
MACHINE LEARNING ALGORITHMS FOR

GEOMETRY PROCESSING BYEXAMPLE

by

Evangelos Kalogerakis

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Computer Science
University of Toronto

Copyright © 2010 by Evangelos Kalogerakis

Abstract

Machine Learning Algorithms for

Geometry Processing by Example

Evangelos Kalogerakis

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2010

This thesis proposes machine learning algorithms for processing geometry by example. Each

algorithm takes as input a collection of shapes along with exemplar values of target properties

related to shape processing tasks. The goal of the algorithms is to output a function that maps

from the shape data to the target properties. The learned functions can be applied to novel

input shape data in order to synthesize the target properties with style similar to the training

examples. Learning such functions is particularly useful for two different types of geometry

processing problems. The first type of problems involves learning functions that map to target

properties required for shape interpretation and understanding. The second type of problems

involves learning functions that map to geometric attributes of animated shapes required for

real-time rendering of dynamic scenes.

With respect to the first type of problems involving shape interpretation and understanding, I

demonstrate learning for shape segmentation and line illustration. For shape segmentation, the

algorithms learn functions of shape data in order to performsegmentation and recognition of

parts in 3D meshes simultaneously. This is in contrast to existing mesh segmentation meth-

ods that attempt segmentation without recognition based only on low-level geometric cues.

The proposed method does not require any manual parameter tuning and achieves significant

improvements in results over the state-of-the-art. For line illustration, the algorithms learn

ii

functions from shape and shading data to hatching properties, given a single exemplar line

illustration of a shape. Learning models of such artistic-based properties is extremely chal-

lenging, since hatching exhibits significant complexity asa network of overlapping curves of

varying orientation, thickness, density, as well as considerable stylistic variation. In contrast

to existing algorithms that are hand-tuned or hand-designed from insight and intuition, the

proposed technique offers a largely automated and potentially natural workflow for artists.

With respect to the second type of problems involving fast computations of geometric attributes

in dynamic scenes, I demonstrate algorithms for learning functions of shape animation param-

eters that specifically aim at taking advantage of the spatial and temporal coherence in the

attribute data. As a result, the learned mappings can be evaluated very efficiently during run-

time. This is especially useful when traditional geometriccomputations are too expensive to

re-estimate the shape attributes at each frame. I apply suchalgorithms to efficiently compute

curvature and high-order derivatives of animated surfaces. As a result, curvature-dependent

tasks, such as line drawing, which could be previously performed only offline for animated

scenes, can now be executed in real-time on modern CPU hardware.

iii

Dedication

To my wife, Olia.

iv

Acknowledgements

First of all, I would like to thank my supervisors, Aaron Hertzmann and Karan Singh. They

offered great help, guidance and support during my PhD studies at the University of Toronto.

I would also like to thank my PhD committee members, Eugene Fiume and Jos Stam, for

their valuable comments and feedback on my thesis. In addition, I would like to thank the

external examiner, Szymon Rusinkiewicz, for his detailed comments and recommendation for

my thesis.

I would like to thank my fellow lab members Derek Nowrouzezahrai, Simon Breslav, Patricio

Simari, and James McCrae for their collaboration in research.

Finally, I would like to thank my wife, Olia Vesselova, my parents and brother for all of their

love and support they gave me throughout the years.

v

Contents

1 Introduction 1

1.1 Overview and Contributions .. . 4

2 Machine learning techniques for geometry processing 7

2.1 Steps for designing learning techniques for geometry processing 8

2.2 Regression . 13

2.2.1 Robust Regression Techniques .14

2.2.2 Non-linear regression .. 18

2.2.3 Regularization . 19

2.2.4 Mixture of Regression Models .24

2.2.5 Mixture of Experts . 28

2.3 Classification . 28

2.3.1 Discriminant Functions .. 32

2.3.2 Probabilistic Generative Models 36

2.3.3 Probabilistic Discriminative Models 38

2.3.4 Conditional Random Fields for Classification 40

2.4 Boosting techniques .. 44

2.4.1 Adaboost . 45

2.4.2 JointBoost . 47

2.4.3 Boosting for regression .50

vi

2.5 Dimensionality Reduction .. . 51

2.5.1 Principal Component Analysis .. 53

2.5.2 Independent Component Analysis 57

2.5.3 Non-linear dimensionality reduction techniques 59

2.6 Other learning topics .. . 60

3 Learning mesh segmentation and labeling 61

3.1 Related work . 63

3.2 CRF model for segmentation and labeling 67

3.2.1 Unary Energy Term . 68

3.2.2 Pairwise Energy Term . 69

3.2.3 Feature vectors . 70

3.3 Learning CRF parameters .72

3.3.1 Learning JointBoost classifiers 73

3.3.2 Learning the remaining parameters 74

3.4 Results . 76

3.5 Applications .82

3.6 Discussion . 84

4 Learning hatching for pen-and-ink illustration of surfaces 90

4.1 Related Work . 91

4.2 Overview . 96

4.3 Synthesis Algorithm .. 101

4.3.1 Segmentation and labeling .. 101

4.3.2 Computing orientations .103

4.3.3 Computing real-valued properties 104

4.4 Learning . 105

4.4.1 Learning Segmentation and Orientation Functions 105

vii

4.4.2 Learning Labeling with CRFs . 108

4.4.3 Learning Real-Valued Stroke Properties 113

4.5 Results . 114

4.6 Summary and Future Work .120

5 Data-driven computation of surface attributes for animated scenes 124

5.1 Data-driven curvature for real-time line drawing of dynamic scenes 125

5.2 Related work . 129

5.3 Overview . 129

5.3.1 Curvature attributes .130

5.3.2 Dimensionality reduction .. . 132

5.4 Skeleton-based deformations 132

5.4.1 Training . 134

5.4.2 Regression model . 134

5.4.3 Determining which joints influence curvature at each vertex 136

5.4.4 Dimensionality reduction .. . 138

5.4.5 Regression . 138

5.4.6 Run-time evaluation . 140

5.5 Cloth simulation .142

5.5.1 Dimensionality reduction for cloth state 142

5.5.2 Regression . 142

5.5.3 Run-time evaluation . 144

5.6 Blend-shape facial animation 145

5.6.1 Neural Network Regression . 145

5.6.2 Run-time evaluation . 147

5.7 Stylization .147

5.8 Results . 149

5.9 Summary, Limitations and Future work 152

viii

6 Conclusion and Future Work 153

A Features used For Learning Mesh Segmentation and Part Labeling 156

A.1 Unary Features . 156

A.2 Pairwise Features .. 159

B Properties and Features used For Learning Pen-And-Ink Illustrations 160

B.1 Image Preprocessing .160

B.2 Scalar features .162

B.3 Orientation features .. . 164

Bibliography 164

ix

Chapter 1

Introduction

3D shape processing is fundamental to computer graphics, computer-aided design, computer

vision, multimedia and several other fields in computer science and engineering. Shape pro-

cessing deals with transformation and analysis of 3D geometry data, which typically comes in

the form of a raw collection of points or/and faces in 3D space. An important component of 3D

shape processing usually involves the extraction or synthesis of various shape properties based

on its underlying geometry. Despite the significant advances in this field, there is still a lot

to be done for inferring shape properties more automatically and efficiently by exploiting the

regularities and repeating patterns in geometry data. Withthe appearance of large repositories

of 3D models on the Internet, such issues are becoming increasingly significant.

Consider the example of shape segmentation, illustrated in Figure 1.1. The figure shows the

composite images of segment boundaries selected by different people based on the recent study

by Chenet al. [16]. The goal of a shape processing algorithm for segmentation would be to

infer the parts of all these different shapes in a similar wayto segmentations performed by hu-

mans. To date, nearly all existing shape segmentation methods attempt segmentation without

recognition. When the goal of segmentation can be formulatedmathematically (e.g., parti-

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Composite images of segment boundaries selected by different people (the darker

the seam the more people have chosen a cut along that edge). This image is taken by the recent

survey by Chenet al. [16] which considers human segmentations on19object categories. One

example is shown for each of the categories considered in thisstudy.

tioning into patches of near-constant curvature), low-level geometric cues may be sufficient.

