs are the pairwise
feature vectors and their binary labélg;,ci # c;). For the unary term, the; ¢ is the area of
facei. For the pairwise termy; ¢ is used to re-weight the boundary edges, since the training

data contains many more non-boundary edgesNee&tndNyg be the number of each type of

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 74

edge, themw; ¢ = /Ng for non-boundary edges amg . = /Ny for boundary edges, wheféas

the corresponding edge length.

The algorithm proceeds iteratively. The algorithm storsstaf weightsv; ¢ that are initialized
to the weightsw; .. Then, at each iteration, one decision stump (Equation) 2sGded to the
classifier. The parametegs of the stump at iteratiofn are computed to optimize the following

weighted least-squares objective:

M
Jwsd @) = |ezgi;Wi’l (1(ci.1) —h(zi.l; 1)) (3.6)

where% are the possible class labels. Following Torralba et aR]1the optimala, b,k are
computed in closed-form, anfd 7, s are computed by brute-force. When the number of labels
|¢| is greater than 6, the greedy heuristic search is use@doOnce the parameterg are

determined, the weights are updated as:
Wi c < Wi cexp(—I(ci,l) h(z,1;¢;)) (3.7)
and the algorithm continues with the next decision stump.

We run the algorithm for at most 300 iterations. To avoid &tterg, we also monitor the clas-
sifier's performance on the validation set by computing tb&t €unction of Eq. 3.5 after each
iteration, and keep track of which iteratigh gave the best score. At the end of the process,
we return the classifier from stgp (i.e., discarding decision stumps from after si¢p We
also terminate early if the classifier's performance in takdation set has not improved over

the last 50 iterations.

3.3.2 Learning the remaining parameters

Once the JointBoost classifiers have been learned, we leanmethaining parameters of the

pairwise term(k, A, u, L) by hold-out validation. Specifically, for any particulattigg of these

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 75

il M ﬁrﬂ HH

(a)

Training meshes

S8,
PRk %M ﬂ“ﬂw

Training meshes

» [
Hhead
Eneck (b) (C) (b) (C)
[torso
[leg]
”’m Wil h% ‘H ﬁ

Wear A

Training meshes @ (d) (e) (@) (d) (e)

Figure 3.3: Comparisons to previous segmentation methods, for chac®pases, and

quadrupeds. For each test, the entire training set is showihenleft. In each figure, the
methods compared arda) our method(b) average human segmentation from the Princeton
Segmentation Benchmaifk) Consistent Segmentation [Golovinskiy 200@l), Shape Diame-
ter [Shapira In Press](e) Randomized Cuts [Golovinskiy 2008], with number of segmemts d
fined as the average number of segments in the category. Thes@om Segmentation method
provides labels in addition to segmentation based on theesaaiming set. The other methods

only perform segmentation, and do not make use of trainirig.da

parameters, we can apply the CRF to all of the validation meshelevaluate the classification

results. We seek the values of these parameters that giseshecore on the validation meshes.

We need to define an error function by which to evaluate diaation results. A obvious
choice would be to measure what percentage of the meshacsuairea is correctly labeled.
We refer to this as the Classification Error:

(za (Gi,C +1)/2> / (z a) (3.8)

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 76

whereg; is the area of facg ¢; is the ground-truth label for fadec = argmaxP(c|x;) is the
output of the classifier for fadgandl (c,c’) defined as in Section 3.3.1. However, when train-
ing against this error, the algorithm tends to mostly refiaertwlaries between larger parts but
skip cuts that generate small parts, producing noticeabbesein the results without incurring

much penalty.

Instead, we optimize with respect to the Segment-Weightea Evhich weighs each segment
equally:
a

Es= o (1(c1.6) +1)/2 (3.9)

whereA, is the total area of all faces within the segment that hasrgtdruth label;.

These parameters are optimized in two steps. First, the SagWweighted Error is minimized
over a coarse grid in parameter space by brute-force seaedwond, starting from the minimal
point in the grid, optimization continues using MATLAB'’s ifgmentation of Preconditioned

Conjugate Gradient with numerically-estimated gradients.

3.4 Results

We now describe experimental validation and analysis obmroach.

Data set. We employed data from the Princeton Segmentation Benchni&ikf¢r all of
our tests. The dataset provides 19 categories of mesheses&gions provided by human
users, source code for computing evaluation scores, aneshés of applying many previous

segmentation methods.

We performed a few initial steps to process the data. Singmeet labels are not provided

with the data, we manually assigned a set of labels to eads ¢lagure 3.1), according to

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 77

Rand Index
0.10 T T

HumanTrain. SB19 SB12 SB6 SB3 Rand Shape

Data . Cuts Dij
Consistency Error Diam

B cce
B .ce

HumanTrain. SB19 SB12 SB6 SB3 Rand Shape
Data Cuts Diam

Figure 3.4: Evaluation of segmentation. For all methods, evaluatioresperformed accord-

ing to the protocols of [Chen et al. 2009], using all human segtations in the Princeton
Segmentation Benchmark. 'SB19’ represents leave-oneraut of our technique averaged
over all the categories of the benchmark. 'SB12’, 'SB6’, 3Si#&presents the average error
using training sets of size 12,7,6, and 3 (see text for dgteéiB19 performs almoS0%better

than the best existing methods. Performance drops with lassrtg data, but, even with only

3 examples, our method still out-performs previous methgdsdmall margin.

the average human segmentation for each category. For éxaamhpost all users partition the

elements of the chair class (Fig. 3.3) into legs, seats,,maakmiddle.

For each mesh, the Princeton benchmark provides multigimeetations. The dataset con-
tains significant variations in types of segmentations:levimany segmentations are consis-

tent with each other, one user might segment a human inteljasgments, whereas another

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 78

might use 50 segments. We select one of these segmentatitwasiabeled and used as the
training/test data for that mesh, in order to reduce the gizbe dataset and remove outlier
segmentations. For most meshes, the exemplar segmentatsoselected as the segmentation
with the lowest average Rand Index to all other segmentatarikat mesh. However, in a few
cases, the mesh with the best score had a very atypical s&gfioano the rest of the category
(e.g., the best segmentation for one octopus mesh had les&ddivided into many parts,
whereas the tentacles in the rest of the category were nathich case, we manually merged

segments or chose the second-best segmentation.

Labeling results. We now evaluate the quality of the labels produced by our otketiBe-
cause each category in the database has only 20 meshes,lustewar method using leave-
one-out cross-validation. For each masim each category, we train a CRF model on the
other 19 meshes in that class, and then apply it to mesid compute the Classification Error
(Eq. 3.8) according to the ground-truth data. We report Reitiog Rate, which is one mi-
nus Classification Error, reported as a percentage. Avegamiar all categories, our method

obtains approximately 94% accuracy.

In order to determine the effect of training set size, we atgpe the experiment with smaller
training sets. When testing on meistthe CRF is trained on a subsetMfof the remaining
19 meshes. These are averaged over 5 randomly-selectedsulye tested witM = 3,6,12.
Table 3.1(left) shows scores of our method for differentimezgegories and for different values
of M. When reducing the training set size, we find that our methiddjstes excellent results
for categories with little geometric variation (such as @&opus), whereas other categories,
such as Bust and Bearing, have very different geometric pasishset of 3 meshes often lacks

some of the labels used elsewhere in the category.

The Segment-Weighted Error (Eq. 3.9) scores of our algordhe: 89% (leave-one-out error),
85% M = 12 training examples), 819\ = 6 training examples) and drops to 75%4 & 3

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 79

training examples). The scores using this metric are lohan those of Classification Error,

because tiny missing segments cause disproportionatjg [aenalties.

To our knowledge, the only previous method that can labelheedy example is that of
Golovinskiy and Funkhouser [41]. This method assumes itpiatalignment can be performed
between a mesh and the training data, which does not hold dst of the benchmark data;
comparisons are shown in Figure 3.3. To our knowledge, odihodeis the first to be able to

accurately label such a broad class of meshes.

Segmentation results. In contrast to labeling, we test our segmentation algorittsmng all

original human segmentations for all meshes, accordingeagtotocol from Chen et al. [16].
Results are shown in Figure 3.4, and comparisons to previ@iBads are shown in Figure
3.3. Our method gives a significant improvement over theipusvstate-of-the-art, according
to all measures proposed by Chen et al. [16]. Even when taioimjust three meshes, our
method obtains better scores than other methods in neadgsds. Table 3.1(right) provides

Rand Index scores for each category and for different chateaining set size as above.

There are a few details to note about these experimentd, Raad Cuts requires as input the
number of segments for the mesh. For this, we used the aveuagker of segments for each
category. Second, the Human Score is worse than the scoceifdraining data (computed

as in [16]) because we reduce the training set as descrilmee ali hird, when disconnected
parts on the same mesh have the same label (e.g., the two ¢traadsuman), they are scored

as separate segments.

Feature selection. Figure 3.5 visualizes which features were selected by Bowtt in the
unary term, for various subsets of the data. For exampletojneow shows, for each type
of feature, the percentage of this feature that was usedssthe entire benchmark dataset.

The most features came from Shape Contexts [10] and the Coatéxdbel. The third row

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 80

all models,
all classifier

all models,
first classifie Il cunv.
all models Il rcA
ten first feat - sc
human,
all classifier [] AGD
airplane, []sD
all cIaSS|f|Qr |:| MD
all classifier Il s
' lc

0.0 0.I 0.2 0.3 0.4 0.5 06 0.7 0.8 0.9 1.0

Figure 3.5: Percentages of features used by JointBoost for differesgsaSee text for details.
Legend: Curv.=curvature, PCA=PCA singular values, SC=shapetexs, AGD=average
geodesic distances, SD=shape diameter, MD=distance frediahsurface, SI = Spin Images,

CL = contextual label features.

shows the ten features that were selected by the first temsafrJointBoost (i.e., the features
used by the first ten decision stumps). The remaining rows $eatures used for individual
categories. These results indicate that the Shape Contaxtrés were the most important
among the basic features. However, each type of feature semultiple times. This is a
common theme among boosting algorithms: adding more festilmat provide independent

sources of information typically improves results.

Generalizing to different categories. Fig. 3.6 shows results in which we train on one cate-
gory and test on another. The algorithm yields reasonabldtsawhen labeling airplanes like

birds, tables like chairs, and people like quadrupeds.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 81
Whead
[l body
M tail
lmiddlew
W seat
leg

TN

Figure 3.6: Experiments where training and test categories are differ@ample training data

shown on the left (complete training sets not showo)p row: Training on birds, applying to
planes.Middle row: Labeling tables as chaird8ottom row: Labeling humans as quadrupeds.
A failure case here is in the lower-right, where much of thedtiface is confused for a neck.
The seated humans illustrate a limitation of our method, itet connected segments with the

same label are not separated; here, a left arm is not sepdrtiten a leg when they connect.

Different styles of segmentations. Our algorithm can be used to learn different styles of
segmentation for different tasks. We demonstrate thishiayawith a set of animal segmen-
tations from the benchmark data that separate the torsdhrge segments (Fig. 3.7), unlike
the dataset used for quantitative evaluation. Our algoritorrectly applies these labels to

several test meshes, except the giraffe.

Merging categories. Figure 3.8 shows an example in which a CRF was learned on againi
set consisting of both humans and teddy bears, and applieeMichumans and teddy bears.

The algorithm successfully learns a model given the nondgeneous data.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 82

Bhead

Efront torso
Emiddle torso
Hback torso

mfront leg
Test Meshes

mback le
Wtail

Training Meshes

Figure 3.7: Using an alternative segmentation style. Our main quatitiéaexperiments used
a segmentation style from the Princeton Benchmark in which eaimal has a single torso
(e.g., see Fig. 3.3). Here we train on examples from the Beadhim which the torso is split
into three segments. The six training meshes are shown orfthedhanging the style does
not require any manual parameter tuning. Good results ar@ioled for several test meshes,

except the giraffe, where the torso is not labeled accurately

% 4

Training meshes Test meshes

Figure 3.8: Merging categories. A CRF was learned from the training mesimethe left,
which include both humans and teddy bears. Results on a tesamand bears shown on

right.

3.5 Applications

We now briefly describe a few procedures that illustrate howapproach could be used to
automate workflows that would otherwise involve laboriowswnal effort. For each applica-

tion, we implemented an automatic pipeline that takes a mésin object category as input,

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 83

Harm
Hlens
Wl bridge

W lower arm

W hand &
[l upper leg a—"
[l lower leg

(e) i (f)

Hhead

[torso

[l upper arm
[Jlower arm
Il upper leg

[l lower leg

()

(k)

Figure 3.9: Top row: Automatic procedure for converting Glasses meshes intafaaturable
3D objects with lenses and hingéa) The mesh is broken at the segment boundaries between
the frame and arms with our labeling technique, and corresjponhinges are placed. Lenses
are procedurally offset and subtracted from the fran{b-c) Two example glasses created
with this procedure(d) A functional prototype, with working hinges, printed on a 3nper.
Middle row: Automatic shader assignment and rigging based on segmiesislde) Labeled
armadillo. (f) Procedural shaders assigned based on part labels, e.gfofuhe torso.(g) An
animation skeleton is fitted to Armadillo automatically bgging the joints at the centroids of
corresponding segment boundari€ls) Posed armadilloBottom row: Automatic conversion
of a 3D model drawn with the Teddy sketching package into acwdaied mannequin (i)
Sketched 3D mode(j) Labeled model with mechanical joints placed at segment baniesl

(k) Articulated model.

computes segmentation and labeling, and then processegttheted parts. Such procedures

could automate processing of large databases of objedtge aiime category.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 84

Functional prototyping. Functional prototyping entails creating a real and work3igob-
ject from a mesh, such as created by a designer. Our eyegbeds e (Figure 3.9(a-d)) takes
a mesh as input and computes segmentation and labeling.rditalfsilhouettes of thieens
parts are offset, extruded, and subtracted from the objecteate a frame. A frontal plane
passing through the combined centroid of the two arm-legsmsat boundaries is used to cut
the mesh, separating the arms from the frame. Hinges and@ngeated at the cut, resulting
in a wearable pair of glasses. We have also implemented &gwoe that, using a modeling
tool like Teddy [58], converts a single sketched stroke anicarticulated 3D mannequin, with

joint-types based on extracted part labels (Figure 3.9i-k)

Rigging and texturing. Given an automatically computed segmentation and labedisgele-
ton may be created by placing joints at centroids of part daties. We further create texture
for armadillo meshes (Figure 3.9(e-h)), using textures arxkssories assigned to different
labels, such as leathery skin for the feet, fur for the toesw a hook in place of a missing

hand.

3.6 Discussion

We have described the first learning algorithm for both laigednd segmentation of 3D meshes.
The model is learned from a training set without requiring emanual parameter tuning, and
it obtains state-of-the-art results on all categories enRhinceton Segmentation Benchmark.
Our method is the first to demonstrate effective labeling dmoad class of meshes. As our
method represents an early attempt in this area, there aeeasdimitations to our method

(Figure 3.10), and many exciting directions for future work

While considerable effort has rightly been put into devisygegmetric criteria for shape clas-

sification, it remains an open question as to whether simptgtric criteria are sufficient

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 85

for segmenting the way humans do. Our work suggests thatifepmodels from data—using
carefully-chosen geometric features—can significantlgrionre results. While this method is
not easily interpretable in terms of geometric intuitioigs kind of approach may nonetheless

be of great practical value.

A major limitation of our approach is the need for labeledhireg data. The dataset must have
consistent labels, although some variation can be tokbré&ier example, in Figure 3.3, the pig

does not have a neck segment, unlike the other meshes irathiedy data.

Generalization performance typically drops with fewerrirag meshes. Classes with larger
variability across the data require larger training setsgfmod results. For example, the Ant
and Octopus classes give good results with very few traiexamples, whereas the Bust and
Vase categories give very poor results with small trainiats §Table 3.1). For all classes,

increasing the training set size improves performance.

Our method cannot learn “generic” segmentations, thaegmentation without class-specific
labels. The method cannot model segmentations where cathparts share labels (Figure
3.10(a-b)). We also assume that the target mesh is cortsigtérthe training data; e.g., there
are no outlier segments. However, we believe that eleméraaroapproach could be useful
for these or related problems. For example, our pairwise t®uld be used with a different

unary term, such as one based on interactive labeling or alggiment.

Adding additional informative geometric features shouamprove results. At present, our algo-
rithm cannot distinguish left/right/up/down (e.g., leftravs. right arm); features informative
of orientation [36] may help. Symmetry-based features amstraints could also be useful.
Because many of our features depend on geodesic distanegandy not be very accurate
when a test mesh exhibits significantly different topololggrt the training. Developing new

part-aware and topology-insensitive shape descriptdufessmay help our method.

Our choice of features assumes that each shape is descyiled/@tertight 3D mesh with a

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING

(a)

B head

[torso
[upper arm

[lower arm
B hand

Il upper leg
[l lower leg
Il foot

[| nose

Hlhandle
[Hcup

(d)

86

Figure 3.10: Examples of limitations of our algorithm(@) Shiva statue (not included in the

benchmark), classified with a CRF learned from the Human cayedte algorithm correctly

labels the multiple heads and arms, but cannot separateexiad segments with the same

label. (b) Example of a test human mesh that has significantly diffacgrdlogy than the

other training meshes of the Human category; its arms areneoted to the legs, causing

the algorithm to mislabel the lower arms, hands and upperaoig) Our lowest scores in

the benchmark were on the Bust category; even when all the btists are used as training

meshes, our algorithm can still have significant errof@) Example of a vase, classified with

a model learned from3 other training meshes from the Vase category; the perfooaaiiops

significantly in some categories with large variability, wHew training meshes are used.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 87

single connected component. Applying our technique fonfpdouds or polygon soups would
require several modifications in our feature set. This ghallbw our method to be applied to

data such as found in 3D scanning and architectural apjolicat

The size of our training set is limited by training time, whiis several days for our largest
datasets. Some of the features are expensive to compute@mputing geodesic distances
between all faces on a mest$N?logN) in our implementation or computing shape diameter,
shape context and spin images has complexitp@®?). For example, our implementation for
SDF computation takes several minutes per mesh, since Vierpeexhaustive ray-triangle
intersections. However, it is important to note that ourlenpentation for feature extraction is
far from optimal and can be accelerated with several wags\{se spatial search structure to

accelerate computations of intersections).

Training the JointBoost classifier is also a computationakpensive procedure i.e., it has
complexity of O(|%’|?-N-D-T), if greedy search is used for findirigs, where|%| is the

number of labelsN is the number of training sampleB, is the number of features used,
T is the number of boosting rounds. JointBoost can be accetbtay using less number
of samples (i.e., instead of using every single mesh facetesrang sample) and by using
randomized feature selection at each boosting round [12.CRF inference with graph-cut
alpha-expansion relies on maximum flow on graphs to competeninimum cut; empirically,

it seems to scale near-linearly with the mesh size and théauof labels [12].

For example, training on the quadrupeds category with @itrgimeshes of about 10K-30K
faces and 6 labels, takes about 8 hours on a single Xeon E5866Hz processor. Approx-
imately 30% of the time is consumed by feature extraction% % consumed by JointBoost,
20% of the time is used by hold-out validation. Testing ontaapanimal mesh of, e.g. 20K
faces takes about 15 minutes and the vast majority of theiicensumed by feature extraction
(CRF inference and evaluating decision stumps take a few ds@most). If feature extrac-

tion is improved (e.g. SDF computations could be reducedféawaseconds), if JointBoost is

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 88

implemented more optimally along with subsampling and canided feature selection, and if
hold-out validation is handled by a more efficient optimigaerC/C++ rather than Matlab), a
rough estimate could be much less than an hour for traininguch dataset and far less than
5 minutes for testing per mesh. Such improvements could ipgrenmethod to train on much

larger datasets with more classes still within reasonableuats of time in the future.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING

Labeling: Recognition Rate Segmentation: Rand Index

SB19 SB12 SB6 SB&ench.Train. SB19 SB12 SB6 SB3
Human 93.6 932 894 832 135 11.2 119 129 14.3 14{7
Cup 99.6 996 99.1 96.3 136 9.8 99 99 100 100
Glasses | 97.4 97.2 96.1 944 10.1 8.4 136 141 14.1 142
Airplane | 96.3 96.1 955 912 92 74 79 82 80 102
Ant 98.8 988 987 974 3.0 17 19 22 23 246
Chair 985 984 978 971 89 52 54 56 6.1 6.6
Octopus | 984 984 986 983 24 18 18 18 22 272
Table 994 993 991 990 93 59 6.2 66 64 111
Teddy 981 981 933 931 49 31 31 32 53 546
Hand 905 887 824 749 91 91 104 112 139 158
Plier 97.0 96.2 943 922 71 51 54 9.0 10.0 10b
Fish 96.7 956 956 94.1) 155 11.8 129 13.2 14.2 13|5
Bird 925 879 842 76.3 6.2 44 104 148 14.8 186
Armadillo0 91.9 90.1 840 837 83 6.3 80 84 84 8.6
Bust 67.2 621 539 522 220 188 214 222 334 393
Mech 94.6 90.5 889 824 131 85 10.0 11.8 12.7 24)0
Bearing | 95.2 866 848 613 104 6.8 9.7 17.6 21.7 32[7
Vase 87.2 858 770 743 144 105 16.0 171 199 253
FourLeg | 88.7 86.2 850 820 149 116 133 139 14.7 16}3
Average | 93.8 920 894 854 103 7.7 94 10.7 122 148

89

Table 3.1: Left: Recognition rate scores for our method across all categoimethe bench-

mark, and for various training set sizes M3, 6,12 19. Right: Rand Index scores for human

segmentations, training segmentations, and our methochd®étion rate is measured against

our labeling dataset (see text for details), whereas the Radéx is measured against all

human segmentations in the Princeton benchmark.

Chapter 4

Learning hatching for pen-and-ink

lllustration of surfaces

In this chapter, | present a machine learning method forticrgg@en-and-ink illustrations of
surfaces by examplfe In contrast to previous hatching algorithms that are méydasigned
from insight and intuition, this example-based method ewa largely automated and poten-

tially more natural workflow for an artist.

Given a single illustration of a 3D object, drawn by an artise method learns a model of the
artist’s hatching style, and can apply this style to renagnew views or new objects. Hatching
and cross-hatching illustrations use many finely-placeakss to convey tone, shading, tex-
ture, and other qualities. Rather than trying to model irtilial strokes, the algorithm focuses
on thehatching propertiesicross an illustration: hatching level (hatching, croagshing, or

no hatching), stroke orientation, spacing, intensitygtenand thickness. Whereas the strokes

themselves may be loosely and randomly placed, hatchingepiies are more stable and pre-

1The work presented in this chapter is conditionally acagpe ACM Transactions on Graphics. Future
project web page: http://www.dgp.toronto.edu/~kalografMLHatching/

90

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 91

dictable. The learning is based on piecewise-smooth mgpgdiom geometric, contextual,
and shading features to these hatching properties. Becade wot know in advance which
input features are the most important for different styles,use the boosting techniques de-
scribed in Section 2.4. Because we found that artists appesgply different types of stroke
direction fields and tone for different surface parts, we alse a mixture-of-experts model
(Section 2.2.5) to decompose the drawing into parts; aréiffiemodel of stroke orientations
is extracted depending on each part. The identified partugex by the mixture-of-experts
model are categorical properties that are also learnedy Wdomditional Random Fields and

JointBoost, as in the case of part labeling in meshes.

To generate a drawing for a novel view and/or object, a Latidveshaded rendering of the
view is first generated, along with the selected per-pixatufiees. The learned mappings are
applied, in order to compute the desired per-pixel hatclnraperties. A stroke placement
algorithm then places hatching strokes to match thesettarggerties. We demonstrate results

where the algorithm generalizes to different views of ta@ing shape or and different shapes.

This work focuses on learning hatching properties; we ugging techniques to render feature
curves, such as contours, and an existing stroke synthesisgure. We do not learn properties
like randomness, waviness, pentimenti, or stroke textiexh style is learned from a single
example, without performing analysis across a broaderusogh examples. Nonetheless, our
method is still able to successfully reproduce many asp#casspecific hatching style even

with a single training drawing.

4.1 Related Work

Previous work has explored various formulas for hatchingpprties. Saito and Takahashi

[119] introduced hatching based on isoparametric and plaur&es. Winkenbach and Salesin

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 92

(d) Smoothed image gradient (e) Our algorithm, (f) Our algorithm,
directions without segmentation full version

(g) Results on new views and new objects.

Figure 4.1: Data-driven line artillustrations generated with our algg@hm and comparisons
with alternative approaches. (&rtist’s illustration of a screwdriver(b) lllustration produced
by the algorithm of Hertzmann and Zorin [52]. Manual threkting of N -V is used to match
the tone of the hand-drawn illustration and globally-sma@attprincipal curvature directions
are used for the stroke orientationgc) lllustration produced with the same algorithm, but
using local PCA axes for stroke orientations before smogthd) Illustration produced with
the same algorithm, but using the gradient of image intgrisit stroke orientations(e) lllus-
tration whose properties are learned by our algorithm for #weewdriver, but without using
segmentation (i.e., orientations are learned by fittingragk# model on the whole drawing and
no contextual features are used for learning the stroke @rtgs). (f) Illustration learnt by
applying all steps of our algorithm. This result more faitlhf matches the style of the input

than the other approachefy) Results on new views and new objects.

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 93

[151, 152] identify many principles of hand-drawn illugtom, and describe methods for ren-
dering polyhedral and smooth objects. Many other analgtimtilae for hatching directions
have been proposed, including principal curvature dioesti28, 52, 110, 77], isophotes [76],
shading gradients [130], other parametric curves [28] asat-defined direction fields (e.g.,
[107]). Stroke tone and density are normally proportionadépth, shading, or texture, or else
based on user-defined prioritized stroke textures [110, 154]. In these methods, each hatch-
ing property is computed by a hand-picked function of a @rfghture of shape, shading, or
texture (e.g., proportional to depth or curvature). As alteg is very hard for such approaches
to capture the variations evident in artistic hatchingesy(Figure 4.1). We propose the first

method to learn hatching of 3D objects from examples.

There have been a few previous methods for transferringepties of artistic rendering by
example. Hamel and Strothotte [45] automatically transkar-tuned rendering parameters
from one 3D object to another. Hertzmann et al. [50] trandfawing and painting styles by
example using non-parametric synthesis, given image datgat. This method maps directly
from the input to stroke pixels. In general, the precise tioos of strokes may be highly
random—and thus hard to learn—and non-parametric pixe¢hsgis can make strokes become
broken or blurred. Mertens et al. [95] transfer spatialyying textures from source to target
geometry using non-parametric synthesis. Jodoin et dlnf@8lel relative locations of strokes,
but not conditioned on a target image or object. Kim et al5]1&mploy texture similarity
metrics to transfer stipple features between images. ltrasinto the above techniques, our
method maps to hatching properties, such as desired tomeeHt#hough our method models

a narrower range of artistic styles, it can model these stylech more accurately.

A few 2D methods have also been proposed for transferringsstf individual curves [33, 51,
67], a problem which is complementary to ours; such methodkide useful for the rendering

step of our method.

A few previous methods learn synthesis of feature curvesh sis contours and silhouettes.

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 94

Lum and Ma [92] use neural networks and Support Vector Mashito learn locations of
feature curves. Cole et al. [18] study feature curve locationhand-drawn artwork. They
also fit a model of feature curve locations to a large traimiegof hand-drawn images. These
methods focus on learning locations of feature curves, @dswe focus on hatching. Hatching
exhibits substantially greater complexity and randomrkas feature curves, since hatches
form a network of overlapping curves of varying orientafidiickness, density, and cross-

hatching level. Hatching also exhibits significant vagatin artistic style.

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 95

[no hatching
[hatching
/ [l cross-hatching

Analysis for input
object and view

271 1137 “
Extracted Spacing Extracted ,
Hatching Level 3 Learning

o 4 "
Al & 4 ’h‘
£ 3 § ",
D) % =
— { : ‘
: IR

Artist's |IIustrat|0n

Zz
F iz s
P " B
—
0.44 0.85
Extracted Intensity Extracted Length Extracted Orientations

Synthesis for input 4 [[]no hatching
object and view / [hatching
— [l cross-hatching
_ 0> (0 o

11.37 11
Learnt

Hatching Level

1.79 364 21
Synthesized Thickness Synthesized Spacing

—
ARAK
S
XXXXXXXKKKXKRK
Input horse 00X XXX XX XX KKK
BEAONNNRXX! XX
{ B AOOXX XX XXX XXX KX,
30 XXXXXX:
AOOOOOOOONNNN X,
K’(K’(‘(KXXXKKK’(K\
AN
kk*kkkkk’(’(’ﬂ
— IO
- =
,,,,,,,,,,,,,,,,,,,,,,,
0.44 \ 085
Synthesized Intensity Synthesized Length Synthesized Orientations
Synthesis for novel [no hatching
object and view ’ J ; [hatching
— \ [l cross-hatching
\ \ \ 3
R ’ M Y4
1%
1.79 3 364 2. — 1.37

Synthesized Thickness Synthesized Spacing Synthesized

— Hatching Level
EELERALELLLLL ==~~~
s f
pieow ‘xxxxxxxxx
KALXAL
KALXAL
KAKKLL
! XXX
i
. i
T :
— |
i
i
044 085 356 B0 -=-=----=-====-o- XXX
Synthesized Intensity Synthesized Length Synthesized Orientations

Figure 4.2: Extraction of hatching properties from a drawing, and synthesis for nelsawings.
Top: The algorithm decomposes a given artist’s illustration into a set of hatchioggsties: stroke
thickness, spacing, hatching level, intensity, length, orientations. A mgf@m input geometry is
learned for each of these propertiedliddle: Synthesis of the hatching properties for the input object
and view. Our algorithm automatically separates and learns the hatching{&lored field) and cross-
hatching fields (green-colored field€pottom: Synthesis of the hatching properties for a novel object

and view.

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 96

4.2 QOverview

Our approach has two main phases. First, we analyze a hamaighen-and-ink illustration of
a 3D object, and learn a model of the artist’s style. This rhode then be applied to synthesize

renderings of new views and new 3D objects.

Hatching properties Our goal is to model the way artists draw hatching strokesmadraw-
ings of 3D objects. The actual placements of individual ktsoexhibit much variation and
apparent randomness, and so attempting to accuratelycpnedividual strokes would be very
difficult. However, we observe that the individual strokesrhselves are less important than
the overall appearance that they create together. Indeeshsgruction texts often focus on
achieving particular qualities such as tone or shading,(Bld]). Hence, similar to previous
work [151, 52], we model the rendering process in terms oftaobatermediatehatching
propertiesrelated to tone and orientation. Each pixel containing@kstin a given illustration

is labeled with the following properties:

 Hatching level (h € {0,1,2}) indicates whether a region contains no hatching, single
hatching, or cross-hatching.

* Orientation (¢ € [0...11)) is the stroke direction in image space, with 180-degree sym-
metry.

 Cross-hatching orientation (@ € [0..11]) is the cross-hatch direction, when present.
Hatches and cross-hatches are not constrained to be pepland

 Thickness ¢ € 0") is the stroke width.

* Intensity (I € [0..1]) is how light or dark the stroke is.

 Spacing @ € O") is the distance between parallel strokes.

 Length (I € O7) is the length of the stroke.

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 97

The decomposition of an illustration into hatching promaris illustrated in Figure 4.2 (top).
In the analysis process, these properties are estimatedhfamd-drawn images, and models
are learned. During synthesis, the learned model gendhagss properties as targets for stroke

synthesis.

Modeling artists’ orientation fields presents special ldmgles. Previous work has used local
geometric rules for determining stroke orientations, saghburvature [52] or gradient of shad-
ing intensity [130]. We find that, in many hand-drawn ill@tons, no local geometric rule can
explain all stroke orientations. For example, in Figure 4h@ strokes on the cylindrical part
of the screwdriver’s shaft can be explained as followinggrealient of the shaded rendering,
whereas the strokes on the flat end of the handle can be exglaynthe gradient of ambi-
ent occlusionJa. Hence, we segment the drawing into regions with distintgsr@ior stroke

orientation. We represent this segmentation by an additjoer-pixel variable:

» Segment label ¢ € ¥) is a discrete assignment of the pixel to one of a fixed set of

possible segment labeis.

Each set of pixels with a given label will use a single rule @npute stroke orientations. For
example, pixels with labet; might use principal curvature orientations, and those \wjth
might use a linear combination of isophote directions ardll®CA axes. Our algorithm also
uses the labels to create contextual features (Sectio®)Awhich are also taken into account
for computing the rest of the hatching properties. For edamgpxels with labek; may have

thicker strokes.

Features For a given 3D object and view, we define a set of features contageometric,
shading, and contextual information for each pixel, as wlesd in Appendices B.2 and B.3.
There are two types of features: “scalar” featuxgdppendix B.2) and “orientation” features

6 (Appendix B.3). The features include many object-space aradje-space properties which

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 98

may be relevant for hatching, including features that ha@nbused by previous authors for
feature curve extraction, shading, and surface part la@pelihe features are also computed at
multiple scales, in order to capture varying surface andyerdetail. These features are inputs

to the learning algorithms, which map from features to hatgiproperties.

Data acquisition and preprocessing The first step of our process is to gather training data
and to preprocess it into features and hatching propefftestraining data is based on a single
drawing of a 3D model. An artist first chooses an image fronoollection of rendered images

of 3D objects. The images are rendered with Lambertian teffee, distant point lighting, and
spherical harmonic self-occlusion [131]. Then, the adisiates a line illustration, either by
tracing over the illustration on paper with a light tablejroa software drawing package with a
tablet. If the illustration is drawn on paper, we scan thestitation and align it to the rendering
automatically by matching borders with brute force searthe artist is asked not to draw
silhouette and feature curves, or to draw them only in pesoithat they can be erased. The
hatching propertieéh, ¢,t,1,d,l) for each pixel are estimated by the preprocessing procedure

described in Appendix B.1.

Learning The training data comprise a single illustration with featx, & and hatching
properties given for each pixel. The algorithm learns maggirom features to hatching prop-
erties (Section 4.4). The segmentatmand orientation propertieg are the most challenging
to learn, because neither the segmentationr the orientation rules are immediately evident
in the data; this represents a form of “chicken-and-egg’blegnm. We address this using a

learning and clustering algorithm based on Mixtures-opéixs (Section 4.4.1).

Once the input pixels are classified, a pixel classifier isnled using Conditional Random
Fields with unary terms based on JointBoost (Section 4.&igglly, each real-valued property

is learned using boosting for regression (Section 4.4.3).ugé boosting techniques for clas-

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 99

sification and regression since we do not know in advancehinjout features are the most
important for different styles. Boosting can handle largenbar of features, can select the

most relevant features, and has a fast sequential learlgogthm.

Synthesis A hatching style is transferred to a target novel view andigect by first com-
puting the features for each pixel, and then applying thenksh mappings to compute the
above hatching properties. A streamline synthesis algor[62] then places hatching strokes

to match the synthesized properties. Examples of this psoaee shown in Figure 4.2.

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 100

/Kﬁ?

-

‘(a) Estimated clusters using ‘ (b) Learnt labeling (c) Learnt labeling (d) Synthesized labeling
our mixture-of-experts model with Joint Boosting with Joint Boosting+CRF for another object
O f, = Day fi =.73(0l3) +.27(F) fl=.77(&3) +.23(0l3)
fo = .54(kmax1) + -46(T |) fo = .69(Kmaxz2) +.3L(0l 1 3) fo=V
f1 = .59(&y3) +.41(0(L-N)y) 0 f1 = .88(0ag) +.12(0(L-N),)
fo=.63(8a3) +.37(0(L-N) 5) © fo= 45(Kmaxz) +-31(0a, 3) +.24(8x3)

Figure 4.3: Clustering orientations.The algorithm clusters stroke orientations according to differ-
ent orientation rules. Each cluster specifies rules for hatctfifigg and cross-hatchingf) directions.
Cluster labels are color-coded in the figure, with rules shown below. Tister labels and the ori-
entation rules are estimated simultaneously during learni@j.Inferred cluster labels for an artist’s
illustration of a screwdriver(b) Output of the labeling step using the most likely labels returned by the
Joint Boosting classifier alondc) Output of the labeling step using our full CRF modgl) Synthesis

of part labels for a novel objecRules: In the legend, we show the corresponding orientation functions
for each region. In all cases, the learned models use one to three feaBubscriptg 1,2, 3} indicates

the scale used to compute the field. Theperator rotates the field by 90 degrees in image-space. The
orientation features used here are: maximum and minimum principal tunevairections Kmax, Rmin),

PCA directions corresponding to first and second largest eigenval &), fields aligned with ridges
and valleys respectively,(V), Lambertian image gradient](), gradient of ambient occlusioriig),

and gradient of_ - N (J(L - N)). Features that arise as 3D vectors are projected to the image plane. See

Appendix B.3 for details.

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 101

4.3 Synthesis Algorithm

The algorithm for computing a pen-and-ink illustration otiaw of a 3D object algorithm
is as follows. For each pixel of the target image, the featarand 6 are first computed
(Appendices B.2 and B.3). The segment label and hatching seckach computed as a
function of the scalar features using image segmentation and recognition technique®rGiv
these segments, orientation fields for the target image @arguted by interpolation of the
orientation feature®. Then, the remaining hatching properties are computed énileg
functions of the scalar features. Finally, a streamlinglsssis algorithm [52] renders strokes
to match these synthesized properties. A streamline isriated when it crosses an occlusion
boundary, or the length grows past the value of the per-paxgkt stroke length or violates

the target stroke spacirty

We now describe these steps in more detail. In Section 4.4yiWelescribe how the algo-

rithm’s parameters are learned.

4.3.1 Segmentation and labeling

For a given view of a 3D model, the algorithm first segmentsithage into regions with
different orientation rules and levels of hatching. Moregisely, given the feature setfor
each pixel, the algorithm computes the per-pixel segmérise € 4 and hatching leveh
{0,1,2}. There are a few important considerations when choosingprrogriate segmentation
and labeling algorithm. First, we do not know in advance WwHiatures irnx are important,
and so we must use a method that can perform feature sele&ewond, neighboring labels
are highly correlated, and performing classification orhgaigel independently yields noisy
results (Figure 4.3). Hence, we use a Conditional Random F&RF) recognition algorithm

(Section 2.3.4), with JointBoost unary terms (Section 2.4€9, 127, 142]. One such model

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 102

is learned for segment labets and a second for hatching level Learning these models is

described in Section 4.4.2.