However, many tasks require some understanding of the functions or relationships of parts,

which are not readily available from low-level geometric cues.

Therefore, an important question in shape processing is howto develop algorithms that would

automatically learn to recognize complex patterns in the geometry data, such as parts in shapes

as in the above example. Similar to how humans learn by using their past experience, machine

learning can be performed based on empirical data, such as from training databases.

This thesis introduces machine learning techniques for a collection of problems in geometry

processing. The main ingredient of these algorithms is to learn functions that maps from the

shape data to the target properties. The input to the algorithms is a collection of training

shapes along with exemplar values of target properties thatare relevant to the desired geometry

processing tasks. The output is the learned function for each mapping. There are two types of

tasks, for which the introduced learning techniques are useful. The first type of tasks involves

the computation of properties that require some shape understanding and may also depend on

CHAPTER 1. INTRODUCTION 3

users’ style and preferences. A characteristic example is shape segmentation and part labeling

mentioned above. This is a highly nontrivial problem due to the large variability of parts.

Previous research has mainly focused on using single geometric criteria, rules or heuristics to

find meaningful parts in a shape. However, parts exhibit suchlarge variability that it is unlikely

to have satisfactory results for a broad set of shapes based on such approaches. In other words,

it is extremely hard to develop a simple mathematical formula or handcraft all possible rules

as well as their exceptions in order to detect parts in shapesin general. Instead, much better

results can be obtained if a mapping is learned from lots of different shape features to each

part based on some representative training examples. The parameters of the mapping as well

as the most appropriate features for each part are adaptively selected based on a learned model

according the training dataset.

Another characteristic example for this type of problems isartistic rendering of shapes. Here,

the stroke locations, orientations, texture and other properties vary not only according to the

underlying shape but also according to its shading. In addition, the stroke properties also

exhibit enormous variability according to the specific artist’s style, communication goals or

even mood. Existing approaches employ specific rules with several hand-tuned parameters;

however, it is extremely hard to capture all possible styleswith hand-tuned models. Machine

learning can be also used here to automatically capture several aspects of style based on a few

exemplar drawings. Such example-based approaches offer a potentially natural workflow for

users. Instead of designing complex user interfaces or requiring users to tune several hard-

to-understand parameters, the only workload for users is toprovide the machine with a few

training examples.

The second type of tasks, where machine learning proves to beparticularly useful, involves the

computation of shape attributes in animated, dynamic scenes, that exhibit some spatial continu-

ity as well as temporal coherence with respect to the animation parameters. Surface curvature

and visibility are examples of such attributes. These shapeattributes are known functions of the

CHAPTER 1. INTRODUCTION 4

input geometry, i.e., they can be estimated with appropriate geometric techniques. However,

some of these attributes are very slow to compute geometrically. In this case, machine learning

algorithms can exploit their temporal and spatial coherence to learn very compact mappings

from animation parameters to these attributes. The learnedmappings can be then evaluated

very efficiently during runtime, enabling also much faster execution of tasks that depend on

these attributes.

The learning techniques for the above two types of tasks could also be combined into a single

pipeline, if necessary. First, a target shape property could be inferred for static shapes based

on the learning techniques for shape understanding. Then, the property can also be computed

efficiently for dynamic scenes using the learning techniques for animated scenes.

1.1 Overview and Contributions

As mentioned above, the goal of the thesis is to develop learning techniques that learn map-

pings of geometric-based features to target properties. Inorder to achieve this, first the target

properties must be identified. Then, a set of appropriate features must be extracted to form

the input space of the mapping. Then, an appropriate learning technique must be designed to

match the requirements of this mapping. The thesis describes these considerations for these

steps in Chapter 2.

I should strongly emphasize here that machine learning is not and should not be thought of

as some monolithic theory. Thus, the thesis does not describe a single, unified workflow or

framework for applying learning to geometry processing. There is no single learning algorithm

or theory that can be applied to solve all example-based geometry processing problems in

general. Each geometry processing problem has its very own characteristics and components,

thus, completely different requirements and formulationsexist for selecting and developing the

CHAPTER 1. INTRODUCTION 5

most appropriate learning algorithms. This is very important, because especially in the field

of computer graphics, it might be thought that machine learning is about downloading one

technique, treating it as a black-box, and then, make it worksomehow.

I do however describe the general steps and considerations for applying machine learning to

geometry processing. Then, I present the machine learning techniques developed for the above-

mentioned types of problems. Each technique has its own contributions to the problem it at-

tempts to solve.

First, I show a learning approach for automatic labeling andsegmentation of 3D meshes (Chap-

ter 3). The method obtains state-of-the-art results and is the first to demonstrate effective seg-

mentation and labeling for a broad type of meshes. Mesh labeling itself enables automation

of several tasks in computer graphics and computer-aided design that would normally require

laborious human intervention. Various applications of mesh labeling for automatic 3D object

manufacturing, texturing and character rigging are demonstrated. Second, I show a learning

approach for creating line illustrations of 3D models from asingle example (Chapter 4). The

main contribution of this application is the ability to synthesize detailed line illustrations based

on the learned aspects of the artist’s hatching style.

With respect to the second type of tasks, I demonstrate a learning technique that computes

surface curvature for animated scenes (Chapter 5). The learned model can accurately and

efficiently predict surface curvatures and their derivatives during runtime, enabling also real-

time object-space rendering of feature lines, such as suggestive contours and apparent ridges.

This represents an order-of-magnitude speed-up over the fastest existing algorithms that are

capable of estimating curvatures and their derivatives accurately enough for many different

types of line drawings.

Finally, Chapter 6 mentions future research directions for applying machine learning tech-

niques for other geometry processing problems.

CHAPTER 1. INTRODUCTION 6

Limitations: It should be noted that there are also limitations to the learning techniques

presented in this thesis. First of all, they require a representative enough training dataset for

learning the parameters of each task reliably. However, it might not be always technically

feasible to acquire training examples for a problem.

There are also no theoretical guarantees on the generalization performance of the algorithms

from a deterministic point of view. In other words, even if a learning algorithm finds a hy-

pothesis that explains the training examples well, it is impossible to deterministically predict

the error of the algorithm when it is applied to novel unseen data (unless they are the same

as the training data). However, if the learned model performs well on most training data and

it is not too complex, it will probably do well on similar testdata. This is known as Induc-

tive Learning Hypothesis in the literature of machine learning. In other words, it states that

if the hypothesis space is not too complicated and if the training dataset is large enough, the

probability of performing much worse on test data than on training data can be bounded. In

general, it is important to acquire a training dataset whichis large and representative enough

of the distribution of the input features and output properties. If this is not possible, then it is

likely that any learning technique might overfit the training data and fail.

Finally, the learning techniques of this thesis require considerable time for their training step.

In our problems, the learning time was usually several hours. However, once the models are

learned, they can be applied to novel input very efficiently.There are also specific limitations

to each technique that will be described in detail later in the thesis.

Chapter 2

Machine learning techniques for geometry

processing

This chapter presents an overview of the steps and considerations for developing machine

learning techniques for geometry processing by example. The key ingredient of these tech-

niques is to learn mappings from shape data to target properties that are relevant to the desired

geometry processing tasks. As noted in the previous chapter, there is no single machine learn-

ing algorithm or unified framework to be applied for any mapping. Instead, there are several

considerations for designing an appropriate learning algorithm or a combination of learning

algorithms for a task. In many cases, this also involves intensive experimenting with many

different techniques, especially if there are no theoretical evidence for choosing a particular

technique. The goal of this chapter is to layout the general strategy for developing learning

techniques for geometry processing problems as well as to review several learning techniques

that can be applied to these problems depending on the type and characteristics of each map-

ping. It should be noted that I do not cover every possible learning technique; I mainly focus

on the most representative supervised learning techniquesand especially the ones that are used

in the rest of the thesis.