The CRF objective function includes unary terms that assessdhsistency of pixels with
labels, and pairwise terms that assess the consistenced&etiabels of neighboring pixels.
Inferring segment labels based on the CRF model corresponaénimizing the following

objective function:

E(C):ZEl(Ci;Xi)+ZE2(Ci,Cj;Xi,Xj) (4.1)
1]

wherekE; is the unary term defined for each pixghndE; is the pairwise term defined for each
pair of neighboring pixelgi, j }, wherej € N(i) andN(i) is defined using the 8-neighborhood

of pixeli.

The unary term evaluates a JointBoost classifier that, giverfieature set; for pixel i, deter-

mines the probability?(c;|x;) for each possible labe|. The unary term is then:
Ea(ci;x) = —logP(ci|x)). (4.2)

The mapping from features to probabilitieéci|x;) is learned from the training data using the

JointBoost algorithm [142].

The pairwise energy term scores the compatibility of adjapexel labelsci andc;j, given their
featuresxj andx;j. Let e be a binary random variable representing if the piXe¢longs to a
boundary of hatching region or not. We define a binary JoingBatassifier that outputs the

probability of boundaries of hatching regioR&e|x) and compute the pairwise term as:
Ea(ci,cj;Xi,xj) = —L-1(ci,cj) - (log((P(&i|xi) + P(ej[x;))) + 1) (4.3)

where/, i are the model parameters arid;, ;) is an indicator function that is 1 when# c;
and 0 wherc; = ¢j. The parametef controls the importance of the pairwise term whjle

contributes to eliminating tiny segments and smoothingiolaunies.

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 103

Similarly, inferring hatching levels based on the CRF modetesponds to minimizing the
following objective function:

E(h)=ZEl(hi;Xi)—f—zEz(hi,hj;Xi,Xj) (4.4)
i]

As above, the unary term evaluates another JointBoost fitagbat, given the feature setfor
pixel i, determines the probability(h;|x;) for each hatching levei € {0,1,2}. The pairwise

term is also defined as:
Ez(hi,hj;xi, xj) = —£-1(hi,hj) - (log((P(&xi) + P(€j[X}))) + 1) (4.5)

with the same values for the parameterg,qf as above.

The most probable labeling is the one that minimizes the CREctibe functionE(c) and
E(h), given their learned parameters. The CRFs are optimized a$phg-expansion graph-

cuts [12]. Details of learning the JointBoost classifiers Andare given in Section 4.4.2.

4.3.2 Computing orientations

Once the per-pixel segment labelsind hatching leveld are computed, the per-pixel orien-
tations¢@ and @ are computed. The number of orientations to be synthessddtermined
by h. Whenh = 0 (no hatching), no orientations are produced. Whenl (single hatching),

only ¢ is computed, and, whem= 2 (cross-hatching)y, is computed as well.

Orientations are computed by regression on a subset of teetation feature® for each
pixel. Each clustec may use a different subset of features. The features usedsbgraent
are indexed by a vectar, i.e., the features indices at&1), o(2), ..., 0(k). Each orientation
feature represents an orientation field in image space,asitiie image projection of principal
curvature directions. In order to respect 2-symmetriegientation, a single orientatiof is
transformed to a vector as

v = [c0g20),sin(20)]" (4.6)

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 104

The output orientation function is expressed as a weighteddf selected orientation features.

f(e,W) = ZWU(k)VO(k) (47)

wherea (k) represents the index to tlketh orientation feature in the subset of selected orienta-
tion featuresy,y is its vector representation, amds a vector of weight parameters. There is
an orientation functiorf (8;wc 1) for each labet € ¢ and, if the class contains cross-hatching
regions, it has an additional orientation functibf®;wc) for determining the cross-hatching

directions. The resulting vector is computed to an images@ngle ag = atany, x)/2.

The weightsv and feature selection is learned by the gradient-based boosting for regression
algorithm of Zemel and Pitassi [155]. The learning of thegpagters and the feature selection

is described in Section 4.4.1.

4.3.3 Computing real-valued properties

The remaining hatching properties are real-valued questit ety be a feature to be synthe-

sized on a pixel with feature set We use multiplicative models of the form:

y = [(@Xow + bi)™ (4.8)
k

wherexg k) is the index to the-th scalar feature from. The use of a multiplicative model
is inspired by Goodwin et al. [43], who propose a model foolstr thickness that can be
approximated by a product of radial curvature and invergghde The model is learned in

logarithmic domain, which reduces the problem to learnirgweighted sum:

log(y) = Z alog(axXg (k) + k) (4.9)

Learning the parameteos, a, b, (k) is again performed using gradient-based boosting [155],

as described in Section 4.4.3.

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 105

4.4 Learning

We now describe how to learn the parameters of the functiead in the synthesis algorithm

described in the previous section.

4.4.1 Learning Segmentation and Orientation Functions

In our model, the hatching orientation for a single-hatgtpixel is computed by first assigning
the pixel to a clustee, and then applying the orientation functi®é(@;wc) for that cluster. If
we knew the clustering in advance, then it would be stragyitérd to learn the parameters
w, for each pixel. However, neither the cluster labels nor themetersv; are present in the
training data. In order to solve this problem, we developcaneue inspired by Expectation-
Maximization for Mixtures-of-Experts (described in Secti2.2.5), but specialized to handle

the particular issues of hatching.

The input to this step is a set of pixels from the source itatgin with their corresponding ori-
entation feature s, training orientationgy, and training hatching levels. Pixels containing
intersections of strokes or no strokes are not used. Easktectumay contain either single-
hatching or cross-hatching. Single-hatch clusters hawegdesorientation function (Equation
4.7), with unknown parameterg.;. Clusters with cross-hatches have two subclusters, each
with an orientation function with unknown parameterg andwe. The two orientation func-
tions are not constrained to produce directions orthogtmehch other. Every source pixel
must belong to one of the top-level clusters, and every giedbnging to a cross-hatching

cluster must belong to one of its subclusters.

For each training pixel, we define a labeling probability. indicating the probability that
pixeli lies in top-level clustec, such thaty . yic = 1. Also, for each top-level cluster, we define

a subcluster probabilit@icj, wherej € {1,2}, such thaBic1 + Bicc = 1. The probabilityBic;

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 106

measures how likely the stroke orientation at pixarresponds to a hatching or cross-hatching
direction. Single-hatching clusters hafig, = 0. The probability that pixel belongs to the
subcluster indexed bfc, j} is yicBicj-

The labeling probabilities are modeled based on a mixtth@awssians distribution [11]:

_ Teexp(—Tic/2s)
e = > cTeexp(—ric/2s) (4.10)
Tcj exp(—Ticj/2sc)

Te1 €XP(—Tic1/2S¢) + Teo €XPp(—Tic2/2¢)

Bicj (4.11)

whererTt, 1tj are the mixture coefficients, s; are the variances of the corresponding Gaus-
siansricj is the residual for pixel with respect to the orientation functignin clusterc, and
ric is defined as follows:

ric:jer?{g}HUi—f(ei;Wcj)Hz (4.12)
whereu; = [cog2q),sin(2@)]".

The process begins with an initial set of labg|$, andw, and then alternates between updat-
ing two steps: thenodel update stewhere the orientation functions, the mixture coefficients
and variances are updated, and lieel update stepvhere the labeling probabilities are up-

dated.

Model update Given the labeling, orientation functions for each clusies updated by
minimizing the boosting error function, described in Sewet?.4.3, using the initial per-pixel

weightsai = YicBicj-

In order to avoid overfitting, a set of holdout-validatiomgls are kept for each cluster. This set
is found by selecting rectangles of random size and markieig tontaining pixels as holdout-
validation pixels. Our algorithm stops when 25% of the dugtixels are marked as holdout-
validation pixels. The holdout-validation pixels are nonhsidered for fitting the weight vector

Wcj. At each boosting iteration, our algorithm measures thdduitvalidation error measured

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 107

on these pixels. It terminates the boosting iterations wherholdout-validation error reaches

a minimum. This helps avoid overfitting the training oriditda data.

During this step, we also update the mixture coefficients\am@nces of the gaussians in the

mixture model, so that the data likelihood is maximized is 8tep [11]:

m:Xy,C/N, S:ZMcric/N (4.13)
ej = Bicj/N, =7 Bicjficj/N (4.14)
| 0]

whereN is the total number of pixels with training orientations.

Label update Given the estimated orientation functions from the aboee,sthe algorithm
computes the residual for each model and each orientattatiun. Median filtering is applied
to the residuals, in order to enforce spatial smoothnggss replaced with the value of the
median ofr ¢ in the local image neighborhood of pixglwith radius equal to the local spacing

S). Then the pixel labeling probabilities are updated acogytb Equations 4.10 and 4.11.

Initialization The clustering is initialized by a constrained mean-shifstering process with
aflat kernel, similar to constrained K-means [148]. The tramsts arise from a region-growing
strategy to enforce spatial continuity of the initial clerst Each cluster grows by considering
randomly-selected seed pixels in their neighborhood adthgdhem only if the difference be-
tween their orientation angle and the cluster’s currentmmggentation is below a threshold. In
the case of cross-hatching clusters, the minimum diffexdretween the two mean orientations
is used. The threshold is automatically selected once gymie-processing by taking the me-
dian of each pixel's local neighborhood orientation angfetences. The process is repeated
for new pixels and the cluster's mean orientation(s) areatgutiat each iteration. Clusters com-
posed of more than 10% cross-hatch pixels are marked asltatssing clusters; the rest are
marked as single-hatching clusters. The initial assigrirokpixels to clusters gives a binary-

valued initialization fory. For cross-hatch pixels, if more than half the pixels in thuster are

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 108

assigned to orientation functioam, our algorithm swapsv; andwy,. This ensures that the
first hatching direction will correspond to the dominanteotation. This aids in maintaining

orientation field consistency between neighboring regions

An example of the resulting clustering for an artist’s ithagion of screwdriver is shown in
Figure 4.3 (a). We also include the functions learned forhhtehing and cross-hatching

orientation fields used in each resulting cluster.

4.4.2 Learning Labeling with CRFs

Once the training labels are estimated, we learn a procaduransfer them to new views
and objects. Here we describe the procedure to learn the @oraliRandom Field model of
Equation 4.1 for assigning segment labels to pixels as weha@aConditional Random Field of

Equation 4.4 for assigning hatching levels to pixels.

Learning to segment and label Our goal here is to learn the parameters of the CRF energy
terms (Equation 4.1). The input is the scalar featuresédr each stroke pixel (described

in Appendix B.2) and their associated labeglsas extracted in the previous step. Following
[143, 126, 69], the parameters of the unary term are leampedining a cascade of JointBoost
classifiers. The cascade is used to obtain contextual &satuinich capture information about
the relative distribution of cluster labels around eaclepiXhe cascade of classifiers is trained

as follows.

The method begins with an initial JointBoost classifier usingnitial feature seX, containing
the geometric and shading features, described in Appen@x Bhe classifier is applied to
produce the probabilit(c;|X;) for each possible labe| given the feature sé of each pixel
i. These probabilities are then binned in order to producéestunel features. In particular, for

each pixel, the algorithm computes a histogram of thesegtnibties as a function of geodesic

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 109

distances from it:

=Y PNy (4.15)
jrdp<dist(i,j)<dy;1

where the histogram bih contains all pixelsj with geodesic distance randg,,dy 1] from
pixel i, andNjy, is the total number of pixels in the histogram binThe geodesic distances are
computed on the mesh and projected to image space. 4 binsede ahosen in logarithmic
space. The bin valugs® are normalized to sum to 1 per pixel. The total number of bies a
4|C|. The values of these bins are used as contextual featurés) ese concatenated inio

to form a new scalar feature sgqt Then, a second JointBoost classifier is learned, using the
new feature set as input and outputting updated probabiliti¥s;|x;). These are used in turn
to update the contextual features. The next classifier igesaontextual features generated by
the previous one, and so on. Each JointBoost classifier ialinéd with uniform weights and
terminates when the holdout-validation error reaches taranmam. The holdout-validation
error is measured on pixels that are contained in randoranglgs on the drawing, selected
as above. The cascade terminates when the holdout-vahdatror of a JointBoost classifier
is increased with respect to the holdout-validation erfdhe previous one. The unary term is

defined based on the probabilities returned by the lattssiflar.

To learn the pairwise term of Equation 4.3, the algorithmdset® estimate the probability
of boundaries of hatching regioe|x), which also serve as evidence for label boundaries.
First, we observe that segment boundaries are likely toraatcparticular parts of an image;
for example, pixels separate by an occluding and suggestiviour are much less likely to be
in the same segment as two pixels that are adjacent on thecesuiffor this reason, we define
a binary JointBoost classifier, which maps to probabilititbaundaries of hatching regions
for each pixel, given the subset of its featuxesomputed from the feature curves of the mesh
(see Appendix B.2). In this binary case, JointBoost reduceantearlier algorithm called
GentleBoost [35]. The training data for this pairwise classiare supplied by the marked

boundaries of hatching regions of the source illustratsee(Appendix B.1); pixels that are

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 110

marked as boundaries haee= 1, otherwisee = 0. The classifier is initialized with more
weight give to the pixels that contain boundaries of hatghavel regions, since the training
data contains many more non-boundary pixels. More speltyfita Ng are the total number
of boundary pixels, anbliyg is the number of non-boundary pixels, then the weight\g/Ns

for boundary pixels and 1 for the rest. The boosting iteretiterminate when the hold-out

validation error measured on validation pixels (selectedl@ve) is minimum.
Finally, the parametersandu are optimized by maximizing the following energy term:

Es= Y Pl (4.16)

izci#cj,JeN(i)

whereN(i) is the 8-neighborhood of pixglandc;, c; are the labels for each pair of neighboring
pixelsi, j inferred using the CRF model of Equation 4.1 based on the ldggaeameters of
its unary and pairwise classifier and using different vafoeg, 1. This optimization attempts
to “push” the segment label boundaries to be aligned witklpithat have higher probability

to be boundaries. The energy is maximized using Matlab’dempntation of Preconditioned

Conjugate Gradient with numerically-estimated gradients.

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 111

Gaussian Nearest

Decision Tree Bayes Neighbors

Logistic : JointBoost
SWM Regression JointBoost and CRF
[CIno hatching [Clhatching [icross-hatching

Figure 4.4: Comparisons of various classifiers for learning the hatchidgvel. The train-
ing data is the extracted hatching level on the horse of Fegi2 and feature set. Left

to right: least-squares for classification, decision tree (Matlainglementation based on
Gini’s diversity index splitting criterion), Gaussian NaiBayes, Nearest Neighbors, Support
Vector Machine, Logistic Regression, Joint Boosting, tJBmosting and Conditional Random
Field (full version of our algorithm). The regularizatiommmeters of SVMs, Gaussian Bayes,
Logistic Regression are estimated by hold-out validatiotinihe same procedure as in our

algorithm.

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 112

Ridge
Regression

Linear
Regression

Ve
’

11.37

?.

4 \
% 3 4 N
Gradient-based

Lasso boosting

Figure 4.5: Comparisons of the generalization performance of varioaknigues for regres-

sion for the stroke spacing. The same training data are pledito the techniques based on the

extracted spacing on the horse of Figure 4.2 and featur&.de¢ft to right: Linear regression

(least-squares without regularization), ridge regressibasso, gradient-based boosting. Fit-

ting a model on such very high-dimensional space without pays#ty prior yields very poor

generalization performance. Gradient-based boostinggimore reasonable results than ridge
regression or Lasso, especially on the legs of the cow, wherpredicted spacing values seem
to be more consistent with the training values on the legs®@hthrse (see Figure 4.2). The

regularization parameters of Ridge Regression and Lass@stimated by hold-out validation

with the same procedure as in our algorithm.

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 113

Learning to generate hatching levels The next step is to learn the hatching levhlg
{0,1,2}. The input here is the hatching le\glper pixel contained inside the rendered area (as
extracted during the pre-processing step (Appendix B.1gttaar with their full feature seg;

(including the contextual features as extracted above).

Our goal is to compute the parameters of the second CRF modktarsaferring the hatching
levels (Equation 4.4). Our algorithm first uses a JointBolastsifier that maps from the feature
setx to the training hatching levels. The classifier is initialized with uniform weights and
terminates the boosting rounds when the hold-out validagioor is minimized (the hold-out
validation pixels are selected as above). The classifigrutsithe probability?(h;|x;), which

is used in the unary term of the CRF model. Finally, our algarittses the same pairwise term
parameters trained with the CRF model of the segment labeéstiyrthe boundaries of the

hatching levels.

Examples comparing our learned hatching algorithm to s¢ed¢ternatives are shown in Figure

4.4.

4.4.3 Learning Real-Valued Stroke Properties

Thickness, intensity, length, and spacing are all positreal-valued quantities, and so the
same learning procedure is used for each one in turn. Thetaploe algorithm are the values
of the corresponding stroke properties, as extracted iprgrocessing step (Section B.1) and

the full feature sex; per pixel.

The multiplicative model of Equation 4.8 is used to map treudees to the stroke properties.
The model is learned in the log-domain, so that it can be &ghas a linear sum of log func-
tions. The model is learned with gradient-based boostingdgression (Section 2.4). The

weights for the training pixels are initialized as uniforAs above, the boosting iterations stop

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 114

- 3 5 1

Our rendering for
input view & object

Artist’s illustration

Figure 4.6: Data-driven line art illustrations generated with our algtthrm. From left to
right: Artist’s illustration of a horse. Rendering of the model wotlr learnt style. Renderings

of new views and new objects.

when the holdout-validation measured on randomly selegciédation pixels is minimum.

Examples comparing our method to several alternativeshenersin Figure 4.5.

4.5 Results

The figures throughout our paper show synthesized line digavof novel objects and views
with our learning technique (Figures 4.1, 4.6, 4.7,4.8,4.90,4.11,4.12, 4.13, 4.14). As can
be seen in the examples, our method captures several aspwsrtist’s drawing style, better
than alternative previous approaches (Figure 4.1). Ouwritlhgn adapts to different styles

of drawing and successfully synthesizes them for diffemnécts and views. For example,

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 115

=
Z

i\

Our‘rendering for
input view & object

NV g
3 ////,f/mn s
g \\‘\‘\“\‘\\WM /

\3\\\\\}(,

Figure 4.7: Data-driven line art illustrations generated with our algtthm. From left to
right: Artist’s illustration of a horse with a different style than64 Rendering of the model

with our learnt style. Renderings of new views and new objects.

Figures 4.6 and 4.7 show different styles of illustratioasthe same horse, applied to new
views and objects. Figure 4.14 shows more examples of ssisthnath various styles and

objects.

However, subtleties are sometimes lost. For example, iarBig.12, the face is depicted with
finer-scale detail than the clothing, which cannot be cagatim our model. In Figure 4.13, our
method loses variation in the character of the lines, anéctiep of important details such as
the eye. One reason for this is that the stroke placementitigoattempts to match the target
hatching properties, but does not optimize to match a tdayet. These variations may also
depend on types of parts (e.g., eyes versus torsos), and bewdddressed given part labels
[69]. Figure 4.11 exhibits randomness in stroke spacingveidth that is not modeled by our

technique.

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 116

ST

==

=

i 2

Hmﬂlﬁ = 2
“' I//////(\\\\\\\\\\ll@

I

NS

[

Our rendering for
input view & object

Figure 4.8: Data-driven line artillustrations generated with our algtm. From left to right:
Artist's illustration of a rocker arm. Rendering of the mbdeath our learnt style. Renderings

of new views and new objects.

9 5

SN

Our rendering for
input view & object

Artist’s illustration

Figure 4.9: Data-driven line artillustrations generated with our algttrm. From left to right:
Artist’s illustration of a pitcher. Rendering of the modelhvour learnt style. Renderings of

new views and new objects.

Selected features We show the frequency of orientation features selected aglignt-based
boosting and averaged over all our nine drawings in Figutb.4~ields aligned with principal

curvature directions as well as local principal axes (spoading to candidate local planar

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 117

:
|
?2‘
8

= ;
’w'"%.‘y, R

s~

R / \\m‘« Py
\\W\,%g\%‘{\ R \\\W\\\'\\X\&\?\ < ’{ﬁ/

I\

our rendering for

Artist’s illustration input view & object

Figure 4.10: Data-driven line art illustrations generated with our algthhm. From left to
right: Artist’s illustration of a Venus statue. Rendering of thedelowith our learnt style.

Renderings of new views and new objects.

U !
&=
(TN

\ / ,)/i
L y 4
N ;MM%M y

Our rendering for
input view & object

Artist’s illustration

Figure 4.11: Data-driven line art illustrations generated with our algthhm. From left to
right: Artist’s illustration of a bunny using a particular styleatching orientations are mostly
aligned with point light directions. Rendering of the modahwaur learnt style. Renderings

of new views and new objects.

symmetry axes) play very important roles for synthesizimg hatching orientations. Fields
aligned with suggestive contours, ridges and valleys @@ significant for determining orien-

tations. Fields based on shading attributes have moderfatence.

We show the frequency of scalar features averaged selegteddsting and averaged over all
our nine drawings in Figure 4.16 for learning the hatchinglethickness, spacing, intensity,

length, and segment label. Shape descriptor featuresdlms®CA, shape contexts, shape

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 118

Our rendering for
input view & object

Artist’s illustration

Figure 4.12: Data-driven line art illustrations generated with our algthhm. From left to
right: Artist’s illustration of a statue. Rendering of the modelhwaur learnt style. Renderings

of new views and new objects.

W
I \

\4@ ' % . \ ‘”!//;//

\
Our rendering for
input view & object

Figure 4.13: Data-driven line art illustrations generated with our algthhm. From left to
right: Artist’s illustration of a cow. Rendering of the model withr dearnt style. Renderings

of new views and new objects.

diameter, average geodesic distance, distance from nmmdialce, contextual features) seem
to have large influence on all the hatching properties. Treams that the choice of tone is

probably influenced by the type of shape part the artist dralve segment label is mostly de-

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 119

Artists’
illustrations

=

Synthesis for novel objects

A ¢

Figure 4.14: Data-driven line art illustrations generated with our algtthm based on the

learned styles from the artists’ drawings in Figures 4.1,4.6, 4.10, 4.13.

termined by the shape descriptor features, which is camigtith the previous work on shape
segmentation and labeling [69]. The hatching level is myastiluenced by image intensity,
V-N, L-N. The stroke thickness is mostly affected by shape descrip&tures, curvature,
L-N, gradient of image intensity, the location of feature linesd, finally, depth. Spacing is
mostly influenced by shape descriptor features, curvatieeyatives of curvaturd., - N, and

V -N. The intensity is influenced by shape descriptor featuraage intensityV - N, L - N,
depth, and the location of feature lines. The length is matttermined by shape descriptor

features, curvature, radial curvatute, N, image intensity and its gradient, and location of

feature lines (mostly suggestive contours).

However, it is important to note that different features k@ned for different input illus-
trations. For example, in Figure 4.11, the light directiomsstly determine the orientations,
which is not the case for the rest of the drawings. We includ®grams of the frequency of

orientation and scalar features used for each of the drawitige supplementary material.

Computation time In each case, learning a style from a source illustratioegak to 10

hours on a laptop with Intel i7 processor. Most of the timeassumed by the orientation and

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 120

clustering step (4.4.1) (about 50% of the time for the hons@jch is implemented in Matlab.
Learning segment labels and hatching levels (4.4.2) reptesbout 25% of the training time
(implemented in C++) and learning stroke properties 4.4k@daabout 10% of the training
time (implemented in Matlab). The rest of the time is consdifee extracting the features
(implemented in C++) and training hatching properties (enpénted in Matlab). We note that
our implementation is currently far from optimal, hencenming times could be improved.
Once the model of the style is learned, it can be applied teréifit novel data. Given the
predicted hatching and cross-hatching orientationshinragdevel, thickness, intensity, spacing
and stroke length at each pixel, our algorithm traces stiieamover the image to generate the
final pen-and-ink illustration. Synthesis takes 30 to 60utes. Most of the time (about 60%)
is consumed here for extracting the features. The impleatient for feature extraction and

tracing streamlines are also far from optimal.

4.6 Summary and Future Work

Ours is the first method to generate predictive models fath®gizing detailed line illustrations

from examples. We model line illustrations with a machirarteng approach using a set of
features suspected to play a role in the human artistic psocBhe complexity of man-made
illustrations is very difficult to reproduce; however, wdibee our work takes a step towards
replicating certain key aspects of the human artistic mec@®ur algorithm generalizes to novel

views as well as objects of similar morphological class.

There are many aspects of hatching styles that we do notregpheluding: stroke textures,
stroke tapering, randomness in strokes (such as wavy ergtlines), cross-hatching with
more than two hatching directions, style of individual E&s, and continuous transitions in
hatching level. Interactive edits to the hatching propsrdould be used to improve our results,

similarly to [120].

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 121

i

0.0 0.10 0.20 0.30

Figure 4.15: Frequency of the first three orientation features selected by gradieaséd boost-
ing for learning the hatching orientation fields.The frequency is averaged over all our nine training
drawings (Figures 4.1, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13). Theilootion of each feature is
also weighted by the total segment area where it is used. The orientatioimefeare grouped based on
their type: principal curvature direction&,@ax,ﬁmm), local principal axes directionsg], &,), D(E X N),
O(V x N), directions aligned with suggestive contous}, (/alleys), ridges), gradient of ambient oc-
clusion (Ja), gradient of image intensity), gradient of(L - N), gradient of(V - N), vector irradiance

(E), projected light directionL).

Since we learn from a single training drawing, the geneaéibn capabilities of our method to

novel views and objects are limited. For example, if thevate features differ significantly

CHAPTER4. LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 122

between the test views and objects, then our method will enerlize to them. Our method
relies on holdout validation on randomly selected regionavbid overfitting; this ignores the

hatching information existing in these regions that mightvaluable. Re-training the model
is sometimes useful to improve results, since these regiomselected randomly. Learning
from a broader corpus of examples could help with these sssalthough this would require

drawings where the hatching properties change consigtaatbss different object and views.
In addition, if none of the features or a combination of theanrmt be mapped to a hatching

property, then our method will also fail.

Finding what and how other features are relevant to arfigs-and-ink illustrations is an open
problem. Our method does not represent the dependencelefastypart labels (e.g., eyes
versus torsos), as previously done for painterly rendesirighages [156]. Given such labels,

it could be possible to generalize the algorithm to takeitifrmation into account.

The quality of our results depend on how well the hatchingpprties were extracted from
the training drawing during the preprocessing step. Tlap gives only coarse estimates, and
depends on various thresholds. This preprocessing caandténhighly-stylized strokes such

as wavy lines or highly-textured strokes.

Example-based stroke synthesis [33, 51, 67] may be combwitbdur approach to generate
styles with similar stroke texture. An optimization teafume [145] might be used to place
streamlines appropriately in order to match a target tonet r@ethod focus only on hatch-
ing, and render feature curves separately. Learning tharteaurves is an interesting future
direction. We also believe that our learning techniquedctba used for analyzing data from
surveys with larger datasets than ours. Another directoriuture work is hatching for ani-

mated scenes, possibly based on a data-driven model stmil@dd]. Finally, we believe that

aspects of our approach may be applicable to other applicatn geometry processing and

artistic rendering, especially for vector field design.

LEARNING HATCHING FOR PENAND-INK ILLUSTRATION OF SURFACES 123

CHAPTERA4.
Curv. Curv. — Curv.
D.Curv. D.Curv. D.Curv.
Rad.Curv. Rad.Curv. Rad.Curv.
D.Rad.Curv. D.Rad.Curv. D.Rad.Curv.
View Curv. View Curv. View Curv.
Torsion Torsion Torsion
sC sc sc
GD GD GD
SDF SDF SDF
MSD MSD MSD
Depth Depth | Depth
Amb.Occl. Amb.Occl. Amb.Occl
| | |
P U TR —
L-N N r LN
o1 o (8]
0V -N)| |0 -N)| |0 -N)|
B R IOC-R)| IOE-R)|
S.Contours 1l S.Contours S.Contours
App.Ridges App.Ridges App.Ridges
Ridges Ridges Ridges
Valleys Valleys Valleys
Contextual Contextual Contextual
0.0 0.10 0.20 0.20 0.0 0.05 0.10 0.15 0.20
Top features used for hatching level Top features used fckribss Top features used for spacing
Curv. Curv. Curv. h
D.Curv. D.Curv. D.Curv.
Rad.Curv. Rad.Curv. Rad.Curv.
D.Rad.Curv. D.Rad.Curv. D.Rad.Curv.
View Curv. View Curv. View Curv.
Torsion Torsion Torsion
PCA PCA PCA
sc sC SC
GD GD GD
SDF SDF SDF
MSD MSD MSD
Depth Depth Depth
Amb.Occl. Amb.Occl. Amb.Occl
| | |
V-N V-N V-N
LR L-N LN
|an| [0 1al]]
(AN [0V - R 0V~
0N 0L N)| Io(C-N)
S.Contours S.Contours S.Contours
App.Ridges App.Ridges App.Ridges
Ridges Ridges Ridges
Valleys Valleys Valleys
Contextual Contextual Contextual
0.0 0.05 0.10 0.15 0.20 0.25 0.0 0.05 0.10 0.15 0.20 0.0 0.10 0.20 0.30 0.40

Top features used for intensity Top features used for length Top features used for segment label

Figure 4.16: Frequency of the first three scalar features selected by the boostingigeels used

in our algorithm for learning the scalar hatching properties. The frequaa@veraged over all nine
training drawings. The scalar features are grouped based on their {@pevature (Curv.), Derivatives
of Curvature (D. Curv.), Radial Curvature (Rad. Curv.),Derivativ&kafdial Curvature (D. Rad. Curv.),
Torsion, features based on PCA analysis on local shape neighbash@eatures based Shape Context
histograms [10], features based on geodesic distance descriptoy $53pe diameter function features
[124], distance from medial surface features [91], depth, ambientusten, image intensity (I - N,
L-N, gradient magnitudes of the last three, strength of suggestive cengitength of apparent ridges,

strength of ridges and values, contextual label features.

Chapter 5

Data-driven computation of surface

attributes for animated scenes

In this chapter, | investigate the second type of geomewggssing problems for which learn-
ing algorithms can be useful. These problems involve theiefit, possibly real-time computa-
tion of shape attributes for dynamic, animated scenes. Whieesitape attributes exhibit strong
correlation to the animation parameters of the shape, ilggaigorithms can be used to learn
a function from the shape representation to the attributebjs case, the shape is represented

by a low-dimensional state vector describing its animation

The approach to learning such mappings begins with compatset of training pair§(x;, i)},
wherex; are the animation parameters for a mesh yrate a set of target attributes. Then, a

mapping is learned from the low-dimensional parametaandb target attributes:
y=1f(x) (5.1)

This mapping is very high-dimensional, and can also be figbhlinear. Furthermore, it is
crucial that the mapping can be evaluated fast enough tw aélal-time computations of the

attributes during runtime. In some cases, the locality efrttapping can be exploited, e.g., the

124

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS125

target attribute may only be affected by a few nearby joints.

| developed a method that combines dimensionality redoeta regression, while also taking
advantage of locality when possible. Here, | describe thailddor the method in the case of
surface curvature attributes (Section 5.1). In [102], weedss a similar methodology for the
case of surface visibility represented by its sphericaiitanics coefficients. Both surface cur-
vature and visibility are attributes that need to be congbuteeal-time for many applications

in computer graphics. For example, surface curvature astimis an important component of
object-space line drawing for many types of curves, sucliggestive contours [22]. Comput-
ing surface visibility is fundamental to photo-realistendering. Real-time evaluation of the
learned mappings for these attributes also enable realgiacution of these applications for

deforming shapes.

5.1 Data-driven curvature for real-time line drawing of dy-

namic scenes

Here, | will describe our approach for learning mappingsrifranimation parameters to a set
of curvature attributes-namely, curvature tensors and derivativesWe apply the learned
mappings for real-time line drawing. Line drawing is basedendering a variety of curves
defined on 3D surfaces, such as suggestive contours [28kgidnd valleys [59, 105, 139],
apparent ridges [66], highlight lines [23] (Figure 5.1).€Ble curves are essential components
of high-quality line drawing of smooth surfaces and reqsueface curvature and curvature

derivatives to be computed everywhere on the surface.

1The work presented in the following sections is also pulelisin ACM Transactions on Graphics, Vol.
28, No. 1, 2009 [70]. Project web page: http://www.dgp.tdooedu/~kalo/papers/MLcurvature/, ©ACM,
(2009). This is the author's version of the work. It is postezte by permission of ACM for your per-
sonal use. The definitive version was published in ACM Tratisas on Graphics, Vol. 28, No. 1, 2009,
http://doi.acm.org/10.1145/1477926.1477937

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS126

(1 PR

) 3

/[| (\w L:{ \

W j L W x’
\ i | \\\l
3\ P

Figure 5.1: Line drawings of deforming 3D objects, generated in reakti{24 to 80 FPS) by

our system.

Interactive line drawings of static geometry can be rendi@neeal-time, because curvatures
can be precomputed [21]. However, for dynamic geometryatures must be recomputed
for each frame, since storing all the curvature and devigatof curvature values per frame or
storing key poses and then interpolating would require iprtve amounts of storage (Section
5.8). There are several curvature estimation algorithrasrédy on simple differential geom-

etry formulas that can be evaluated on meshes very effigiéaty., [137, 96, 17]), however

they often suffer from degenerate cases and noisy estinatdsdo not compute third-order
surface derivatives [115]. Other fast methods based on $actace approximations [153] are
also affected by degeneracies and do not apply in paralkegioms (unless refined by slow
non-linear optimization techniques [154]). In generalpider to maintain robustness to noise,
irregular tessellation, and also to fully compute thirdi@r derivatives, more expensive com-
putations are necessary. Typically, multiple steps of&wme smoothing or feature-preserving
optimization of the curvature tensors are required [115%, therefore computing surface cur-
vatures and their derivatives reliably enough is genetathyslow to be used in real-time (even

for moderate-sized meshes).

An alternative solution for interactive curvature-basaed drawing would be to use using GPU-

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS127

based image processing operations [85]. Image-space dseé#ne appealing in that they are
generally simple and easy to implement. However, there awgngber of drawbacks as well:
accuracy is limited by pixel resolution (often resultingjagged or irregular lines), styliza-
tion options are limited (e.g., curves cannot be textursped is limited by hardware image

processing performance, and careful setting of user-defimesholds is required.

Thus, it would be highly desirable to have an object-spagerdahm for reliably computing
surface curvature and its derivatives in real-time for ated surfaces that would provide im-

provements in speed, visual quality and stylization ofgtion

In the following sections, | will describe the learning medhwe followed to achieve this. Our
algorithm can produce animated 3D line drawings at rea¢-tiates for meshes of 100K trian-
gles in a single processor. We employ a series of learnifmtques during precomputation so
that only a few megabytes of storage are required per datasgature synthesis is performed
very efficiently and accurately during runtime and genesdion capabilities are offered for
novel, unseen animation sequences. With our algorithmnibw possible to generate accurate
and stylizable curvature-based line drawings of 3D anithatefaces in real-time (Figures 5.1

and 5.2).

The results of our method are nearly indistinguishable fitben per-triangle tensor fitting
method of Rusinkiewicz [115], with similar temporal cohezenbut require an order-of-magnitude
less computation during runtime. We apply our approachreetlypes of surfaces: skeleton-
based characters, cloth simulation and blend-shape faciaiation. We show the ability of

our system to generalize to novel animation sequencesrinabaincluded in the training set.

We demonstrate stroke stylization with real-time chair{ifigures 5.15 and 5.16). In addition,

stroke thickness can be determined as a function of surfasattire.

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCEES128

Figure 5.2: Real-time renderings generated with our method (principghhghts and sug-
gestive contours for the horse and apparent ridges and ysfler the other figures). For the

hand, we apply textured chained-strokes for stylization.

Valleys+Suggestive Valleys+ Apparent Ridges+ Suggestive Contours+

Contours Apparent Ridges Principal Highlights Principal Highlights

Figure 5.3: Results generated in real-time using our methiagh)(compared to those gener-

ated with explicit curvature re-calculatioogtton).

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS129

5.2 Related work

Our work is inspired by methods for precomputing defornratéind radiance transfer. Example-
based skinning algorithms [86, 97, 149] learn mappings Bkefleton parameters to 3D shapes;
our method for skeleton-based characters learns mapprggsface curvature. For cloth sim-
ulation, our method is in the same spirit with the photosgalirendering algorithms of James
and Fatahalian [61] and Nowrouzezaletal.[104, 103, 102], in which dimensionality reduc-
tion is applied to relate simulation and animation to remderTo the best of our knowledge,

this thesis presents the first data-driven method for curgatstimation.

5.3 Overview

Our approach to computing surface curvatures has two stdgepreprocessing stage, which

is performed offline, and the runtime synthesis stage, wisigierformed in real-time.

Preprocessing.In a preprocessing stage, we begin with an animation sequémen which

we can compute a set ™ training pairs{(x;,yi)}, wherex; are the parameters for a mesh
andy; are a set of curvature attributes. The curvatures for thesdhes are computed with the
algorithm of Rusinkiewicz [115]. Additional curvature sntbmg and optimization steps are

required in order to obtain high-quality results [22, 72].

Then, we learn a mapping from the low-dimensional pararnzeatéon to surface curvatures.
For a skeleton-based character, linear regression witlwatder polynomial model is used.
A quadratic model is used for surface curvatures and prahcipections and a cubic model is
used for the derivatives of curvature. For cloth simulationt, a low-dimensional representa-
tion of geometry is discovered and then linear regressiaisesl. For facial animation, neural

network regression maps from the blending parameters touh&ture space.

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS130

Run-time rendering. During an interactive session, the paramekease determined for each
frame. The curvatureg are computed by = f(x). Then, various rendering options are sup-
ported. The mesh can be rendered with contours, suggestitewrs, and any other lines that
requires curvature. Real-time chaining can be performeddeige more stylization options,
such as texturing strokes. Stroke thickness can also bemdatzl as a function of surface

curvature.

Our method for skeleton-based surfaces is described ino8etyd. Simulated cloth surfaces
are described in Section 5.5, followed by our method for tlehape facial animation in Sec-

tion 5.6.

5.3.1 Curvature attributes

The surface curvature dagaan be represented in different ways. For our applicatimretare
three primary considerations in choosing a representattnst, we want a spatially smooth
representation that exploits the local correlations indhwevature field in order to reduce the
size of the model through dimensionality reduction (Sec8®.2). Second, we want the rep-
resentation to smoothly vary as a function of animation jpetars in order to achieve accurate
regression and better temporal coherence. Lastly, we weeygrasentation that stores as few
values as possible for each vertex, in order to reduce staragts. In order to fulfill these

goals, we represent the curvature attributes as follows:

1. The principal curvatures k; andk,. We use the standard definition whége> ko, rather
than|ky| > |kz| [116], since the latter definition introduces temporal digtuities in the
curvature field (swapping of principal directions), whidivarsely affects the learning

procedure.