7

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 8

2.1 Steps for designing learning techniques for geometry pro-

cessing

Given a collection of input shapes along with exemplar target properties on them, the goal is

to develop an appropriate learning technique that would learn a function from the shape data

to target properties. Lets be the shape data andt be the target properties. In this thesis, it is

assumed that the shape data are given in the form of triangular meshes. The target properties are

represented by continuous or discrete values defined on the mesh triangles, the mesh vertices or

the projections of the triangles to the image plane (i.e., the corresponding pixels). For example,

a target property could be a symbolic attribute, such as a part label per face or a geometric shape

attribute such as the principal curvatures per vertex. The learned function should successfully

generalize to novel input shapess̃ i.e., correctly output predictions̃t for the target properties

for shapes that are not the same with the ones used for learning.

There are several steps that can be followed in general to develop an appropriate learning

technique for a geometry processing task. Below, I discuss each of them in detail.

Identification of target properties: The first step is to identify the target shape properties

that are relevant for the desired geometry processing task and can be learned from training

examples. The target properties must exhibit some regularities and repeating patterns that

can be explained based on the training data i.e., the training data should come from some

unknown probability distribution and should not be completely random. For example, mesh

segmentation can be formulated as a problem of assigning a label to each mesh face. In this

case, the target properties are the part labels, which are used to perform the segmentation task

i.e, the labels of connected components on the mesh induce the mesh segmentation. The part

labels strongly depend on the shape properties, hence, theycan be learned.

Feature extraction: The shape data needs to be pre-processed and transformed into a space of

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 9

features that are expected to be relevant to the target properties. Letx be the extracted shape

features. For example, in the case of mesh segmentation, given a mesh which is a collection

of triangles, it would not make sense to use its mesh information as it is (e.g., triangles ids).

Finding all the possible relevant shape features for a task might be a nontrivial problem. There

might be different relevant features depending on the specific goals of each task and the user’s

preferences. Therefore, in general, it is better to construct feature vectors out of as many

informative features as possible.

For example, the algorithm for learning mesh segmentation in this thesis extracts hundreds of

shape features based on several shape descriptors proposedin the computer graphics and vision

literature that have been found relevant to segmentation and object recognition. If different fea-

tures are relevant depending on the dataset or task, it is better to include all different features.

During the learning step, feature selection techniques canhandle the problem of mining the

most relevant features for each task. It is also important tochoose features that are as discrim-

inative as possible to predict at least some ranges of valuesfor the target properties. Finally,

it is necessary to appropriately scale the features so that they have a similar range of values

between different shapes.

Forming training datasets: The next step is to acquire a training dataset that will provide

exemplar values for the target properties. The values of thetarget properties are set by either

hand-labeling them or acquiring sensor data. The training dataset should be as representative

as possible of the different data that might be encountered during test time. The training exam-

ples should also contain consistent values for the target propertiest for each exemplar shape.

This means that for the same inputs, the target properties should be almost the same; some

inconsistencies and noise can be tolerated in general, but inconsistent training examples may

result in less reliable learned models. After forming the training dataset, we apply supervised

learning techniques described below.

Learning: The main goal of the learning step is to find the functionf(x;w) along with its

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 10

parametersw, which accurately maps featuresx to target propertiest and best generalizes to

different shape inputs. The mapping may be very high-dimensional or highly non-linear. The

identification of the type and characteristics of the mapping is very important for applying the

appropriate learning algorithm to the problem.

For example, one thing to examine is if we need to choose a classification or regression tech-

nique for the learning problem. If the target propertyt takes continuous values, then the

mapping should be expressed as a regression problem (Section 2.2). If the target property

is categorical, i.e. it takes values from a finite number of discrete categories, then it should be

expressed as a classification problem (Section 2.3).

Then, we examine what model is appropriate for the mapping. Would a linear model be ex-

pressive enough to capture the relationship of the featuresto the target properties or would a

non-linear model be more appropriate? This can be decided based on theoretical evidence, in-

tuition, plotting the data, or experimenting with the features (or subsets of them). Sometimes,

it is common to express a non-linear mapping as a linear mapping, by simply transforming the

featuresx into a higher-dimensional space based on a selected kernel function applied to them.

This is known as kernel trick and will be described in more detail in Section 2.2.2.

In addition, if there are interdependencies of the assignments between different target prop-

erties, then graphical models could be used to capture theseinterdependencies. For example,

assigning a part label to a vertex strongly depends on the assignments of labels to its neigh-

boring vertices. Graphical models will be briefly presentedin Section 2.3.4, and I will mostly

focus on Conditional Random Fields for classification.

If the input featuresx form a very high-dimensional space and it is expected that different

subsets of features are relevant for different tasks and fordifferent ranges of values of the

target property, then a feature selection technique must beused. This decreases the number of

parameters of the model, making it sparser. Sparse models generalize better, are more compact

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 11

to store, and require less time to be evaluated during runtime. In this thesis, we focus on

boosting techniques for regression and classification thatefficiently perform automatic feature

selection and can handle large numbers of input features (Section 2.4).

Finally, if the dimensionality of the target property is toohigh and its data points lie close to

a manifold of much lower dimensionality because of linear ornon-linear interdependencies

between the different dimensions of the data, then dimensionality reduction techniques can be

used to project them into a lower-dimensional space. This also leads to a more compact model

that can be evaluated more efficiently during runtime. Dimensionality reduction techniques

will be presented in Section 2.5.

It is also common to develop a learning technique that combines several of the above steps

(e.g., dimensionality reduction, feature selection, etc.) along with the necessary adaptations

depending on each geometry processing problem. This is the case for all the problems that

we will present in this thesis. Thus, developing machine learning techniques for geometry

processing does not mean that a black-box technique is simply selected and applied to the

data. Instead, the type and characteristics of the mapping should be studied carefully so that

appropriate techniques are applied and combined, or even developed from scratch.

Application to novel data: Once the model is learned, the learning algorithms can predict

values̃t of the target properties for novel shapes, by simply applying the learned mappings. As

mentioned earlier, the main goal of learning is successful generalization to novel input.

Experimentation: When developing a learning technique, it is necessary to evaluate its per-

formance. It is also very important to compare its performance with other learning techniques

as well as methods that do not use learning (i.e., based on simple rules or heuristics with fixed

parameters). For this reason, it is useful to design or acquire a benchmark dataset. There are

many types of datasets that can be used for evaluation: a) artificial datasets that are created

synthetically based on some simple logic or formulas, b) realistic datasets that are created syn-

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 12

thetically based on models with properties similar to what can be found in real problems, and

c) real datasets that consist of data representing actual observations in the physical world. In

general, it is preferable to evaluate a learning technique on real datasets, so that its behavior

is better understood for real-world problems. An issue withreal datasets is that they might be

very hard to obtain. In addition, they might include some amount of errors and noise. Obvi-

ously, it is better when the learning technique can cope withsuch errors and noise. If there are

several outliers and inconsistencies in the acquired dataset, it might be unavoidable to perform

some pre-processing to filter out the dataset. However, thisstep may introduce some bias in

the evaluation.

In order to evaluate a supervised learning technique, the dataset needs to be split into a training

and a test set i.e., learning will be performed on the training set and then the learned model will

be applied to the test data separately. Since it is importantto evaluate the learning technique

on the whole range of data existing in the dataset, it is better to repetitively apply the learning

technique on randomly generated training and test sets, or if time and resources permit, on all

possible training and test sets that can be created from the dataset. When comparing different

techniques, any kind of quantitative data can be reported regarding the behavior of the proposed

algorithm on this problem, such as learning speed, trainingset error, test set error, performance

variance across different training sets and so on. It is always crucial to report the test set error,

because this is usually a highly informative measure about the generalization capabilities of

the technique.

Examining every possible aspect and specification for benchmarking learning techniques can

be a time-consuming and tiresome process for researchers. On the other hand, it is useful to

properly benchmark new learning techniques in order to ensure orderly progress in the field.

Analyzing all the details to create a proper benchmark is beyond the scope of this thesis: useful

studies of benchmarking practices for machine learning techniques can be found in [111, 32].