2. The principal direction of maximum curvature &;. This direction is represented by

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS131

using its first two components in a local coordinate systehis particular representation
of the curvature attributes is chosen for invariance tarigansformations of parts of the
surface. While a 1D angular representation (i.e., the amgled tangent plane of each

vertex) would be more compact, this parametrization woalketrsingularities at722

The local coordinate systems are determined by first segngetiite surface into rigid
segments and then performing PCA on the vertices of each seghw skeleton-based
characters, the segmentation is computed by applying reledinelustering [19] to the
skinning weights. For cloth simulation, rigid components gound using the method
of James and Twigg [62]. At run-time, the third componeng&pand the other princi-
pal direction& can be computed from this representation and the per-vadexals.
Per-vertex normals are computed in a standard manner geefri.e., as the weighted
average of incident face normals. In order to improve spsitieoothness, we also adjust
the principal directions to match the segment’s coordisggtem orientation. The local
rigid coordinate frame is aligned to a reference mesh eddearmal vector (which are
selected to match closely the PCA directions) for each segmEmen, in subsequent
frames, we orient the principal directions to match the@vjwus orientation in order to

achieve temporal coherence.

3. The derivatives of curvatures. These derivatives form a22 x 2 tensor, which, due to

symmetry, can be represented by four values.

We will learn a separate mapping € f(x)) from the animation parametexsto each of the

eight curvature attributes listed above.

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS132

5.3.2 Dimensionality reduction

The attribute vectoy for a mesh is very high-dimensional. However, as there gfgiant

spatial correlations in the curvatures, dimensionalithuion can be employed to significantly
compress these vectors, based on the discussion of Seddiomn2this case, dimensionality
reduction also helps to denoise unstable attributes (ssighilacipal directions near umbilical
points), since noisy data are not captured by the first fewcjpal components, since they
correspond to larger variance in the data. Thus, noisy data@t represented in the low-

dimensional subspace.

We use the ICA technique [9, 20, 14] for dimensionality rethrct(Section 2.5.2). More

specifically, we use the FastICA variant [56], which maxirsiz®n-gaussianity by using the
approximation of negentropy. An alternative option wouddtb use PCA, but as we discussed
in Section 2.5.2, while PCA has the property that it is lea@stases optimal for compressing
the training data, this does not guarantee that it will gelies to new shapes not included in
the training data. In fact, we find that ICA does generalizdéebdiecause it prefers sparse
bases, yielding localized basis functions correspondingjructure in the data, such as folds,
wrinkles, and other similar structures (Figure 2.6). Samyl, it has been often noted in the
literature that ICA applied to image data yields localizedttees, e.g., [7, 9]. In contrast,

the PCA bases are global: the first components contain a raixfumany distinct folds and

wrinkles that are less likely to co-occur for novel poses.

5.4 Skeleton-based deformations

Our method for skeleton-based curvature prediction etltbie special structure of skinned
geometry. Specifically, we note that the skeleton’s joirglawalues provide a natural parame-

terization, and so we will use them as the inpute the regression. Furthermore, the curvature

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS133

T T
* vertex curvature samples

— linear model approximation
1.5- — quadratic model approximati / /

principal curvature k1

| l |
0 0.05 0.1 0.25 0.3 0.35

1
0.15 0.2
cosine(joint angle / 2)

T
+ vertex deriv. of curvature samples
— quadratic model approximation

cubic model approximation

derivative of curvature |
23

_ I
0 0.05 0.1 025 0.3

0.15 02
cosine(joint angle / 2)

Ground truth (20 ms) Our prediction (1.4 ms)

Figure 5.4: Left: Typical plots of curvature and derivatives of curvature atatex as a func-
tion of one joint angle, for the muscle mesh. The vertex shewreione with highest variance
in principal curvature k during training. The quadratic model is more suitable thasi@aple
linear model, while a cubic model is more appropriate for tleeidatives of curvature compo-
nents.Top right: Comparison of principal curvatures produced by the methddusinkiewicz
[2004], as compared to those produced by our mettgattom right: Comparison of principal
directions. The most significant differences in principabction estimates occur at umbilical
points where the directions are unstable. We also report tinbming times for Rusinkiewicz’s

and our method.

attributes we wish to predict depend only locally on joiniues. For example, the angle of an
elbow affects the skin only within its nearby support arew aot the rest of the body. This is

similar to the locality of weights used in example-basedsikig algorithms (e.g., [97, 149]).

Our method for skeleton-based characters works as follbwst, we gather the training data,
and represent it as described in the next section. We predligature as a function of joint
angles, using a polynomial regression model described ¢tid®e5.4.2. For each vertex, we
determine which joints have a significant influence on theature at the vertex by applying a

statistical test (Section 5.4.3). To simplify the regressive perform dimensionality reduction

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS134

on the curvature attributes of the influenced vertices pet (8ection 5.4.4). Finally, we apply

regression to build the mapping from animation parametecsitvature (Section 5.4.5).

5.4.1 Training

We begin with a set of training poses. These poses may, fongbea correspond to a typical
animated sequence for this character. Following Wang 'stsalale/shear regression [149], we
represent a poseas a vector obones where each bone is parameterized by the associated
joint and its parent joint angles. Each joint is represemtethree Euler rotation angles with
respect to the corresponding axis of rotation in its locairdonate frame. Therefore, each
bone has 6 degrees of freedom. We represent each elemeas @b$6,/2), wheref is a joint
angle. This representation is motivated by the fact thatliberete mean curvature at an edge
depends on the cosine of half of the dihedral angle [109],thus these values were found to

be better for predicting curvature.

For each training pose we compute the corresponding surface attribytesNote that some
vertices can be treated as rigid, such as vertices with heitjloods influenced only by one
bone. We detect vertices with curvature variation less tha#o of the maximum curvature
variation in the data. These vertices are treated as havimgfant curvature and removed from
the learning process. In the Mr. Fit model (Figure 5.7), @296 of the vertices are treated as

rigid.

5.4.2 Regression model

In order to select an appropriate regression model, we bratider the case of a character with
only a single joint. As shown in Figure 5.4, we find that theveture at the vertices around a

joint can be approximated very well by a quadratic functiémthe joint angle, while a cubic

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS135

Figure 5.5: Left: Typical smooth skinning weights for an elbow joirRight: Curvature

attribute weights (wy) from the elbow joint as determined by our method. Note thaefe
curvatures require input from this joint; additionally,ahdistribution of weights is noticeably
different from the skinning weights. We observed that btenthe curvatures with skinning
weights between different joints resulted in significant esri@nd lower runtime speed. With
our weighting scheme, the weights of the joints on the cureasfivertices were distributed

more appropriately.

is sufficient for derivative of curvature. We found that regtorder models (such as B-splines)
are more powerful than necessary for articulated data,régquering more storage and running

time for the same-quality results while also exhibiting pya@eneralization.
Hence, we will perform regression with the model
y=Ve(x) (5.2)
whereV is a matrix of regression weights. For surface curvaturesyse quadratic features:
O(X) = [1, X, ..., XK, X5, . X2] T (5.3)
while, for derivatives of curvature, we use cubic features:
O(X) = [1,X1, o0, X, X8, X2 0, X T (5.4)

whereK is the total number of joint angles. We omit the bilinear texw; for i # j and other

higher-order terms, as we have found that these lead to \gerseralization, due to overfitting.

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS136

5.4.3 Determining which joints influence curvature at each vertex

In general, the curvature attributes at a vertex can betafldry more than one joint, namely, all
joints with nonzero skinning weight at that vertex. Jointdwnonzero weights at neighboring
vertices can also affect curvature. However, the curvatareoften be predicted using only a
subset of these joints. In order to reduce the model size g@d to determine a subset of joints
to be used for regression at each vertex. That is, we find thesjwhich have a significant
effect on the curvature at vertex This is a feature selection problem that can be treated with
the boosting for regression technique that was discuss8dation 2.4.3. However, we used a
much simpler technique, because the number of joints taegsois very small (compared to the
high-dimensional spaces we had in the case of learningespaperties for line illustrations in
the previous chapter), and the regression model to be l@&met that complex. The technique
we used is a statistical test that is applied at each verteais.SEatistical test is performed based
on prediction of mean curvature= (ki +kz)/2. The joints selected to influence each vertex

based on mean curvature will be used for all other curvatitrbates.

Specifically, for each vertex, we fit the mean curvature \v@foe each training poseby least-

squares regression, minimizing:
Erue = |lki—a’ @(x")|? (55)
|

WherexiM are theK elements (joint angles) of; that influence vertex (as determined by
the skinning weights)g is a quadratic feature vector (Equation 5.3), arate the regression
weights. Then this regression is repeated using only iddadijoints as inputs (as in Section
5.4.2). Regression on joirt (i.e., using the six elements of its angles and its parenmit joi
angles as the inputév]) gives another residuddj. An F-test [150] is then applied to determine
whether to keep the joint’s influence: this test simply deiees whether including a joint

makes a significant improvement to the residual. SpecijichléF statistic is:

(Ej —EruLL)/(93-6)

F=
ErucL/(N—9J)

(5.6)

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS137

Ground Truth 95% of variance 90% of variance zero-order

0.8MB, 1.4ms 0.5MB, 1.1ms 0.2MB, 0.01ms

Figure 5.6: Ridges and Valleys for muscle dataset with respect to deiagasariance cap-
tured by the basis. Ridges and Valleys based on ground twrtrature data is on the left. A
zero-order prediction based only on the mean of the cureadiata is also depicted on the right
for comparison. A reasonable choice that balances the t@ftlbetween speed and accuracy
is selecting the number of components based on 95% of theneari The size of the model

and running times per frame are also shown.

whereJ is the number of joints for this vertex with non-zero skirgweights anoN is the
number of training poses. The corresponding joint will therkept for the regression forif

F is greater than the critical value for tRedistribution forp > 0.05.

This test is repeated for all joints with nonzero skinningghs at this vertex; those that pass
the test are deemed as influencing this vertex. If all thegdail the F-test, then the one with
smallest residuak; is kept. In practice, we observe that two joints are sufficien most
vertices in most cases. Although it is possible that a joira lbone will affect the curvature at
a vertex for which it has zero skinning weight, smoothnegh@g&kinning weights implies that
the effect of the bone is negligible. In our experimentss 8iatistical test typically halves the
size of the learned model and speeds up run-time curvatedkgiion by 150-200%. We also
experimented with boosting for regression to select theatutif joints that influence curvature

at each vertex; it had similar performance in both resultsexecution time.

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS138

5.4.4 Dimensionality reduction

Due to the large number of vertices, directly learning th@piag to all the curvature attributes
per vertex would require estimating and storing an impcattiumber of weights. Instead, we
exploit the spatial coherence of the curvature attributes@erform regression on a reduced-
dimensional model, as described below. The following pseds performed eight times, once

for each curvature attribute.

For each jointj, we define a vectoy!l) consisting of the values of the curvature attribute to be
predicted from this joint. One such vectyq(tj) is computed for each posen the training set
and contains the attribute to be predicted (é4)., Because this vectgt!) is high-dimensional
(its dimensionality is equal to the number of vertices inficed by the joint), we apply ICA to

the training data to obtain a reduced representation:
yW =wWiz+y (5.7)

All terms on the right-hand side are determined by the Fasé@@rithm [56]. We keep the
first D independent bases, whdbds set to the number of the eigenvalues required to capture
95% of the variance o¥W. This threshold is selected empirically to balance theevaff

between speed and accuracy (Figure 5.6).

5.4.5 Regression

We use least-squares regression to map from the animatiampégers to their corresponding
valuesz in the low-dimensional space of curvature attributes. Bigatly, we solve for the

weightsV that minimize

M (i
> llz — Vo047 (5.8)

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS139

Ground Truth 100 training frames50 training frames 25 tregrirames 20 training frames

Figure 5.7: Suggestive contours for Mr. Fit dataset with respect to thealber of training
examples. Suggestive contours based on ground truth cuwevdiita are on the left. Our

system can accurately synthesize surface curvatures admg training examples.

wherex() are the six elements afthat depend on joint. Each joint now provides a separate

predictor of the curvature at a particular vertex.e.,
B (x) = W3V (V) +yy (5.9)

where the subscriptindexes rows specific to that vertex. The predigtgr(X) can be viewed

as an estimate of,. (Note that each joini will have its ownW andV matrices).

We create the final predictor @ by linearly combining these predictors in a manner similar

to boosting [11].

J
Z Wi Wy j (X (5.10)

whereJ is the number of joints with nonzero influence on this vertexdetermined in Section
5.4.3). One option for determining the weightsis by least-squares fitting. However, we
have obtained better results by weighting the predictoceraling to their fit to the training

data. Specifically, let; = 5;(yiv — % j(X))? be the residual of thg-th predictor. Then, we

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS140

o

b
o
S

W
w

N
¢

[N
SIS I SRS SRR ¢ S S R S|
T T T

% misclassified faces
% misclassified faces

o

A= ;N
T

I I L L
82 84 96 98 100

N
=1
=3
o2
ot
=

L I I
20 50 100 00 350

o

0

15 0 250 3 88 20 92 94
Number of Training Examples (Mr Fit) % variance of curvature data captured by basis

Figure 5.8: Left: Plot of % misclassified faces for the suggestive contour drgsvior the
Mr. Fit test sequences versus number of training examphesritimber of ICA components
is chosen to correspond with the 95% of the variance of theaturg data). More precisely,
we compute the percentage of mesh faces that are not iderdgidédving or not having a
suggestive contour. Note that the test error is smoothlyesesing and is relatively small even
for a small number of training examples. The minimal amodrtaoning data is 19 training
poses for character animation sequences since there arestt®'DOFs and the feature vector
is cubic for derivatives of curvaturdight: Plot of % misclassified faces for ridge and valley
drawings for the muscle dataset versus the variance of theature data captured by our

basis. The zero-order prediction had an error of 6.25%.

set the weight for predictoy proportional to the sum of the residuals for all other preati,
normalized to sum to 1:

r
Wiy = BEPLC LI (5.11)

(F-1) Srark
whereJ is the number of predictors. This can be thought of as sindahe linear blend

skinning process, but averaging target curvatures ratteer target poses. We visualize our

resulting weights in Figure 5.5.

5.4.6 Run-time evaluation

During run-time, given a new pose the curvature attributes for each vertex are computed by

applying Equation 5.10. Curvature prediction is visualizeBigure 5.4. We also provide error

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS141

03 T
* curvature samples
~ 0.2- —linear model approximation 7
‘s quadratic model approximati
£ 01
o
§ 0
£
8 -01
3
=z -02-
2
i 03
04 . , . . .
-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
First ICA component of animation state vector
5 >
5 % S
025 ‘ - ; ; ‘ fg‘f’ ot I
o « deriv. of curvature samples g ;?'3?2(st & i
& 020 ’A’" —quadratic model approximation| | ki* RIS ,\,,)y(R
3 i cubic model approximation 28577, W)QS& Chxy
5 015 LN g 3
5 i % E3) AR R el
g5 04F B XX Xy
S A Y O REEE
g R RS e
£ 2 % TIX XX
g 009 .,a' ; I Xﬁxf&‘ 3
A/ S ¥ Hikex N SRR
s o AL A v e, FF R SGaTRes
iL -0.05() Yy FAaan
E3nas
01 L L L paEa
-0.03 -0.02 0.01 0.02 0.03 0.04 0.05

-0.01 .
First ICA component of animation state vector

Ground truth (91 ms) Our prediction (1.7 ms)

Figure 5.9: Left: Typical plots of the first ICA component of curvature and denxes of
curvature data for a cloth simulation with respect to the fIGA component of the animation
state vector. A quadratic and a cubic model are more appedprior fitting curvatures and
derivatives of curvatures respectivelpp right: Comparison of principal curvatures produced
by the method of Rusinkiewicz [2004] and smoothed, as comparthose producedottom

right: Comparison of principal directions. We also report runningés for both methods.

analysis with respect to the number of ICA components and euwittraining examples used
in Figure 5.7. Example skeleton-based renderings are showigures 3.1, 5.2, 5.3, 5.6, 5.7,
5.16 and in the accompanying video. We also show examplesrarglization of our method

to novel animation sequences in the accompanying video.

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS142

5.5 Cloth simulation

To learn curvatures for cloth simulation, we begin with aimaated cloth sequende;, ..,Su)

as training data. Our goal is to be able to compute curvayui@sa new cloth shapg Because

no low-dimensional state vector is provided for the clotle, apply dimensionality reduction
to the animation state to obtain one. We will learn a mappiamfthis low-dimensional space
derived from the current cloth shap€Section 5.5.1) to the low-dimensional space of surface

curvatures (Section 5.5.2).

5.5.1 Dimensionality reduction for cloth state

We apply ICA to the 3D cloth shapds;} to obtain animation parametefs;} such thats =

Ax +s[11, 61]. For this step, we represent the cloth stiteterms of dihedral angles. For
example, we typically find that 50 basis vectors are suffidienepresent 95% of the variation
for the horse cloth with 10K vertices (and thus 20K dihedrajlas) providing a good trade-off

between speed and prediction accuracy.

In addition, ICA is applied to curvature data to obtain a retliepresentation as well:

y=Wz+Vy (5.12)

5.5.2 Regression

As for articulated characters, we use least-squares grewith quadratic features to map
from the low-dimensional animation stat¢o the corresponding low-dimensional surface cur-

vaturesz. More specifically, we estimate weigh¥sto minimize:

M
3 llz ~Vo(x)|l* (5.13)

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS143

Ground Truth ICA 95% PCA 95% PCA99% zero-order prediction
4.0MB,1.5ms 4.0MB,1.5ms 7.1MB,2.9ms 0.1MB,0.01ms

Figure 5.10: Suggestive contours for a novel frame of cloth with respethéobasis used
corresponding to the given variancé&rom left to right: We show results for ground truth,
ICA with number of base vectors corresponding to 95% of theamag of the curvature data,
PCA capturing 95% of the variance and zero-order predictidiime sparsity and locality of
ICA, as depicted in Figure 2.6, offers better line drawing fesuEven if the number of basis
is increased for PCA (99% correspond to three times more cgits), the result does not

improve much.

Ground 500 training 250 training 175 training 100 training

Truth frames frames frames frames

Figure 5.11: Apparent ridges for a novel frame of cloth with respect to thmher of training

examples.

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS144

% misclassified faces
% misclassified faces

2 - T2t

| | | | | | | ! |
00 100200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000 90 75 80 85 90 95 100
Number of Training Examples (Curtain) % variance of curvature data captured by basis (Curtain)

Figure 5.12: Left: Plot of % misclassified faces for apparent ridges drawing Fa turtain
test sequence versus number of training examples (the mwhb@A components is chosen
to correspond the 95% of the variance of the curvature daktag minimal amount of training
data is 97 training poses for character animation sequersiese the dimensionality of the
animation state vector is 32 and the feature vector is cubiaerivatives of curvature (the
minimal amount of training data depends on the dimensitnafithe reduced animation state
vector deduced in the first step. Typically, for keeping 95%he animated geometry, this
varies from 30 to 100 in our examplesRight: Plot of % misclassified faces for apparent
ridges drawing for the same dataset versus variance of curgadata captured by the basis

for curvature. The zero-order prediction had error 20.58%.

5.5.3 Run-time evaluation

Given a new cloth shapg generating curvatures requires the following steps.t,Rine dihe-
dral angles are projected to the ICA subspace to obtain thallowensional state. Then, the

new curvatureg* are predicted for the vertices of the cloth as:

y' = f(xX) =WV e@((X)+y (5.14)

Example cloth renderings using our method are shown in Eg8rl, 5.2, 5.3 and in the ac-
companying video. In Figure 5.10 and 5.11, we also provider@nalysis as a function of the
number of independent bases and the number of training dgaraped respectively. Given

training data covering a range of motions, our model calpsglict the curvature when the pa-

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS145

rameters of the dynamics (e.g., an air field or a turbulen&® ft@ntrolling the cloth animation

change. We show the generalization of our method in the apaaying video.

5.6 Blend-shape facial animation

In the case of blend-shape facial animation, we assume vgaam@M low-dimensional weight
vectorsx, each of which can be used to generate a 3D face shiaypblending. For each train-
ing pose, we compute the surface curvature attribytéilike with skeleton-based characters
and cloth, in the case of facial animation, we did not find gpdéntinear relationship between
the blending parameters and the curvature attributesi(&a3). We employ Artificial Neural

Network (ANN) regression to fit this nonlinear map.

5.6.1 Neural Network Regression

As before, the learning process starts by reducing the tunevalata with ICAy = Wz +,
once for each of the eight curvature attributes. We theroparfANN regression [11] to learn
a nonlinear mapping from the dimensionality-reduced shajmethe dimensionality-reduced
curvaturez; one such regression is performed for each of the ICA coefiisief all the 8
curvature attributes. The ANN for each attribute has thenfor
L

g(x) = /zlwgtanh(b}x +bg) +wo (5.15)
wherelL is the number of neuronsy, andb, areL pairs of weight vectors, andg andbg
are bias terms. The weights are obtained by optimizing th@¥mng regularized least-squares

objective:

L
E(wb) =Y ||z —g(xi)[*+A /Zl(||We||2+ [1b¢[[?) (5.16)

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS146

* curvature samples
~— quadratic model
— cubic model
— Neural Network (K=8)

I |

| .
6 8 10 12 14
Blending Parameter

ICA component of k1

=]
T

'
N
T

ICA component of dk22

— cubic model
— Neural Network (K=16)

)

‘ o deriv. of curvature samples| |

4 I . L
0 2 4 6 8 10 12 14

Blending Parameter i
I
Ground truth Our prediction
(750 ms) (23 ms)

Figure 5.13: Left: Typical plots of the first ICA component of curvature and deries of
curvature for a face animation with respect to one of the bieggarameters. In this case, a
guadratic or a cubic model cannot approximate the data weh.tke other hand, non-linear
regression with ANNs is more appropriate in this case. The nurobaeurons is selected
with cross-validation.Middle: Comparison of principal curvatures produced by the method
of Rusinkiewicz [2004] and smoothed, as compared to thosadupexrl by our ANNRight:

Comparison of principal directions.

whereA is a smoothing parameter ahds the number of neurons. Optimization is performed
by 5000 iterations of the BFGS algorithm with cubic line séaf00]. The weightsv and
b are initialized by sampling from a uniform distribution ovel/K to 1/K for the elements

of wy (whereK is the number of blending parameters) and ovdyL to 1/L for by. The

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS147

N
o

(=3
T
o
T

% misclassified faces

% misclassified faces
L

N
T

N B O ®
T T T T

| | | | | | | . | |
100 200 300 400 500 600 700 800 900 1000 070 75 80 85 90 95 100
Number of Training Examples (Face) % variance of curvature data captured by basis (Face)

P~}

Figure 5.14: Left: Plot of % misclassified faces for suggestive contours forfdlse test se-
guence versus the number of training examples (the numd&Aotomponents is chosen to
correspond the 95% of the variance of the curvature dafight: Plot of % misclassified
faces for suggestive contour drawings for the same datasstiz¥¢he variance of curvature

data captured by the basis. The zero-order prediction hadraor of 14.85%.

smoothing parameter and the number of neuromsis chosen by cross-validation [11] in a

preprocessing step.

5.6.2 Run-time evaluation

Given a new face with blending parametgrsve compute the surface curvatures as follows:

y' = f(X) =Wg(x)+y (5.17)

We show our curvature synthesis results in Figure 5.3 anteimtcompanying video.

5.7 Stylization

Our default rendering style entails detecting surface esifguch as contours and suggestive
contours) defined as zero-sets [22, 52]. Each mesh facesdilde segment, which is rendered
in OpenGL. The curvatures generated by our method can alssdukfor stroke stylization:

following Goodwinet al. [43], we make line thicknes$ a function of deptte and radial

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS148

curvaturex,: T =clamp(c/(z(k; +¢€))), wherec ande are user-defined constants, and clamp

clamps the thickness to a user-defined range.

Additional stylization effects are possible by chainingvas on the surface; we modify the
method of randomized contour detection of Markosgdral. [94] for zero-set contours and
suggestive contours. For each frame, the algorithm itei@ter every face in the mesh. When
a face is detected that contains a contour or suggestiveuwofrepresented as a line segment),
the algorithm “walks” along the mesh, following the contouisuggestive contour until it ends
or loops. This walking is performed in two directions frone tstarting face. This produces a
chain of line segments (one for each face). Visibility focle@oint on the chain is computed
using a reference ID image, and visible portions of chaiesr@ndered with textured triangle

strips [101].

Plain Stylization Stroke Texturing

Figure 5.15: Regular curvature-modulated stylizatioteff) and textured chained-strokes

(right), using apparent ridges and valleys.

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS149

Figure 5.16: More textured chained-strokes for Master Pai dataset,giajpparent ridges and

suggestive contours.

5.8 Results

We test our method on ten datasets, including skeletordbasaracters, cloth and facial an-
imation (Figures 3.1, 5.2 and 5.3 and the accompanying Yid€arrvatures computed with
our method have very low error (Figure 5.3, 5.8, 5.12, 5.243ual differences between our
curvatures and ground truth are negligible (Figures 5%ahd 5.13); differences in final line
drawings are also negligible. As ground truth, we used Rimivikz’'s method plus curvature

smoothing when necessary [115] and Kalogerakial.s method [72].

As a baseline comparison, we compare with the performanBaisihkiewicz’'s method that is
efficient and can fully compute both curvatures and dexeatiof-curvature for line drawings.
Our curvature calculation at runtime is about 10 times fatsten this method. However, this
comparison is somewhat misleading: in order to generat@gnand more temporally coher-
ent line drawings for many datasets, a few rounds of cureatund derivatives of curvature
smoothing are required based on vector field diffusion [28d implemented in the trimesh2
library [116]) or robust statistical estimates [72]. Theperations add significantly to run-time
computation. Simple mesh smoothing can be done in advarnn&ilminates surface detail and

alters the mesh.

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS150

Thus, our method is approximately 10 times faster than Riesiméz’s method (e.g., for
smooth and regularly sampled meshes), but in most casesalitout 20-50 times faster than
performing all the necessary smoothing or optimizatiopster high-quality smooth and tem-

porally coherent line drawings. More specifically, in ouperments, we smoothed the deriva-

Dataset Number of| Rusinkiwicz’s | plus smoothing Our Model
name Vertices | method (ms)| /optimization | Method (ms)| size (MB
Mr. Fit 20536 81 240 7.9 10.72
Master Pai 11850 29 87 3.2 5.21
Muscle 5256 20 105 1.4 0.8
Hand 9284 25 227 2.6 4.05
Angela 25462 119 930 14 26.07
Curtain 2401 16 91 1.7 4.2
Flag 3285 19 101 2.5 5.0
Horse cloth 7921 41 529 5.0 11.9
Draping cloth 3969 26 124 2.8 4.8
Face 40767 207 750 23 32.66

Table 5.1: Running times (in sec) for curvature estimation with our radtffifth column)
compared to an explicit re-estimation with Rusinkiewicz’'shoé (third column) and explicit
re-estimation with Rusinkiewicz’s method plus the necessamature smoothing or Kaloger-
akiset al’s optimization technique (fourth column). Note that smaott plausible line draw-
ings require curvature smoothing in many cases that canagidsformed in advance. In both
cases, we exclude the vertices whose curvatures do not cheymgigcantly (less than 1% of
maximum variance). Timings are captured on a 2GHz Intel Cane Brocessor (no paral-
lelization is used for any of the above methods). We alsortéipe size of our learned model

(last column).

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS151

tives of curvature for Mr. Fit, Master Pai and face using vedield diffusion. We smoothed
the curvatures for the muscle, draping, curtain, and flagsgdas. We used Kalogeralgsal.'s
method to robustly compute the curvatures and their déresfor the Angela, hand and horse
cloth datasets that seemed to be more noisy. We presenngutinies for our method ver-
sus Rusinkiewicz’s method and the total curvature re-esitbmaime including the necessary

curvature smoothing in Table 5.1.

An alternative is to precompute curvatures for all frames store them, for cases where gen-
eralization to new frames is not necessary. However, thigldvbe prohibitively expensive;
e.g., storing all curvatures for the Mr. Fit dataset (50Kefaand 2000 frames) would require
about 1 Gb of storage, whereas our method requires 10.7 Mim&aime. Nearest-neighbor
interpolation of curvature values based e.g., on a regutainpled grid of examples would
also need orders-of-magnitude larger storage (at leasv®)@han our technique and with no
generalization capability to novel poses. Note that sutdrpolation requires an exponential
amount of storage with respect to the number of DOFs and wauittkly result in huge model

representations when many DOFs are present.

For the case of cloth, approximately 30% of the time is sparthe projection to the ICA basis
for the cloth shape. Then, 65% of the time is spent on the ICArogection of curvatures.
The remainder is used for the model regression and the fegpian of principal directions to
the global coordinate system. For face and skeleton-basm@cters, about 90% of the time
is spent on the ICA re-projection of curvatures and the redwims used by the rest of the

operations.

CHAPTERS. DATA-DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCERS152

5.9 Summary, Limitations and Future work

We have presented a method for learning mappings from almmparameters to target at-
tributes of deformable shapes, when these attributes arela®d to the animation of the
shape. Here, we focused in the case of surface curvaturehvilais several applications to
NPR. Curvature is a fundamental component of digital geonyatogessing, hence, we be-
lieve many previously off-line technigues—such as realetihatching with smoothed direc-
tions [52], exaggerated shading [117], apparent relie7[1durvature-domain shape process-

ing [27], and dynamic model simplification [49]—can be madali#time for dynamic geome-

try.

The major limitation of our approach is the need for traindada and a preprocessing step,
along with storage space for the learned mappings. Thigisdlywith many real-time ren-
dering applications that are based on offline precompuitatieps [131, 61]. The most crucial
goals in such approaches are efficiency during runtime angpaotness of the model, which

are fully achieved by our method.

Another important limitation of our approach is that the aoentioned learning method can
be applied when the target attributes are spatially and ¢eaflg coherent with respect to
the animation parameters. The generalization capabildfeour method to novel animation
sequences also rely on the training data; i.e., the traidatg should be sufficient to cover
a range of motions based on the analysis and examples weadpdoin this chapter. If the

testing data cover completely different ranges of motibantour method will not generalize.
For example, if an elbow joint is not active during the tragpisequence, our method will
not predict the curvatures around this joint for animatiegugences where this joint is active;
our method will not generalize from a cloth falling onto alealo a flag animation. This

dependence on the training data is typical of data-drivethaus [61, 149].

Chapter 6

Conclusion and Future Work

This thesis introduced machine learning algorithms fomgetoy processing by example. Us-
ing machine learning, | tackled two types of problems. Firproposed algorithms for learn-
ing complex functions of shape involving several differgabmetric or/and appearance-based
features. These functions map to target properties on wiacth geometry processing tasks
depend, such as shape segmentation and line illustratibine.parameters of the functions
are learned automatically using boosting learning tealescand Conditional Random Fields
based on the provided training examples. The estimatedygdeas incorporate several aspects
of the user’s style and preferences for the task. The leanuetkls can apply to large databases
of shapes repetitively, without needing to perform any name-tuning. As a result, several
significant improvements are achieved over the stateefthtechniques; in many cases, the

algorithms produce results of comparable quality of thaselpced of humans.

Second, | proposed algorithms for learning functions ofpghftom animation parameters.
These function map to target shape attributes, that need tmimputed efficiently for real-
time geometry processing and rendering tasks. When thegmitdgs are temporally and spa-

tially coherent with respect to the animation parametéresse functions can be learned using

153

CHAPTER6. CONCLUSION AND FUTURE WORK 154

compact models. Then, they can be evaluated very efficientiyng runtime. For the case of
surface curvature, our proposed technique is at least ar-ofedmagnitude faster than state-

of-the-art techniques that re-compute it at each frame géacally.

The proposed learning methods have also their limitatidtisst, they require from the user
to specify a consistent set of training examples. Althouus tepresents some workload for
the user, example-based techniques offer a more automadepadentially natural workflow
which does not requires manual parameter tuning. On the bémal, the user has to provide all
the necessary training examples; this may not be alwaysitdly feasible. In addition, some
design effort is required to come up with a good learning ®@lgm in the first place. In ad-
dition, there are no theoretical guarantees on the genatiain performance of the algorithms
in a deterministic sense. The learning step also usuallyiresjlots of computing power and
time. However, once the models are learned, they can becagplinovel data very efficiently.
There are also specific limitations to each applicationgmes] in this thesis, as mentioned in

Sections 3.6, 4.6, 5.9.

On the other hand, the limitations are not unreasonable andbe easily tolerated by choos-
ing the appropriate strategy for formulating the learninggtem together with the appropriate
learning techniques. For this reason, | presented the glesteps and considerations for de-

veloping learning techniques for geometry processingstasiChapter 2.

There are lots of exciting future work directions for applyimachine learning to geometry
processing problems. First of all, this research could bersled to support learning of func-
tions that map to many other interesting target shape ptieper-or example, automatically
inferring an animation skeleton including its joints anéitdocation as well as the skinning
weights from examples could be an interesting future dmactin addition, inferring the tex-
ture parameters and placement constraints, given an eaemalabase of textured meshes

could be an interesting possibility.

CHAPTER6. CONCLUSION AND FUTURE WORK 155

Another important extension would be to also infer missiagtgin a mesh or in an entire
scene. This could be particularly useful for 3D modelinggeveha learning algorithm could
automatically suggest to the modeler a list of potentiatgptar augment a shape together with
their potential locations. Such approach would furthepmite the 'Modeling by Example’

framework presented in [37].

The vision behind all these techniques for learning fumdiof shape by example is to develop
automated pipelines where the user creates, textures aultanimates a shape, based on pre-
existing training databases of shapes that serve as exafophkarious styles and preferences.
Such pipelines would considerably decrease the user'slaamland facilitate the consistent

processing of large numbers of shapes.

The applications of machine learning may not only be limitedases of learning functions to
target shape properties. Perhaps one of the most chaleggastions in geometry processing
is how to find maps between shapes that best demonstratsithéar structure and semantics.
This is very useful for shape categorization and retrier@yphing, rigging, segmentation,
modeling to name a few applications. For example, in the oaser approach to mesh seg-
mentation and labeling, we assumed that we know the catejding test mesh. Based on this
assumption, we simply applied the CRF model trained from neshie same category. This
can become a severe limitation, especially if we want tollablarge database of shapes of
many different categories. Learning a low-dimensionatespntation of shape descriptors that
would characterize semantically and structurally simslaapes could be an interesting future

work direction.

Hopefully, the ideas of this thesis will help other researshHor developing machine learning

techniques for many other geometry processing problems.

Appendix A

Features used For Learning Mesh

Segmentation and Part Labeling

A.1 Unary Features

For each facéin a mesh, we compute a 65135/%’|-dimensional feature vectay to be used

in the Unary Energy Term (Equation 3.2). Before computing fsatures, we translate the
mesh so that its mass center lies at the origin and we norethkizscale of the mesh according
to the 30th percentile of geodesic distances between all paiertices. The features are as

follows:

a) Curvature featuresCurvatures have been used for partial matching (e.g., [38Yund each
face, we fit cubic patches of various geodesic radii (2% 5%, 10% relative to the median
of all-pairs geodesic distances). The patches are fittedjuke face centers and normals and
every sample is weighted with its face area. keedindk, be the principal curvatures of a patch.
We include the following featuresky, |ki|, ko, |kz|, kikz, |kikz|, (k1 +Kk2)/2, |(k1 +k2)/2|,

k1 — ko, yielding 36 features total.

156

APPENDIXA. FEATURES USEDFORLEARNING MESHSEGMENTATION AND PART LABELING157

b) PCA features:We compute the singular valuess, s, sz of the covariance of local face
centers (weighted by face area), for various geodesic (3#ii10% 20% 30%,50%), and add
the following features for each patchi/(s1+ S+ %), 2/(S1+ S+), S3/(S1+ S+ S3),
(s1+%2)/(s1+%2+%3), (S1+%3)/(S1+%2+%3), (S2458)/(S1+ %2 +S8), S1/%2, S1/S8, S2/Ss,
S1/S2+51/%8: S1/S2+S2/S3, S1/S3+ S2/s3, Yielding 75 features total.

c) Shape diameterThe Shape Diameter Function (SDF) [124] is computed usimgsof
angles 30, 60, 90, 120. For each cone, we get the weightedg®/eanedian, and squared mean
of the samples. We include these shape diameters and tgaitttumized versions with differ-
ent normalizing parameterts=1, a = 2, a = 4, a = 8. This yields 60 features representing

different moments and approximations of the local shapeéiar.

d) Distance from medial surfacdzor each of the cones above, we compute the diameter of
the maximal inscribed sphere touching each face centerrendarresponding medial surface
point is roughly its center [91]. Then we send rays from trespuniformly sampled on a
Gaussian sphere, gather the intersection points and nesiéguray lengths. As with the shape
diameter features, we use the weighted average, mediargaacesl mean of the samples, we
normalize and logarithmize them with the same above nomngliparameters. This yields 60

features.

e) Average Geodesic Distancehe Average Geodesic Distance (AGD) function has been used
for shape matching [53, 157]. The function measures howldied” each face is from the
rest of the surface e.g., limbs have usually higher AGD thiaeroparts in humanoid mod-
els. The AGD for each face is computed by averaging the geodesance from its face
center to all the other face centers. In our case, we alsadmmhe squared mean and the
10h, 20eh, ..., 90th percentile. Then, we normalize each of these 11 statistessures by

subtracting its minimum over all faces.

f) Shape contextsShape contexts have been used for 2D shape matching [10¢aEbrface,

APPENDIXA. FEATURES USEDFORLEARNING MESHSEGMENTATION AND PART LABELING158

we measure the distribution of other faces (weighted by #reia) in 5 logarithmic geodesic
distance and 6 uniform angle bins, where angles are measelegive to the normal of each
face. The geodesic distance bins cover a distance rangeQffianthe 95h percentile of all-

pairs geodesic distances on the mesh and the angle bins @@regle range from 0 to 180

degrees.

g) Spin imagesSpin images [64] are created with a fixed>X.Q0 bin resolution (bin size 0.3),

yielding 100 features.

h) Orientation featuresWe also include the,y,z coordinates of each face center in the case

that the training dataset is oriented.

i) Contextual label featuresThe above features provide a feature veétowhich are used
to learn contextual features, as described in Section .3 P& output of a JointBoost clas-
sifier provides per-face probabiliti€¥c|X). The contextual features are histograms of these

probabilities around each face:

= > aj-P(cj =1) (A.1)

j: Gy <distT,)<y 1

where the binb contains all faceg with distance ranged,,dy1] from facei. The a; is
the area of facg, normalized by the sum of face areas in the mesh. The digdreteveen
faces are measured from shortest parts (thus, approxgngeiodesic distances), as well as the
Principal Component Axes and dominant symmetry axes of thehrfaeasured in absolute
values, since the principal axes are uniquely defined upeio $ign). We usd® = 5 ranges of
distancesdy,dp 1) whered, are chosen in the logarithmic space[@frniax(mjax(dist(i,)]s

yielding 35%’| contextual features.