In the following sections, I will explain some representative learning techniques for regression,

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 13

classification and dimensionality reduction. I will also focus on boosting techniques for classi-

fication and regression, which I found particularly useful for the applications presented in this

thesis. I will also refer to related work in the field of geometry processing that uses learning

techniques.

2.2 Regression

The goal of regression is to map the input feature vectorx to one or more continuous target

propertiest. Curve and surface fitting can be seen as a special case of regression. From this

aspect, regression techniques are especially useful for surface reconstruction (e.g. [1, 15, 146,

75, 106]). Regression has been also used for mesh skinning (e.g., [86, 132, 80, 97, 149, 29]).

The majority of machine learning techniques treat regression from a probabilistic point of view

i.e., we assume that the target properties can be expressed as deterministic functionsf (x;w) of

the input featuresx plus some noise. Assume for now that we have one target property t and

the noise model is Gaussian:

t = f (x;w)+ ε (2.1)

whereε is a zero-mean Gaussian random variable with varianceσ2. In this case, given a feature

vector inputxi (i = 1,2, ...N), the output value of the target propertyti follows the following

Gaussian distribution:

p(ti |xi,w,σ2) = N (ti | f (x;w),σ2) (2.2)

Given N training pairs{xi , t i} , the likelihood of all the training target property values given

the unknown parametersw andσ2 can be expressed as:

p(t|x,w,σ2) =
N

∏
i=1

N (t i | f (xi ;w),σ2) (2.3)

Maximizing the likelihood of the above data corresponds to maximizing its logarithm. Using

the logarithm of the lihelihood is convenient for transforming the products into sums, but also

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 14

is also useful for numerical reasons in general:

ln p(t|x,w,σ2) =−
N
2
(lnσ2+ ln(2π))−

1
2σ2

N

∑
i=1

(f (xi ;w)− t i)
2 (2.4)

As it can be seen from the above equation, maximizing the log-likelihood corresponds to min-

imizing the sum of squares of the residualsr2
i = (f (xi ;w)− t i)

2. If we assume a linear model,

i.e., f (xi ;w) = w · xi , then we can derive an analytical solution for the parameters wML that

maximize the log-likelihood, which is essentially the one given from least-squares:

wML = (xT ·x)−1 ·xT · t (2.5)

We may also want to fit the model with an offset, which is usefulwhen the average value of

the target property is not expected to be 0. In this case, we fitthe modelf (xi ;w) = w ·xi +w0.

By adding a column of values always equal to 1 to the features:[x 1], the same Equation 2.5

applies; the parameterw0 is simply incorporated into the vectorw in this case. The parameter

w0 is also known as bias term.

2.2.1 Robust Regression Techniques

A very important remark here is that the least-squares solution correspond to the maximum

likelihood solution for the parameters under the assumption that we have gaussian noise on

the data. However, if the data follow different probabilitydistributions, or even worse, there

are outliers, least-squares is not the most appropriate technique, since in this case it may yield

bad estimates of the parameters. Estimating parameters when there are outliers or when the

noise follows non-gaussian distributions can be performedusing robust statistical estimation

techniques. Here, we briefly discuss the most widely used techniques for robust regression.

M-estimation: A popular class of these techniques is the M-estimation techniques [46]. M-

estimation aims at minimizing a cost function defined over the residuals:

argmin
w

N

∑
i=1

ρ(r i ;w) (2.6)

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 15

whereρ(r i ;w) is the cost function. Minimizing the above expression leadsto maximum-

likelihood estimates of the parameters if the cost functionis interpreted as the negative log-

likelihoods of the assumed probability distributions on the target property values given the

unknown parameters. In least squares, the cost function isρ(r i) = r2
i /σ2 and the assumed dis-

tribution is the gaussian, as mentioned above. Other probability distribution functions assumed

for robust M-estimation are the following:

pCauchy(ti |xi,w,σ2) ∝
1

1+ r2/(2σ2)
(2.7)

In this case, the cost function isρ(r i ;w) = ln(1+ r2/(2σ2)) and the estimator is known as

Cauchy-Lorentzian.

Another popular choice is:

pGeman(ti |xi ,w,σ2) ∝ exp(−
r2

r2+σ2) (2.8)

In this case, the cost function isρ(r i ;w)= r2

r2+σ2 and the estimator is known as Geman-McLure.

The above both estimators result in penalizing outliers much more than the least-squares ap-

proach. However, minimizing such cost functions requires an Iterative Reweighted Least-

Squares (IRLS) procedure, which is much slower. In IRLS, a set of weights is kept and up-

dated for the data points and a weighted-least squares problem is solved at each iteration until

convergence. There are many other estimators proposed in the literature for M-estimation. An

excellent survey on M-estimation techniques for vision canbe found here [134]. In [72, 71],

I suggested the use of M-estimation for robust estimation ofcurvature tensors on meshes and

point clouds . In figure 2.1, we visualize the principal curvatures estimated using least-squares

(left), compared to M-estimation (right). Robust M-estimation yields less noisy curvature val-

ues.

Least-Median of Squares: Another robust estimation approach is to minimize the median of

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 16

Figure 2.1: Left: Visualization of principal curvatures estimated by least-squares fitting of the

curvature tensor based on finite normal differences ([115]); Right: Curvature values computed

using a robust M-estimator [72] that results in less noisy estimates.

the squared residuals:

argmin
w

median(r2
i) (2.9)

This technique is called Least-Median of Squares [113] and is especially useful when up to half

of the data points are outliers. Minimizing the median of thesquared residuals is not trivial,

since the median function is not differentiable. Instead, acommon approach is to randomly

select subsets of training samples, fit the parameters with least-squares for each subset, measure

the median of squared residuals over the rest of the points, and finally select the model of the

subset that has the least median. Least-Median of Squares has been used for piecewise smooth

surface reconstruction [31]. An issue with Least-Median ofSquares is that it is computationally

expensive and can select suboptimal models when there are relatively few outliers in the data.

Another similar approach is to again randomly select subsets of training pairs, fit the parameters

with least-squares for each subset, find the number of the total points that are inliers given a

residual threshold, and finally select the model of the subset that has the largest number of

inliers. This technique is known as RANSAC [30]. RANSAC has thesame issues with Least-

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 17

Figure 2.2: Left: Regression with linear models using linear features (red line), quadratic

features (green line),10th-order polynomial features (purple line) on data points generated

by a sine function (cyan dotted line) plus some noise. A quadratic curve approximates the

ground-truth function very well in contrast to the linear curve that underfits the data and the

10th-order polynomial curve that overfits them.Right: Regression with linear models using

input features[x2
i xi 1 ε1 ε2 ε3] on the same data points. The last three dimensionsε1,ε2,ε3

contain random numbers, generated by a zero-mean Gaussian distribution with unit-variance.

Least-squares (red line) yields non-zero weights on the noise features which are irrelevant to

the target properties. Hence, it results in noisy estimates. Using regularization with Lasso

(Section 2.2.3) yields almost zeros weights to the noise features and results in a much better

approximation the ground-truth function.

Median of Squares and also requires to tune a parameter for discriminating the inliers.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 18

2.2.2 Non-linear regression

In Equation 2.5, I assumed thatf (xi ;w) = w · xi i.e., the target property is linearly related to

the input feature vectorx. However, this might impose several limitations on the model. For

example, fitting a linear model to data points generated froma sine function plus some noise is

rather inappropriate, as shown in Figure 2.2(top).

A simple trick to enrich the above model is to apply a fixed nonlinear basis on the input features

x. In this case, our model can be expressed as a linear combination of basis as follows:

f (xi ;w) = w ·φ(xi) (2.10)

whereφ(xi) is the applied basis function. For example, the basis function can be polynomials:

φ(xi) = [xn
i x(n−1)

i ... x2
i xi 1]. For example, fitting a linear model with quadratic featuresis a

much better approximation to the sine function, as shown in Figure 2.2(top). There can be

many other choices for the basis functions, such as the gaussian basis:

φ j(xi) = exp(−(xi−m j)
T ·S−1

j · (xi−m j)) (2.11)

wherem j are fixed locations of centers forj = 1,2, ...,M Gaussian functions with covariance

matricesSj .