APPENDIXA. FEATURES USEDFORLEARNING MESHSEGMENTATION AND PART LABELING159

A.2 Pairwise Features

For each pair of adjacent facesnd j, the following 191-dimensional feature vectyy is
computed, for use in the Pairwise Energy Term (Section B.2A/% chose features that are

potentially indicative of boundaries between parts.

a) Dihedral angles: Let wj be the exterior dihedral angle between facaadj. The scalar
feature is given as mi;j /1T, 1). We also compute the average of the dihedral angles around
each edge at geodesic radii 05@0, 1%, 2%, 4% of the median of all-pairs geodesic distances
in the mesh. We then exponentiate each of the above featitftesach exponent in the range

1 to 10. This yields 50 dihedral angle features in total.

b) Curvature and third-order surface derivativesWe first compute the curvature and the
derivative-of-curvature tensor per mesh vertex at geadaslii of 05%, 1%, 2%, 4% of the

median of all-pairs geodesic distances. For each scaleahgde the principal curvatures and
the curvature derivatives along the principal directioinsofder to assign curvature to each

edge, we average the corresponding curvature values driises). This yields 16 features.

b) Shape diameter difference&or each pair of adjacent faces, we include the absolutesalu

of the differences between their corresponding 60 shapeatex features (as described above).

d) Distance from medial surface differenceSimilarly, we include the absolute difference of

the 60 distance-from-medial-surface features betweecadj faces (as described above).

e) Contextual label featuresMe also use pairwise contextual features, as describecciioSe
3.2.3. The above features form an initial feature vegtpr We learn a JointBoost classifier
p(ci # ¢j|Vij), and then bin them, as with the unary contextual featurese,Hee bin them
based only on geodesic distances in logarithmic space upot@fbthe median of all-pairs

geodesic distances in the mesh. This yields 5 pairwise xtakfeatures in total.

Appendix B

Properties and Features used For

Learning Pen-And-Ink lllustrations

B.1 Image Preprocessing

Given an input illustration drawn by an artist, we apply tb#dwing steps to determine the
hatching properties for each stroke pixel. First, we scaniltbstration and align it to the
rendering automatically by matching borders with bruteéosearch. The following steps are

sufficiently accurate to provide training data for our altfons.

Intensity: The intensityl; is set to the grayscale intensity of the pixalf the drawing. It is
normalized within the rang®, 1].

Thickness: Thinning is first applied to identify a single-pixel-wideedkton for the drawing.
Then, from each skeletal pixel, a Breadth-First Search (B&ggiformed to find the nearest
pixel in the source image with intensity less than half of skeet pixel. The distance to this
pixel is the stroke thickness.

Orientation: The structure tensor of the local image neighborhood is cihetpat the scale

160

APPENDIXB. PROPERTIES ANDFEATURES USEDFORLEARNING PEN-AND-INK ILLUSTRATIONS161

of the previously-computed thickness of the stroke. Theidant orientation in this neighbor-
hood is given by the eigenvector corresponding to the sstadigenvalue of the structure ten-
sor. Intersection points are also detected, so that thepeamitted from orientation learning.
Our algorithm marks as intersection points those pointealetl by a Harris corner detector
in both the original drawing and the skeleton image. Finafyorder to remove spurious in-
tersection points, pairs of intersection points are fouitti distance less than the local stroke
thickness, and their centroid is marked as an interseatistead.

Spacing: For each skeletal pixel, a circular region is grown arouredgixel. At each radius
size, the connected components of the region are compuitdeast 3 pixels in the region are
not connected to the center pixel, with orientation withif6 of the center pixel’s orientation,
then the process halts. The spacing at the center pixel is & final radius.

Length: A BFS is executed on the skeletal pixels to count the numbeixefgpper stroke. In
order to follow a single stroke (excluding pixels from owgaping cross-hatching strokes), at
each BFS expansion, pixels are considered inside the cumeggttborhood with similar orien-
tation (at mostt/12 angular difference from the current pixel’s orienta}ion

Hatching Level: For each stroke pixel, an ellipsoidal mask is created walsémi-minor axis
aligned to the extracted orientation, and major radius kguts spacing. All pixels belonging
to any of these masks are given labgk= 1. For each intersection pixel, a circular mask is also
created around it with radius equal to its spacing. All cateeé components are computed
from the union of these masks. If any connected componertaic@more than 4 intersection
pixels, the pixels of the component are assigned with Iebel 2. Two horizontal and vertical
strokes give rise to a minimum cross-hatching region (withtdrsections).

Hatching region boundaries: Pixels are marked as boundaries if they belong to boundaries

of the hatching regions or if they are endpoints of the skeleff the drawing.

We perform a final smoothing step (with a Gaussian kernel dfiwequal to the median of the

spacing values) to denoise the properties.

APPENDIXB. PROPERTIES ANDFEATURES USEDFORLEARNING PEN-AND-INK ILLUSTRATIONS162

B.2 Scalar features

There are 1204 scalar featuréss 179 for learning the scalar properties of the drawing. The
first 90 are mean curvature, gaussian curvature, maximunmamchum principal curvatures
by sign and absolute value, derivatives of curvature, tadievature and its derivative, view-
dependent minimum and maximum curvatures [66], geodessioin the projected viewing
direction [23]. These are measured in three scales (1%, 2%orefative to the median of
all-pairs geodesic distances in the mesh) for each vertexaMo include their absolute val-
ues, since some hatching properties may be insensitivggito Sihe above features are first

computed in object-space and then, projected to imagesspac

The next 110 features are based on local shape descrigswsised in [69] for labeling parts.
We compute the singular valuss s, s3 of the covariance of vertices inside patches of various
geodesic radii (5%, 10%, 20%) around each vertex, and alddredfollowing features for
each patchis;/(s1+ S+ %), S/(S1+ S+ %), SB/(S1+S+ %), (S1+%)/(S1+2+3),
(s1+83)/(S1+S2+S8), (S2+S8)/(S1+S2+3), S1/S2, S1/S8, S2/S8, S1/S2+51/S8, S1/S2+ S/ S,
S1/s3+ S/ss, yielding 45 features total. We also include 24 featuresedasn the Shape
Diameter Function (SDF) [124] and distance from medialazef[91]. The SDF features are
computed using cones of angles 60, 90, and 120 per vertexaebrcone, we get the weighted
average of the samples and their logarithmized versiorsdifterent normalizing parameters
a =1 a=2, a=4. For each of the cones above, we also compute the distarmedl
surface from each vertex. We measure the diameter of thenmadiascribed sphere touching
each vertex. The corresponding medial surface point wilidogyhly its center. Then we send
rays from this point uniformly sampled on a Gaussian splgaer the intersection points and
measure the ray lengths. As with the shape diameter featueasse the weighted average of
the samples, we normalize and logarithmize them with theesstiove normalizing parameters.
In addition, we use the average, squared meath, 20th, ...,90th percentile of the geodesic

distances of each vertex to all the other mesh verticediyigll1 features. Finally, we use 30

APPENDIXB. PROPERTIES ANDFEATURES USEDFORLEARNING PEN-AND-INK ILLUSTRATIONS163

shape context features [10], based on the implementati@odf All the above features are

first computed in object-space per vertex and then, prajecténage-space.

The next 53 features are based on functions of the renderenbfat in image space. We
use maximum and minimum image curvature, image intensity,image gradient magnitude
features, computed with derivative-of-gaussian kernéls w= 1,2, 3,5, yielding 16 features.
The next 12 features are based on shading under differerglmad: N, L - N (both clamped
at zero), ambient occlusion, wheve L, andN are the view, light, and normal vectors at a
point. These are also smoothed with gaussian kernets-efl,2,3,5. We also include the
corresponding gradient magnitude, the maximum and minirourgature ofV - N andL - N

features, yielding 24 more features. We finally include taptt value for each pixel.

We finally include the per pixel intensity of occluding andjgestive contours, ridges, valleys
and apparent ridges extracted by the rtsc software paclad@®. [We use 4 different thresh-
olds for extracting each feature line (the rtsc threshotdschosen from the logarithmic space
[0.001, 0.1] for suggestive contours and valleys §0d1,0.1] for ridges and apparent ridges).
We also produce dilated versions of these features line®byotving their image with gaus-

sian kernels witho = 5,10, 20, yielding in total 48 features.

Finally, we also include all the above 301 features withrtpewers of 2 (quadratic features),
—1 (inverse features); 2 (inverse quadratic features), yielding 1204 featurestalt For the
inverse features, we prevent divisions by zero, by trungatiear-zero values toet 6 (or
—le— 6 if they are negative). Using these transformations on ¢a¢ufes yielded slightly

better results for our predictions.

APPENDIXB. PROPERTIES ANDFEATURES USEDFORLEARNING PEN-AND-INK ILLUSTRATIONS164

B.3 Orientation features

There are 70 orientation feature® for learning the hatching and cross-hatching orientation
Each orientation feature is a direction in image-spacesntation features that begin as 3D
vectors are projected to 2D. The first six features are basesludace principal curvature
directions computed at 3 scales as above. Then, the nexeainrés are based on surface
local PCA axes projected on the tangent plane of each vertegsponding to the two larger
singular values of the covariance of multi-scale surfacgshes computed as above. Note
that the local PCA axes correspond to candidate local plamametry axes [128]. The next
features aret. x N andV x N. The above orientation fields are undefined at some poings (ne
umbilic points for curvature directions, near planar andesgal patches for the PCA axes,
and neat. -N =0 anadV - N = 0 for the rest). Hence, we use globally-smoothed directased
on the technique of [52]. Next, we includle and vector irradiancg [4]. The next 3 features
are vector fields aligned with the occluding and suggestweaurs (given the view direction),
ridges and valleys of the mesh. The next 16 features are hsp@ee gradients of the following
scalar featurest(V - N), O(L - N), ambient occlusion and image intensify computed at 4
scales as above. The remaining orientation features armdirdagtions of the first 35 features

rotated by 90 degrees in the image-space.

Bibliography

[1] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar liteas, David Levin, and
Claudio T. Silva. Point set surfaces. YiS '01: Proceedings of the conference on

Visualization '01 2001.

[2] Marc Alexa and Wolfgang Muller. Representing animatidaysprincipal components.

In Eurographics 2000.

[3] Dragomir Anguelov, Ben Taskar, Vassil Chatalbashev, DapKoller, Dinkar Gupta,
Geremy Heitz, and Andrew Ng. Discriminative Learning of lMar Random Fields for

Segmentation of 3D Scan Data. @VPR 2005.

[4] James Arvo. Applications of irradiance tensors to thawation of non-lambertian

phenomena. IiProc. SIGGRAPHpages 335-342, New York, NY, USA, 1995. ACM.

[5] M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuofa A. Tal. Mesh Segmenta-
tion - A Comparative Study. IRroc. SM| 2006.

[6] Marco Attene, Bianca Falcidieno, and Michela Spagnublierarchical Mesh Segmen-

tation Based on Fitting Primitives/is. Comput.22(3), 2006.

[7] M. Bartlett, J. Movellan, and T. Sejnowski. Face recogmty independent component

analysis.IEEE Transations on Neural Networkk3(6):1450-1464, 2002.

165

BIBLIOGRAPHY 166

[8] M. Belkin and P. Niyogi. Laplacian eigenmaps and spedtehniques for embedding
and clustering. InPAdvances in Neural Information Processing Systewatume 14,

pages 585-591, 2002.

[9] Anthony J. Bell and Terrence J. Sejnowski. The indepehdemponents of natural

scenes are edge filtergision Researc37:3327-3338, 1997.

[10] S. Belongie, J. Malik, and J. Puzicha. Shape Matching@bpgtct Recognition Using
Shape ContextdEEE Trans. Pattern Anal. Mach. IntelR4(4), 2002.

[11] Christopher M. Bishop.Pattern Recognition and Machine Learnin&pringer-Verlag

New York, Inc., Secaucus, NJ, USA, 2006.

[12] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast Approzai® Energy Minimization
via Graph CutslEEE Trans. Pattern Anal. Mach. Intel23(11), 2001.

[13] Leo Breiman. Random forestMach. Learn, 45(1), 2001.

[14] Yong Cao, Petros Faloutsos, andceéric Pighin. Unsupervised Learning for Speech
Motion Editing. InProceedings of the Symposium on Computer Animation,28Qfes

225-231, 2003.

[15] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Rti@. C. McCallum, and
T. R. Evans. Reconstruction and representation of 3d objettisadial basis functions.

In SIGGRAPH '01 pages 67-76, 2001.

[16] Xiaobai Chen, Aleksey Golovinskiy, and Thomas FunklesusA Benchmark for 3D
Mesh Segmentatio/ACM Trans. Graphics28(3), 2009.

[17] David Cohen-Steiner and Jean-Marie Morvan. Restricidduhay triangulations and
normal cycle. InProceedings of the Symposium on Computational Geometry, 2003

pages 312-321, 2003.

BIBLIOGRAPHY 167

[18] Forrester Cole, Aleksey Golovinskiy, Alex Limpaechdgather Stoddart Barros, Adam
Finkelstein, Thomas Funkhouser, and Szymon Rusinkiewiczerd/Bo People Draw

Lines? ACM Trans. Graph.27(3), 2008.

[19] Dorin Comaniciu and Peter Meer. Mean shift: a robust epph toward feature space
analysis.IEEE Transactions on Pattern Analysis and Machine Inteltige 24(5):603—
619, 2002.

[20] Pierre Comon. Independent component analysis, a nesepd™ Signal Processing

36(3):287-314, 1994.

[21] Doug DeCarlo, Adam Finkelstein, and Szymon Rusinkiewidateractive rendering
of suggestive contours with temporal coherence.Ptaceedings of the International

symposium on Non-photorealistic animation and renderingd2pages 15-24, 2004.

[22] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz] &mthony Santella. Sug-
gestive Contours For Conveying Shap€&M Trans. Graph.22(3), 2003.

[23] Doug DeCarlo and Szymon Rusinkiewicz. Highlight lines émnveying shape. In
NPAR 2007.

[24] Pierre Demartines and Jeanny Herault. Curvilinear comept analysis: A self-
organizing neural network for nonlinear mapping of data d&iEE Trans Neural Netw

1(8), 1997.

[25] Udo Diewald, Tobias Preusser, and Martin Rumpf. Anigpitt diffusion in vector field
visualization on euclidean domains and surfacksEE Transactions on Visualization

and Computer Graphi¢c$(2):139-149, 2000.

[26] Pinar Duygulu, Kobus Barnard, Nando de Freitas, and @&arsyth. Object Recog-

nition as Machine Translation: Learning a Lexicon for a Eixmage Vocabulary. In

BIBLIOGRAPHY 168

Proc. ECCV 2002.

[27] Michael Eigensatz, Robert W. Sumner, and Mark Pauly. &wne-domain shape pro-
cessing.Computer Graphics Forum (Eurographics Proceedings)2):241-250, 2008.

[28] Gershon Elber. Line Art lllustrations of Parametricddmplicit Forms. IEEE TVCG
4(1):71-81, 1998.

[29] Wei-Wen Feng, Byung-Uck Kim, and Yizhou Yu. Real-time alalriven deformation

using kernel canonical correlation analysh&CM Trans. Graph.27(3), 2008.

[30] Martin A. Fischler and Robert C. Bolles. Random sample cosise a paradigm for
model fitting with applications to image analysis and auttedacartography. pages

726-740, 1987.

[31] Shachar Fleishman, Daniel Cohen-Or, andudio T. Silva. Robust moving least-

squares fitting with sharp feature8CM Trans. Graph.24(3), 2005.

[32] Arthur Flexer. Statistical evaluation of neural netwexperiments: Minimum require-

ments and current practice. @ybernetics and Systepmages 1005-1008, 1996.

[33] William T. Freeman, Joshua Tenenbaum, and Egon Paszéarning style translation

for the lines of a drawingACM Trans. Graph.22(1):33-46, 2003.

[34] Yoav Freund and Robert E. Schapire. Experiments withva lm@osting algorithm. In

Thirteenth International Conference on Machine Learnih@96.

[35] J. Friedman, T. Hastie, and R. Tibshirani. Additive Lsigi Regression: a Statistical
View of Boosting.The Annals of Statistic88(2), 2000.

[36] Hongbo Fu, Daniel Cohen-Or, Gideon Dror, and Alla Sheffdpright Orientation of
Man-made ObjectsACM Trans. Graph.27(3), 2008.

BIBLIOGRAPHY 169

[37] Thomas Funkhouser, Michael Kazhdan, Philip Shilaregri€k Min, William Kiefer,
Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. Modgliby example. ACM
Trans. Graph.23(3), 2004.

[38] Ran Gal and Daniel Cohen-Or. Salient Geometric FeatareBdrtial Shape Matching
and Similarity. ACM Trans. Graph.25(1), 2006.

[39] Joao Gama and Pavel Brazdil. Cascade Generalizddach. Learn, 41(3), 2000.

[40] Aleksey Golovinskiy and Thomas Funkhouser. Randomizets for 3D Mesh Analysis.
ACM Trans. on Graph27(5), 2008.

[41] Aleksey Golovinskiy and Thomas Funkhouser. Consissagmentation of 3D Models.
Proc. SM| 33(3), 2009.

[42] Aleksey Golovinskiy, Vladimir G. Kim, and Thomas Furddser. Shape-based Recog-
nition of 3D Point Clouds in Urban Environments. Pnoc. ICCV, 2009.

[43] Todd Goodwin, lan Vollick, and Aaron Hertzmann. Isoph®istance: A Shading
Approach to Artistic Stroke Thickness. Rroc. NPAR pages 53-62, 2007.

[44] Arthur L. Guptill. Rendering in Pen and InkVatson-Guptill, edited by Susan E. Meyer,
1997.

[45] J. Hamel and T. Strothotte. Capturing and Re-Using Resditbtyles for Non-
Photorealistic Renderingcomputer Graphics Foruni8(3):173-182, 1999.

[46] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A.ebtdRobust Statistics:

The Approach Based on Influence Functiovsley-Interscience, 1986.

[47] Trevor Hastie, Robert Tibshirani, and Jerome Friedmahe Elements of Statistical

Learning: Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2009.

BIBLIOGRAPHY 170

[48] Xuming He, R.S. Zemel, and M. A. Carreira-Pé@mm. Multiscale Conditional Random
Fields for Image Labeling. IRroc. CVPRvolume 2, 2004.

[49] Paul S. Heckbert and Michael Garland. Optimal triaagjoh and quadric-based surface

simplification. Computational Geometry Theory and Applicatioh4:49—-65, 1999.

[50] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Briang3s, and David H. Salesin.

Image AnalogiesProc. SIGGRAPH2001.