Another example is sigmoid or hyperbolic basis functions that are particularly useful for mod-

eling sharp transitions of the target property with respectto the features:

φ j(xi) = tanh(c j ·xi +c0) (2.12)

wherec j are fixed parameters that control the rate of the transition.Such basis functions are

used in the activation units of neural networks for regression.

We could also select other functions, such as wavelets that have the advantage of being lo-

calized in space and frequency, or Fourier bases that have infinite spatial support but specific

frequency.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 19

Fortunately, applying fixed bases functions on the inputx produces models that is still linear

with respect to the parametersw. In fact, they can be solved with least-squares as above:

wML = (ΦT ·Φ)−1 ·ΦT · t (2.13)

whereΦ is:

Φ =

ϕ0(x1) ϕ1(x1) ... ϕM−1(x1)

ϕ0(x2) ϕ1(x2) ... ϕM−1(x2)

...

ϕ0(xN) ϕ0(xN) ... ϕM−1(xN)

(2.14)

whereN is the number of training examples andM is the number of bases functions.

However, still, having fixed bases function can be a limitation. For example, it would be prefer-

able to consider the locations of the Gaussian basis functions of Equation 2.11 as parameters

in our model and learn their optimal locations from the training data. Or it would be preferable

to learn the parametersc j of the hyperbolic tangent functions of equation 2.12. Learning such

parameters is common when we perform regression with NeuralNetworks that are based on

sigmoid or hyperbolic tangent activation units. However, these formulations result in models

that are non-linear with respect to the parameters, thus linear least-squares cannot be used to

solve for the parameters in this case. Instead, non-linear optimization techniques need to be

used to minimize the training error. Non-linear techniquesmight tend to overfit the data, hence,

it is important to incorporate regularization while fittingsuch models, as I will describe below.

2.2.3 Regularization

An important remark regarding least-squares is that minimizing the training error in the data

does not necessary yield good models for generalization. Trying to make the training error as

little as possible may yield a very complex model that overfits the training data and generalizes

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 20

very badly to novel data. As shown in Figure 2.2(top), fittinga 10th order polynomial gives

the lowest training error compared to the other fitted modelsof the figure, but badly approxi-

mates the sine function. Complex models usually fit the noise as well, producing a very poor

representation of the data that is far from the ground-truthmodel.

The problem of overfitting also appears when we have a very high-dimensional feature space,

where many dimensions might also not be correlated to the target property. Using the least-

squares formulation of Equation 2.5 can easily yield large weights on irrelevant dimensions of

the input features. Such complex models will also generalize poorly to novel data. An exam-

ple is shown in Figure 2.2(bottom), where we least-squares fit a linear model on the feature

space[x2
i xi 1 ε1 ε2 ε3] whereε1,ε2,ε3 are random values drawn by a zero-mean unit-variance

Gaussian distribution. Least-squares yields non-zero weights even for the last 3 dimensions of

the data that contain noise. As a result, the predicted values are also very noisy, far from the

ground truth model.

Therefore, reducing the complexity of the learned model is very important for scenarios where

we want to discover the most relevant features of the input data to the target property. Discov-

ering simpler models also helps decreasing the storage requirements as well as the computation

needed to evaluate the mapping during the runtime.

A common technique to treat this problem in the machine learning literature is to introduce a

prior probability distribution over the parametersw of the model. Using the Bayes theorem,

the posterior distribution over for the model parameters isproportional to the product of the

likelihood function of the target property values and this prior distribution over the parameters:

p(w|x, t,σ2,α) ∝ p(t|x,w,σ2) · p(w|α) (2.15)

whereα are called the hyperparameters of the prior distribution over the model parameters.

Introducing priors over the parameters and finding the maximum of the posterior distribution

is called Maximum a Posteriori (MAP) estimation of the parameters. It is common and conve-

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 21

nient to use a prior distribution which belongs to the same family with the likelihood distribu-

tion. Since we assumed a Gaussian distribution for the likelihood (as defined in Equation 2.3),

we also assume a Gaussian distribution over the model parameters:

p(w|α) = N (w|m,S) (2.16)

wherem is the mean andScovariance matrix for the prior. Then, the posterior is alsoGaussian.

Then, maximizing the posterior corresponds to maximizing its logarithm, which is:

lnp(w|x, t,σ2,α) =−
1

2σ2

N

∑
i=1

(f (xi ;w)− t i)
2−

1
2
(w−m)T ·S−1(w−m)+const. (2.17)

where ”const.” includes terms that do not depend on the modelparameters. Thus, the MAP

estimation requires the minimization of the term corresponding to the least-squares error plus

a term that ”pushes” the parameters to a range of values around the meanm of the prior distri-

bution. If we aim at finding sparse models, then the model parameters should be ”pushed” to

0, thus, reasonable choice is to setm = 0. For simplicity, assume that the covariance matrix is

diagonal and has all its diagonal values equal to the same variances. In this case:

lnp(w|x, t,σ2,α) =−
1

2σ2

N

∑
i=1

(f (xi ;w)− t i)
2−

1
2s

wT ·w+const. (2.18)

Thus, in this case, maximizing the posterior essentially reduces to the minimization of two

terms:ED(w) = (f (xi ;w)− t i)
2, which is the sum of squared residuals andEW(w) = λwTw =

∑D
d=1w2

d, which is called regularization term (d= 1,2, ...D is an index for each model parameter

in the vectorw):

E(w) = ED(w)+λEW(w) (2.19)

The parameterλ =σ2/2s is called regularization parameter and determines the influence of the

regularization term. The larger theλ is, the sparser the feature vectorw will be. Minimizing

2.19 with this regularization term is also known as ridge regression (or Tikhonov regulariza-

tion).

There are other regularization terms that can be used to acquire sparse models. A popular

choice isEW = λ ∑D
d=1 |wd|. Minimizing 2.19 with this choice of regularization term isalso

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 22

known as Lasso [140]. The Lasso formulation is useful because of its tendency to prefer

solutions with fewer nonzero parameter values than ridge regression. An example of applying

the Lasso formulation is shown in Figure 2.2(bottom). In thecontext of geometry processing,

ridge regression has been used to smoothly fit meshes to a set of control point (called Least-

Squares Meshes [133]) or fit sparse models of surface visibility with respect to the animation

parameters in [103].

There are limitations to regularization. Regularized models yield biased estimators e.g, training

the same model with the same regularization parameters to different samples of the training

dataset can yield low variance on the predicted hypotheses (i.e., the solutions to the individual

datasets vary a little around their average), but unfortunately can also yield high bias (i.e., the

average predicted hypothesis deviates a lot than the groundtruth hypothesis). For example,

using the zero-mean Gaussian distribution for the prior distribution on the model parameters

(Equation 2.16) might pull several parameters to be small instead of generating a few non-zero

parameters that would better approximate the ground truth hypothesis. This issue becomes

increasingly important when we have very high-dimensionalinput feature spaces. In this case,

it might be better to use an ”aggressive” feature selection technique that attempts to combines

models of the selected features. This can be achieved with the boosting techniques that we will

discuss in Section 2.4.

Setting the parameterλ for either the ridge regression or the Lasso formulation is also not

trivial. On the other hand, settingλ plays a crucial role for determining the model complexity

i.e., the larger theλ is, the sparse the model will be. The parameterλ can be set empirically,

however, it would be much more preferable to estimate it fromthe data. One way to do this is to

perform cross-validation. Cross-validation involves splitting the training dataset into subsets.

For each subset, we fit our model using various values forλ and measure the error on the

other subsets (called validation error). We select the value for λ that minimizes the average of

validation errors. We can perform the splitting randomly into one training and one validation

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 23

dataset and repeat (this process is called repeated random sub-sampling validation) or split

the dataset into many subsets and use each of the subsets exactly once as the validation data

(this process is calledK-fold cross-validation whereK corresponds the number of subsets).