[51] Aaron Hertzmann, Nuria Oliver, Brian Curless, and Steverseitz. Curve Analogies.

In Proc. EGWR?2002.

[52] Aaron Hertzmann and Denis Zorin. lllustrating smoatinfaces. InProc. SIGGRAPH
pages 517-526, 2000.

[53] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, &&lyasu L. Kunii. Topology
Matching for Fully Automatic Similarity Estimation of 3d 8pes. I'SIGGRAPH?2001.

[54] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimeradity of data with neural
networks.Science313(5786):504-507, July 2006.

[55] Qixing Huang, Martin Wicke, Bart Adams, and Leonidas &ad. Shape Decomposition
Using Modal AnalysisJ. Computer Graphics Forun28, 2009.

[56] A. Hyvarinen. Fast and Robust Fixed-Point Algorithms for IndepemdComponent
Analysis. IEEE Transations on Neural Netwqrk0(3):626—-634, 1999.

[57] A.Hyvarinen and E. Oja. Independent component analysis: ahgaesiand applications.
Neural Networks13(4-5), 2000.

[58] Takeo lgarashi, Satoshi Matsuoka, and Hidehiko Tan#@kaldy: A Sketching Interface
for 3d Freeform Design. I8IGGRAPH 2007.

BIBLIOGRAPHY 171

[59] Victoria Interrante, Henry Fuchs, and Stephen Pizethdhcing Transparent Skin Sur-
faces with Ridge and Valley Lines. Proceedings of the 6th conference on Visualization

1995 pages 52-59, 1995.

[60] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlad,Geoffrey E. Hinton. Adap-

tive mixtures of local expertdNeural Comput.3(1), 1991.

[61] Doug L. James and Kayvon Fatahalian. Precomputingantive dynamic deformable

scenesACM Transactions on Graphic22(3):879-887, 2003.

[62] Doug L. James and Christopher D. Twigg. Skinning mesimations. ACM Transac-
tions on Graphics24(3):399-407, 2005.

[63] Pierre-Marc Jodoin, Emric Epstein, Martin GrangecHej and Victor Ostromoukhov.

Hatching by Example: a Statistical Approach.Aroc. NPAR pages 29-36, 2002.

[64] Andrew Johnson and Martial Hebert. Using Spin Image<fticient Object Recogni-
tion in Cluttered 3D Scene$EEE Trans. PAM|21(5):433-449, 1999.

[65] Michael I. Jordan and Robert A. Jacobs. Hierarchicaltures of experts and the em

algorithm. Neural Comput.6(2), 1994.

[66] Tilke Judd, Fedo Durand, and Edward Adelson. Apparent ridges for linevohig. ACM
Trans. Graph,.26(3), 2007.

[67] Robert Kalnins, Lee Markosian, Barbara Meier, Michael&tski, Joseph Lee, Philip
Davidson, Matthew Webb, John Hughes, and Adam Finkelst®ifi¥ SIWYG NPR:
drawing strokes directly on 3D models. Rioc. SIGGRAPHpages 755-762, 2002.

[68] Evangelos Kalogerakis, Aaron Hertzmann, and KaraglgirLearning 3D Mesh Seg-

mentation and LabelingACM Transactions on Graphigc29(3), 2010.

BIBLIOGRAPHY 172

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

Evangelos Kalogerakis, Aaron Hertzmann, and KaramlsinLearning 3d mesh seg-

mentation and labelingACM Trans. Graph.29(3), 2010.

Evangelos Kalogerakis, Derek Nowrouzezahrai, Pat&mari, James McCrae, Aaron
Hertzmann, and Karan Singh. Data-driven curvature forties line drawing of dy-

namic sceneACM Transactions on Graphic&8(1), 2009.

Evangelos Kalogerakis, Derek Nowrouzezahrai, Pat&mari, and Karan Singh. Ex-
tracting lines of curvature from noisy point cloudsSpecial Issue of the Elsevier
Computer-Aided Design journal on Point-Based Computatideahniques41(4):282—
292, 2009.

Evangelos Kalogerakis, Patricio Simari, Derek Nowaezahrai, and Karan Singh. Ro-
bust statistical estimation of curvature on discretizedases. InProceedings of the

Eurographics/ACM Siggraph Symposium on Geometry Proags2i07.

S. Katz, G. Leifman, and A. Tal. Mesh segmentation ugeajure point and core ex-

traction. Visual Computer21(8), 2005.

Sagi Katz and Ayellet Tal. Hierarchical Mesh Decompiosi Using Fuzzy Clustering

and Cuts ACM Trans. Graphics2003.

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. sBam surface reconstruc-

tion. InProc. SGR pages 61-70, 2006.

SungYe Kim, Insoo Woo, Ross Maciejewski, , and David SefEbAutomated Hedcut

lllustration using Isophotes. IRroc. Smart Graphicgs2010.

Yongjin Kim, Jingyi Yu, Xuan Yu, and Seungyong Lee. Liae lllustration of Dynamic

and Specular SurfaceACM Trans. Graphics2008.

BIBLIOGRAPHY 173

[78] Scott Konishiand A.L. Yuille. Statistical Cues for Dom&pecific Image Segmentation

With Performance Analysi?roc. CVPR 2000.

[79] Vladislav Kraevoy, Dan Julius, and Alla Sheffer. Mo@dmposition From Interchange-

able Components. IRroc. PG 2007.

[80] Paul Kry, Doug James, and Dinesh Pai. Eigenskin: read targe deformation character

skinning in hardware. IiProc. SCApages 153-159, 2002.

[81] Sanjiv Kumar and Martial Hebert. Discriminative Randénelds: A Discriminative

Framework for Contextual Interaction in Classification Pimc. ICC\, 2003.

[82] John D. Lafferty, Andrew McCallum, and Fernando C. N. RareConditional Random
Fields: Probabilistic Models for Segmenting and Labelirgy$&nce Data. [HCML,
2001.

[83] Yu-Kun Lai, Shi-Min Hu, Ralph R. Martin, and Paul L. Rosinagt Mesh Segmentation

Using Random Walks. IACM symposium on Solid and Physical Mode]iRg08.

[84] Guillaume Lavoé and Christian Wolf. Markov Random Fields for Improving 3D Mes

Analysis and segmentation. Eurographics workshop on 3D object retrieydaD08.

[85] Yunjin Lee, Lee Markosian, Seungyong Lee, and John Fhes. Line drawings via

abstracted shadindACM Transactions on Graphic26(3):18, 2007.

[86] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose spafmrdation: a unified ap-
proach to shape interpolation and skeleton-driven defooma In SIGGRAPH 2000
Proceedingspages 165-172, 2000.

[87] Xin Li, Xianfeng Gu, and Hong Qin. Surface matching @gsitonsistent pants decom-

position. INACM Symposium on Solid and Physical Mode|ig08.

BIBLIOGRAPHY 174

[88] E. Lim and David Suter. Conditional Random Field for 3Dmdlouds With Adaptive
Data Reduction. Ii€yberworlds 2007.

[89] Hsueh-Yi Sean Lin, Hong-Yuan Mark Liao, and Ja-Chen LMsual Salience-Guided

Mesh DecompositionlEEE Transactions on Multimedi&(1), 2007.

[90] Rong Liu and Hao Zhang. Segmentation of 3D Meshes Thr@pgttral Clustering. In
Proc. PG 2004.

[91] Rong F. Liu, Hao Zhang, Ariel Shamir, and Daniel Cohen-@rPart-Aware Surface
Metric for Shape Analysis.Computer Graphics Forum, (Eurographics 20028(2),
20009.

[92] Eric B. Lum and Kwan-Liu Ma. Expressive line selection &yample. The Visual

Computer21(8):811-820, 2005.

[93] Alan P. Mangan and Ross T. Whitaker. Partitioning 3D Stefleshes Using Water-
shed SegmentatiohEEE Trans. on Vis. and Comp. Grapb(4), 1999.

[94] Lee Markosian, Michael A. Kowalski, Samuel J. Trychimbomir D. Bourdev, Daniel
Goldstein, and John F. Hughes. Real-Time NonphotoreaRk&idering. I'5IGGRAPH
1997 Proceedinggages 415-420, 1997.

[95] T. Mertens, J. Kautz, J. Chen, P. Bekaert, and F. Duranduii@transfer using geometry

correlation. InProceedings of Eurographics Symposium on Rende#6Q6.

[96] Mark Meyer, Mathieu Desbrun, Peter Soter, and Alan H. Barr. Discrete differential-
geometry operators for triangulated 2-manifoldsViaualization and Mathematics |l

pages 35-57. 2002.

[97] Alex Mohr and Michael Gleicher. Building efficient, agele character skins from

examplesACM Transactions on Graphic22(3):562-568, 2003.

BIBLIOGRAPHY 175

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

Daniel Munoz, Nicolas Vandapel, and Martial Hebertrdational Associative Markov

Network for 3-D Point Cloud Classification. Froc. 3DPVT 2008.

Sreerama K. Murthy. Automatic construction of decasibees from data: A multi-

disciplinary surveyData Min. Knowl. Discov.2(4), 1998.

Jorge Nocedal and Stephen J. Wrigktimerical OptimizationSpringer-Verlag, 1999.

J. D. Northrup and Lee Markosian. Artistic Silhoustté Hybrid Approach. InPro-
ceedings of the International symposium on Non-photorgaasimation and rendering

200Q pages 31-38, 2000.

Derek Nowrouzezahrai, Evangelos Kalogerakis, angelBe Fiume. Shadowing dy-

namic scenes with arbitrary BRDFs. Hurographics 2009 (To Appear2009.

Derek Nowrouzezahrai, Evangelos Kalogerakis, BiatrSimari, and Eugene Fiume.
Shadowed relighting of dynamic geometry with 1d BRDFsEurographics 2008 Pro-
ceedings2008.

Derek Nowrouzezahrai, Patricio Simari, Evangelo$ol§arakis, Karan Singh, and Eu-
gene Fiume. Compact and efficient generation of radianceferafor dynamically

articulated characters. Proceedings of the GRAPHITE 2QQ¥ages 147-154, 2007.

Yutaka Ohtake, Alexander Belyaev, and Hans-PeterebeidRidge-valley lines on
meshes via implicit surface fittingACM Transactions on Graphic23(3):609-612,
2004.

Cengiz Oztireli, Gael Guennebaud, and Markus Grossatufe preserving point set
surfaces based on non-linear kernel regressioruographics 2009pages 493-501,

20009.

BIBLIOGRAPHY 176

[107] Jonathan Palacios and Eugene Zhang. Rotational Sym#ietd Design on Surfaces.
ACM Trans. Graph.2007.

[108] Yuri Pekelny and Craig Gotsman. Articulated Object Restauction and Markerless
Motion Capture from Depth Videal. Computer Graphics Forun27:399-408, 2008.

[109] K. Polthier. Polyhedral surfaces of constant mean curvatuRhD thesis, TU-Berlin,

2002.

[110] Emil Praun, Hugues Hoppe, Matthew Webb, and Adam Hatéim. Real-Time Hatch-
ing. InProc. SIGGRAPH2001.

[111] Lutz Prechelt. A quantitative study of experimentaleations of neural network learn-
ing algorithms: Current research practice. 4th Intl. Conf. on Artificial Neural Net-

works pages 223-227, 1995.

[112] Frank RosenblattThe Perceptron: A Perceiving and Recognizing Automataport
No. 85-460-1, New York: Cornell Aeronautical LaboratoryrdEiedition, first issue,

1957.

[113] Peter J. Rousseeuw. Least median of squares regressimmal of the American Sta-

tistical Association79(388):871-880, 1984.

[114] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimeraditynreduction by locally

linear embeddingScience290(5500):2323 — 2326, 2000.

[115] Szymon Rusinkiewicz. Estimating Curvatures and Thearigatives on Triangle
Meshes. InProceedings of the International Symposium on 3D Data Pasiog, Vi-
sualization and Transmission 200gages 486—493, 2004.

[116] Szymon Rusinkiewicz. Trimesh2 library. http://wwea.grinceton.edu/gfx/proj/trimesh2/,

2007.

BIBLIOGRAPHY 177

[117] Szymon Rusinkiewicz, Michael Burns, and Doug DeCarlo.adfjerated shading for
depicting shape and detafroc. SIGGRAPH25(3):1199-1205, 2006.

[118] Szymon Rusinkiewicz and Doug DeCarlo. rtsc library.

http://www.cs.princeton.edu/gfx/proj/sugcon/, 2007.

[119] Takafumi Saito and Tokiichiro Takahashi. ComprehelesRendering of 3-D Shapes.
In Proc. SIGGRAPHpages 197-206, 1990.

[120] Michael P. Salisbury, Sean E. Anderson, Ronen BarzdIDavid H. Salesin. Interactive
pen-and-ink illustration. ISIGGRAPH '94: Proceedings of the 21st annual conference

on Computer graphics and interactive techniquesges 101-108, 1994.

[121] Mirko Sattler, Ralf Sarlette, and Reinhard Klein. Sim@nd efficient compression
of animation sequences. Proceedings of the 2005 ACM SIGGRAPH/Eurographics
symposium on Computer animatjgrages 209-217, 2005.

[122] Yaar Schnitman, Yaron Caspi, Daniel Cohen-or, and D#suHinski. Inducing Seman-

tic Segmentation From an Example.Pnoc. ACCV 2006.

[123] Ariel Shamir. A Survey on Mesh Segmentation Techngg@®mputer Graphics Forum
26(6), 2008.

[124] Lior Shapira, Shy Shalom, Ariel Shamir, Richard H. Z9aand Daniel Cohen-Or. Con-
textual Part Analogies in 3D Objectdnternational Journal of Computer Visionn

Press.

[125] S. Shlafman, A. Tal, and S. Katz. Metamorphosis of Retiral Surfaces Using Decom-

position. InEurographics 2002.

[126] J. Shotton, M. Johnson, and R. Cipolla. Semantic Textoesits for Image Categoriza-
tion and Segmentation. lroc. CVPR 2008.

BIBLIOGRAPHY 178

[127] Jamie Shotton, John Winn, Carsten Rother, and Antonioi@isi. TextonBoost for
Image Understanding: Multi-Class Object Recognition andn@sdation by Jointly
Modeling Texture, Layout, and Contexnt. J. Comput. Vision81(1), 2009.

[128] Patricio Simari, Evangelos Kalogerakis, and Kararg8i Folding Meshes: Hierarchical

Mesh Segmentation Based on Planar Symmetrs G, 2006.

[129] Patricio Simari, Derek Nowrouzezahrai, Evangelodoiarakis, and Karan Singh.
Multi-objective shape segmentation and labeliromputer Graphics Forum28(5),
20009.

[130] Mayank Singh and Scott Schaefer. Suggestive HatcHm&roc. Computational Aes-
thetics 2010.

[131] Peter-Pike Sloan, Jan Kautz, and John Snyder. PradgechRadiance Transfer for Real-
Time Rendering in Dynamic, Low-Frequency Lighting Enviramis. InProc. SIG-
GRAPH pages 527-536, 2002.

[132] Peter-Pike J. Sloan, Rose Charles F., and Michael F. CoBé&iape by example. In
Proceedings of the 2001 symposium on Interactive 3D grappages 135-143, 2001.

[133] Olga Sorkine and Daniel Cohen-Or. Least-squares nseshe

[134] Charles V. Stewart. Robust parameter estimation in coenyision.SIAM Rev.41(3),
1999.

[135] Tobias Isenberg William M. Andrews Wei Chen Mario Costau§a David S. Ebert
SungYe Kim, Ross Maciejewski. Stippling by example. Rroceedings of the 7th

international symposium on Non-photorealistic animationd a&endering (NPAR2009.

[136] Charles Sutton and Andrew McCallum. Piecewise psekeldtiood for efficient training

of conditional random fields. [FProceedings of the 24th international conference on

BIBLIOGRAPHY 179

Machine learningpages 863-870, 2007.

[137] G. Taubin. Estimating the tensor of curvature of aatgffrom a polyhedral approxi-
mation. InProceedings of the Fifth International Conference on CompVtgon 1995

1995.

[138] Joshua B. Tenenbaum, Vin Silva, and John C. Langford.ohalgeometric framework

for nonlinear dimensionality reductioscience290(5500):2319-2323, 2000.

[139] Jean-Philippe Thirion and Alexis Gourdon. The 3D nhamg lines algorithmGraphical
Models and Image Processif®g8(6):503-509, 1996.

[140] Robert Tibshirani. Regression shrinkage and seleatiarthe lasso. Journal of the

Royal Statistical Sociefyp8:267-288, 1994.

[141] M. E. Tipping. Sparse Bayesian Learning and the ReleyMactor Machine.J. Ma-
chine Learning Res(1):211-244, 2001.

[142] Antonio Torralba, Kevin P. Murphy, and William T. Frean. Sharing Visual Features
for Multiclass and Multiview Object DetectiohEEE Trans. Pattern Anal. Mach. Intell.
29(5), 2007.

[143] Zhuowen Tu. Auto-context and its Application to Hitgvel Vision Tasks. In
Proc. CVPR2008.

[144] Zhuowen Tu, Xiangrong Chen, Alan Yuille, and Song-ChinmuZlmage Parsing: Uni-
fying Segmentation, Detection, and Recognitidmternational Journal of Computer

Vision 63(2), 2005.

[145] Greg Turk and David Banks. Image-guided streamlinegfzent. ISIGGRAPH 1996.

BIBLIOGRAPHY 180

[146] Greg Turk and James F. O’brien. Modelling with impisiirfaces that interpolatACM
Trans. Graph.21(4), 2002.

[147] Romain Vergne, Pascal Barla, Xavier Granier, and ClprstcdSchlick. Apparent relief:
a shape descriptor for stylized shading.Pimceedings of the International symposium

on Non-photorealistic animation and rendering 20@808.

[148] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefanr@tlh Constrained k-means

clustering with background knowledge. IGML, 2001.

[149] Robert Y. Wang, Kari Pulli, and Jovan PopoviReal-time enveloping with rotational

regressionACM Transactions on Graphigc26(3):73, 2007.

[150] Sanford WeisbergApplied Linear RegressionWiley/Interscience, 3rd edition edition,
2003.

[151] Georges Winkenbach and David Salesin. Computer-g&etpen-and-ink illustration.
In Proc. SIGGRAPHpages 91-100, 1994.

[152] Georges Winkenbach and David Salesin. Rendering pransurfaces in pen and ink.

In Proc. SIGGRAPHpages 469-476, 1996.

[153] Shin Yoshizawa, Alexander Belyaev, Hideo Yokota, arahstPeter Seidel. Fast and
faithful geometric algorithm for detecting crest lines oeshes. InPacific Graphics

2007 Proceedinggages 231-237, 2007.

[154] Jingyi Yu, Xiaotian Yin, Xianfeng Gu, Leonard McMilg and Steven Gortler. Focal
surfaces of discrete geometry.Pnoceedings of the Symposium on Geometry Processing

2007, pages 23-32, 2007.

[155] Richard Zemel and Toniann Pitassi. A gradient-basestiag algorithm for regression

problems. InNeural Information Processing Systeraf01.

BIBLIOGRAPHY 181

[156] Kun Zeng, Mingtian Zhao, Caiming Xiong, and Song-ChumZkrom image parsing
to painterly renderingACM Trans. Graph.29, 2009.

[157] Eugene Zhang, Konstantin Mischaikow, and Greg Tumikatire-based Surface Param-
eterization and Texture MappindCM Trans. Graph.24(1), 2005.