Cross-validation is very expensive and also has the disadvantage that we cannot use the whole

training dataset for fitting all the parameters. Cross-validation is reduced to holdout-validation

if we split our exemplar dataset into one training and one validation dataset only once, which

can be useful if cross-validation is computationally very expensive.

An alternative to cross-validation is to perform Bayesian regression that also automatically

selects the complexity of the model to be fitted. In this case,we introduce prior distributions

on the hyperparameters (i.e., theσ2 ands used in 2.18), called hyperpriors. Then we set the

hyperparameters to specific values determined by maximizing the marginal likelihood function

p(t|σ2,s) which is obtained by integrating over the model parameters:

p(t|σ2,s) =
∫

w

p(t|w,σ2)p(w|s)dw (2.20)

Maximizing the logarithm of above marginal likelihood is called evidence approximation or

type 2 maximum likelihood and can be achieved with the Expectation-Maximization algorithm.

Finally, we can make predictionst̃ for new values ofx, by evaluating the predictive distribution,

given by:

p(t̃|t) =
∫

σ2

∫

s

∫

w

p(t|w,σ2)p(w|t,σ2,s)p(σ2,s|t)dwdsdσ2 (2.21)

in whicht represents the target values from the training set. More details about Bayesian regres-

sion can be found in [11]. Bayesian Regression has also some difficulties. Although its main

advantage is that the inclusion of prior knowledge arises naturally in many cases, a general crit-

icism is that the hyperpriors are selected on the basis of mathematical convenience rather than

representing beliefs about true facts regarding the model parameters. Another disadvantage

of Bayesian Regression is that it is computationally expensive especially in high-dimensional

feature spaces, since it involves computations that dependon all the dimensions of the input

data.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 24

2.2.4 Mixture of Regression Models

In some cases, it turns out to be that the target property is related to the input features with

multiple different regression models. The observed data can come from all the models at once,

thus it is not possible to fit one model at a time (Figure 2.3(top)). Instead, we need to find a

way to use a mixture of regression models for fitting the observed data.

The probabilistic interpretation of regression describedin Section 2.2 can be used as a com-

ponent to formulate a solution to this problem. Assuming a Gaussian noise model, the output

value of the target propertyti follows a mixture of Gaussian distributions in this case:

p(ti |xi,θ) =
K

∑
k=1

πkN (ti | f (xi;wk),σ2) (2.22)

whereθ denotes the set of all adaptive parameters in the model, namely the parameters of

each regression model{wk}, the variance of the Gaussian distributions{σ2} and the mixing

coefficients{πk} that adjust the ”weight” of each Gaussian component. The mixing coefficient

πk can be also seen as a prior of picking thek−th component to generate a sample from the

above mixture distribution. GivenN training pairs{xi , t i} , the log-likelihood of all the training

target property values given the unknown parametersθ can be expressed as:

ln p(t|x,θ) =
N

∑
i=1

ln(
K

∑
k=1

πkN (ti | f (xi;wk),σ2)) (2.23)

Maximizing the above log-likelihood cannot be done with a closed-form solution, since the

problem is that we do not know which of the components generated each sample. In order to

maximize this log-likelihood, we introduce binary latent variableszik ∈ {0,1} which indicates

which component of the mixture is responsible for generating each data point. Hence, for each

data pointi, all zik’s are 0 expect to one which is equal to 1 and indicates the component of the

mixture that generated this sample. The probability of choosing a component for a sample point

is equal to the corresponding mixing coefficient i.e:p(zik = 1) = πk and p(zik = 0) = 1−πk

and also∑K
k=1πk = 1 holds.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 25

Figure 2.3: Example of a synthetic dataset where a mixture of regression models is applicable.

Left: Fitting one model f(x) = ax2 (green line) to the data points is rather inappropriate for

capturing the underlying mixed components.Middle: Random initialization for a mixture of

two regression models.Right: Optimizing the mixture model with Expectation-Maximization

after5 iterations successfully converges close to the two ground-truth models used to generate

the data points

The complete-data log-likelihood can now be rewritten as follows:

ln p(t,z|x,θ) =
N

∑
i=1

K

∑
k=1

zik ln(πkN (ti | f (xi;wk),σ2)) (2.24)

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 26

or:

ln p(t,z|x,θ) =
N

∑
i=1

K

∑
k=1

zik(lnπk+ lnN (ti | f (xi;wk),σ2)) (2.25)

This log-likelihood can be maximized using the Expectation-Maximization (EM) algorithm. In

general, the EM algorithm can be applied in problems where the goal is to maximize the likeli-

hoodp(t|θ) with respect toθ , given a joint distributionp(t,z|θ) over the observed variablest

and latent variablesz, governed by these parametersθ . The EM algorithm iteratively alternates

between performing an expectation (E) step, which computesthe expectation of the posterior

distribution of the latent variables evaluated using the current estimate of the parameters, and

a maximization (M) step, which computes the parameters maximizing the log-likelihood. The

iterations keep running until a convergence criterion is satisfied. It should be noted, that this

iterative scheme might converge to a local maximum. Below, wedescribe the steps of the EM

algorithm and how they can specifically be applied to the mixture model problem:

Step 1 - Initialize the parametersθ : Let θ old the initial setting of the parameters. The

parametersθ old can be initialized randomly in general, but this might not bea good strategy,

since the EM algorithm can get stuck to a local maximum. Any strategy to find a good initial

guess (e.g., with random restarts, a greedy initial search on the parameter space etc) can be

helpful for pushing the algorithm to converge to a better solution.

Step 2 (E step) - Evaluatep(z|t,x,θold): In the case of the mixture model, using Bayes’

theorem, we have:

p(zik|t,x,θ) =
p(zik)p(ti |xi,θ k,zik)

∑K
j=1 p(zi j)p(ti |xi,θ j ,zi j)

(2.26)

The above equation can be rewritten as:

p(zik|t,x,θ) =
πkN (ti | f (xi;wk),σ2)

∑K
j=1π jN (ti | f (xi;wk),σ2)

(2.27)

The above posterior probability corresponds to how likely it is for each pointi to belong to

each componentk. It is also known as responsibility of each componentk for generating every

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 27

data pointi. For notation compactness, it is common to represent the responsibilities with

γik = p(zik|t,x,θ).

Step 3 (M step) - Evaluateθ new= argmax
θ

Q(θ ,θold) where:

Q(θ ,θold) = ∑
z

p(z|t,x,θold) ln p(t,z|x,θ) (2.28)

For the case of the mixture model, we have:

Q(θ ,θold) =
N

∑
i=1

K

∑
k=1

γik(lnπk+ lnN (ti | f (xi;wk),σ2)) (2.29)

Setting the derivative ofQ to 0 with respect toπk and taking into account the constraint

∑K
k=1πk = 1, we can find that:

πk =
1
N

N

∑
i=1

γik (2.30)

Setting the derivative ofQ to 0 with respect towk results in least-squares fitting theK functions

f (x;wk) to the data points, using the responsibilitiesγik as weights. For example, if we use

linear models of the formf (x;wk) = wk ·φ(x) (including kernel transformations as described

in the above section), then we solve the following weighted least-squares problem:

wML = (ΦTΓkΦ)−1 ·ΦTΓkt (2.31)

whereΓk = diag(γik) is a diagonalNxN matrix.

Finally, setting the derivative ofQ to 0 with respect toσ2 results in obtaining the following

solution:

σ2 =
∑N

i=1∑K
k=1γik(ti− f (x;wk))

2

N
(2.32)

Step 4 Check for convergence:If the log-likelihood or the parameter values are the same

or changed very little with respect to the previous iteration, then terminate. If there is no

convergence, go to Step 2 and repeat withθ old← θ new.

An example of applying a mixture of regression models is shown in Figure 2.3. Although the

initial guesses for the models are far from the data points (Figure 2.3(middle)), the models are

correctly found after a few EM iterations (Figure 2.3(bottom)).

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 28

2.2.5 Mixture of Experts

The mixture of regression models that we described above canbe still very limited. In many

cases, the target property is related to the input features with multiple different regression

models that vary according to the values of the input features or even some other features.

We can extend the mixture of regression model described above, by allowing the mixing coef-

ficients to be functions of the input variables:

p(ti |xi ,θ) =
K

∑
k=1

πk(xi)pk(ti |xi ,θ) (2.33)

The above model is known as mixtures-of-experts model [60],in which the mixing coefficients

πk(xi) are known as gating functions and the probability densitiespk(ti |xi ,θ) are called experts.

This formulation results in having different components responsible for different regions of

the input space (i.e, the probability densitiespk(ti |xi,θ) are experts at making predictions in

their own regions and the gating functions determine which components are more important in

which region).

The whole model can be fitted again with the Expectation-Maximization algorithm [65], fol-

lowing the general steps described in the above section. Themixture-of-experts of model can

be extended even more, by having a mixture distribution for eachpk(ti |xi ,θ) i.e., each compo-

nent is mixture itself in a mixture distribution. This modelis called Hierarchical Mixture-of-

Experts [65] and can be fitted with the EM algorithm, startingfrom the lowest level and then

sequentially proceeding with the upper levels of this hierarchical model.

2.3 Classification

When the target property is categorical, then the goal of the learning step is to map the input

feature vectorx to the discrete values that the target property can take. These discrete val-

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 29

ues are also known as class labels. In the most common scenario, the classes are taken to be

disjoint, so that each feature vector is assigned to only oneclass. In this case, what classifica-

tion does is to split the input space ofx into a set of decision regions. Each decision region

is assigned to one class. The boundaries of these decision regions are called decision bound-

aries or decision surfaces in higher than 2-dimensional spaces. Linear classification techniques

yield linear decision surfaces, while non-linear techniques yield non-linear boundaries. Classi-

fication techniques have been widely applied to 3D object segmentation and recognition (e.g.,

[3, 88, 98, 42]). In non-photorealistic rendering, a few classification methods haven been ap-

plied to learn locations of feature curves based on 3D geometry data. Lum and Ma [92] use

neural networks and support vector machines to learn locations of feature curves and Coleet

al.. [18] study feature curve locations using decision trees and linear regression. Fuet al. use

a combination of Random Forests and Support Vector Machines to predict the upward orienta-

tion of objects [36].

We show an example of a categorical property in Figure 2.4. Inthis example, the target prop-

erties we wish to predict are the part labels for each face in a3D mesh. For humans, the part

labels take values from the set{head, torso, upper arm, lower arm, upper leg, lower leg, hand,

foot} and for animals they take values from the set{head, torso, neck, leg, tail, ear}. Our goal

is to learn a classification function that maps from shape featuresx to the segment labels so

that we reliably predict the labels on novel unlabeled inputmeshes. For this reason, we are

provided training labeled meshes, whose mesh faces are already labeled (Figure 2.4(left)).

Least-squares for classification: One naive approach to classification is to least-squares fit a

linear function of the formf (x) = wx+w0 to the the training data{xi , ti}, whereti represents

the indices of the labels ({1,2,3,4...}). The values predicted by this function would be contin-

uous and in fact, they could also be negative or much larger than the number of class labels.

However, this does not make sense for a classification problem, where we want to predict class

labels, rather than continuous values. A more reasonable approach is to least-squares fit a lin-

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 30

Training Meshes Least-Squares Decision Tree

Bayes classifierSVM Logistic Regression JointBoost

head
neck
torso
leg
tail
ear

Training Meshes

Least-Squares Decision

 Tree

 Bayes

classifier
SVM Logistic

Regression
JointBoost

head
torso
upper arm

lower arm
hand
upper leg
lower leg
foot

Figure 2.4: Results of applying various classifiers for labeling animal and human meshes. The goal is

to learn a classification function that maps from shape featuresx to part labels given labeled training

meshes. We show results of least-squares, decision trees, SVMs (linear kernel), Gaussian Bayes, Logistic

Regression and JointBoost classifiers. For all classifiers, the same input featuresx are used. These

include curvature, PCA, shape diameter, medial surface, geodesic distance, shape context, and spin

image features described in Appendix A.1. The regularization parametersof SVMs, Gaussian Bayes,

Logistic Regression are estimated by hold-out validation; the validation meshes are selected to be the

bottom-right training mesh for humans and the two rightmost training meshes(camel and small goat)

for animals. The validation meshes are also used to terminate the boosting iterations for Jointboost.

The rest of the training meshes are used for learning the main parametersfor each of the above methods

(see text for details). Least-squares and decision trees use all the training meshes.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 31

ear model of the formfc(x) = wcx+wc0 for each classc separately. In this case, the training

pairs are transformed to{xi ,1} if ti = c (the data point has training labelc) and{xi ,0} if ti 6= c

(the data point does not have training labelc). A new inputx is assigned to the class label ˜c

for which the output of the fitted modelfc(x) gives highest value. However, the model out-

puts do not have any probabilistic interpretation, and alsodo not lie in the interval[0,1]. Also,

least-squares assumes a gaussian model of noise that changes the values of the target properties

continuously (e.g., from 2 to 2.1), while for classification, noise essentially alters the label of a

data point (e.g., from ”head” to ”torso”). A few outliers caneasily cause unpredictable effects

to the classification, as the sum of squares error heavily penalize predictions that lie far away

from the decision boundary, but they are still in the correctdecision region. Figure 2.4 shows

the rather unpredictable behavior of least-squares for classification: in the animals example,

least-squares provides reasonable results, however, it largely fails in the humans example.

Instead, a more correct approach to classification is to predict discrete class labels or to com-

pute posterior probabilities for each class label that lie in the interval[0,1]. There are three

approaches for achieving either of these two:

• construct a discriminant function that directly assigns the input vectorsx to classes by

minimizing some loss function corresponding to the classification error∑N
i c̃i 6= ci.

• model the class-conditional distributions given byp(x|t = c), together with prior dis-

tributions p(t = c) and then compute posterior probabilities using the Bayes’ theorem:

p(t = c|x) = p(x|t=c)p(t=c)
p(x) (this is also known as probabilistic generative models)

• directly model the conditional probability distributionp(t = c|x) (this is also known as

probabilistic discriminative models)

Below, we show characteristic techniques for each of the above approaches.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 32

2.3.1 Discriminant Functions

The classification techniques that are based on discriminant functions aim at directly mapping

the input vectorx to classes. They do not explicitly provide probabilistic output, but they can

provide very good results, when they minimize a quantity that is related to the classification

error. Unfortunately, minimizing the classification errorin terms of the total number of mis-

classified points in the training data, does not lead to a simple learning algorithm. Such error

function is piecewise constant function with respect to themodel parameters and gradient-

based optimization methods would fail to minimize it, sinceits gradient is zero or undefined.

Perceptron: Let us focus for now for binary classification problems with two classes (i.e.,

ti ∈ {−1,1}). An alternative error function for classification, calledperceptron criterion, is the

following:

E(w) =−∑
i∈M

(wT ·xi)ti (2.34)

whereM is the set of misclassified training pairs{xi , ti}. The above error function penalizes

misclassified examples and associates zero error for correctly classified examples. The error

function is piecewise linear, but can be minimized with stochastic gradient descent. At each

step, we update the weights as follows:

w = w+ηxiti (2.35)

whereη is the descent step size (it is called learning rate). Note that we can replacexi with

φ(xi) whereφ is a basis function, as explained in Section 2.2.2.

This algorithm is called Perceptron and is simple but powerful: it can be proved that it can

converge to the exact solution in a finite number of steps, if there is such exact solution [112].

However, if there is no such exact solution (i.e., the dataset is not linearly separable or in

other words there is no linear decision boundary that splitsthe dataset into two regions where

all points are correctly classified), then the perceptron will never converge. However, it can

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 33

find an approximate solution. Also, the perceptron does not generalize readily to multi-class

classification problems (i.e., when the number of classes ismore than 2).

Decision Trees: Another method to construct a discriminant function is to directly split the

input feature space so that each region represents each class. Letpτc the current proportion of

training points in regionRτ that is assigned to classc. Then, the following error functions are

commonly used to determine how to split the input feature space:

Q(Rτ) = ∑
c

pτc ln pτc (2.36)

which is known as cross-entropy, and:

Q(Rτ) = ∑
c

pτc(1− pτc) (2.37)

which is known as Gini index. The above error functions can beminimized iteratively. At

each iteration, a threshold on one of the features is selected to split the corresponding region of

the feature space into two regions so that the above error function is minimized. The goal is to

partition the input feature space with each region having a high proportion of points assigned to

a specific class. This partitioning leads to a formation of a ”decision tree”. For a new input data

point, we can find the region it belongs to by traversing the tree on a depth-first style according

to the decision criteria that are associated to each node.

There have been many versions of decision trees for classification that define alternative error

functions along with some pruning criteria for the trees to avoid overfitting. For a survey

on decision trees and pruning criteria, see [99]. Decision trees have the advantage that their

learned structure is easily interpretable by humans. However, this structure may not correspond

to meaningful classification rules. In practive, it has beenfound that small changes to the

training data may result in a different series of splits [47].

In figure 2.4, I show the result of applying a decision tree forclassification in the humans and

animals example. I experimented with all the types of error functions provided by Matlab: Gini

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 34

index, twoing rule and deviance (automatic pruning is used in all cases). I show results for the

error function that had the least training error. As it can been seen, the classification results are

not that satisfactory compared to other methods.

A more stable approach is to to use random forests. Random forests are ensemble classifiers

that consists of many decision trees and outputs probabilities per class averaged over the leaf

nodes of all the decision trees [13].

Support Vector Machines: Another method for classification is to attempt to maximize the

distance between the decision boundaries and any of the training samples. This distance is also

called margin. The main assumption is that if there are many decision boundaries offering exact

solutions, it is better to select the boundary that maximizes the margin to achieve the lowest

generalization error. This types of classifiers are also known as support vector machines.

Let us assume for now that decision boundary is linear, hence, the boundary is given by a

hyperplane defined by the implicit equationf (x) = wT · x+w0 = 0. Assume that we have a

binary classification problem with training data points{xi , ti}, whereti = {−1,1}. The distance

from a training data pointxi to the decision hyperplane is| f (x)|/||w||. Each point is on the

right side of the decision boundary, whenti f (xi)> 0. The maximum margin solution is given

by solving:

argmax
w,w0

1
||w||

min
i
[ti f (xi)] (2.38)

This problem can be posed as the following constrained optimization problem:

argmin
w,w0

||w||2 (2.39)

subject to the constraints:

∀i, ti f (xi)≥ κ (2.40)

The above constraint ensures that the margin of each data point is at leastκ. The above equation

can be simplified by rescaling it with division withκ without loss of generality:

∀i, ti f (xi)≥ 1 (2.41)

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 35

The solution to the above constrained optimization problemis infeasible when the data points

are not linearly separable. Thus, we can loose the above constraints by introducing a slack

variableξ which is 0 for correctly classified training data points and|ti− f (xi)| for the rest. In

this case, we solve for the following constrained optimization problem:

argmin
w,w0

λ ∑
i

ξi + ||w||
2 (2.42)

which is equivalent to:

argmin
w,w0

λ ∑
i
|1− f (xi)ti |+ ||w||

2 (2.43)

subject to the constraints:

∀i, ti(wT ·xi +w0)>= 1−ξi (2.44)

whereλ is a regularization parameter.

The above formulation can be extended by performing the kernel trick and replacingxi with

φ(xi) whereφ is a basis function, as explained in Section 2.2.2.

A limitation of support vector machines is that they do not provide posterior probabilities for

their outputs. In addition, the parameterλ need to be cross-validated for each case. These

limitations can be overcome with the Relevance Vector Machine framework [141].

The support and relevance vector machines can be also applied to multiclass classification

problems. This is usually done by constructingC vector machines (where C is the number

of classes), where for each of them, we attempt to discriminate one class from the rest. This

strategy is called one-versus-the-rest and has the disadvantage that discriminating each class

from the others is posed as different optimization problemsthat do not share any common

terms or features. I show results for the mesh labeling problem in Figure 2.4, where SVMs are

trained using the one-versus-the-rest strategy. The validation meshes are used to estimate the

λ regularization parameter using the L-BFGS numerical optimization technique provided by

Matlab.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 36

2.3.2 Probabilistic Generative Models

The generative models aim at modeling the class-conditional distribution p(x|t = c), as well

as the class priorsp(t = c), then compute posterior probabilities using the Bayes’ theorem:

p(t = c|x) = p(x|t=c)p(t=c)
p(x) . This can be rewritten as follows:

p(t = c|x) =
p(x|t = c)p(t = c)

∑ j p(x|t = j)p(t = j)
(2.45)

By settinga j = ln(p(x|t = j)p(t = j)) (where j = 1,2, ...C), the above distribution can be

rewritten as:

p(t = c|x) =
exp(ac)

∑ j exp(a j)
(2.46)

The term exp(ac)
∑ j exp(a j)

is known as normalized exponential and is the generalization of the sigmoid

function. It is also known as softmax function, as it represents a smoothed version of the

’max’ function. Intuitively, what it means is that for largepositive values ofac, the posterior

is saturated close to 1 while for large negative values, it issaturated to 0. There is a sharp

transition for values ofac close to 0. This ”squashing” form of the sigmoid function makes it

very useful for classification tasks.

In order to find the posterior probabilities for some inputx, we have to assume some distribution

for the class-conditional densitiesp(x|t = c) and set some value for the priorsp(t = c) = rc.

It is popular to use assume a Gaussian for the class-conditional densities. In this case, the

classifier is known as Gaussian Bayes classifier:

p(x|t = c) =
1

(2π)D/2|S|1/2
exp(−

1
2
(xi−mc)

T ·S−1 · (xi−mc)) (2.47)

whereD is the dimension of the feature vectorx. Let us transform the training pairs into

{xi , tic}, wheretic = 1 if ti = c andtic = 0 if ti 6= c. In this case the likelihood function is:

p(t|r ,m,S) =
N

∏
i=1

C

∏
c=1

[r jN (xi |mc,S)]
tic (2.48)

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 37

Using maximum-likelihood (i.e., setting the derivative ofthe log likelihood with respect to

each of the parameters), we find that:

rc =
Nc
N

mc =
1
Nc

N
∑

i=1
ticxi

Sc =
1
N

C
∑

c=1
∑

i:{tic=1}
(xi−mc)(xi−mc)

T

(2.49)

whereNc is the number of samples that havetic = 1.

A problem using maximum-likelihood is that when the number of samplesNc is small for a

class, the priorrc =
Nc
N will be very small for this class. This results in very biasedestimates of

the parameters. In this case, we need to incorporate a prior belief to modulate the priors:

r ′c =
Nc+µ
N+Cµ

(2.50)

whereµ is the number of ”pseudo-counts” used to smooth the priors. Also, the covariance

matricesSc can be smoothed:

S′c = (1−λ)Sc+λS (2.51)

whereλ is a regularization parameter andS is the covariance matrix for all samples.

A problem with the Gaussian Bayes classifier is that the assumption that we have a Gaussian

distribution assigned to each of the classes is not appropriate when there are outliers. Also,

the distribution of the samples per class might not be Gaussian or in general can be poorly ap-

proximated with any analytically defined distribution. I show the results of using the Gaussian

Bayes classifier for the mesh labeling problem in Figure 2.4. The validation meshes are used

for estimatingµ andλ in this case. The classification results are relatively reasonable for the

humans, but not as good for the animals case.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 38

2.3.3 Probabilistic Discriminative Models

The discriminative models attempt to directly maximize thelikelihood of the conditional dis-

tribution p(t = c|x). The advantage of such approach is that it does not need to explicitly

model the distribution of the samples per class, and this canimprove the generalization perfor-

mance. On the other hand, discriminative approaches typically require more training examples

per class; for scarce training data, generative models are more appropriate since they model the

input instead. For the same reason, generative models also exhibit lower variance of parameter

estimation, at the expense of possibly introducing biased estimators.

As we saw in generative models (Equation eq. 2.46, the posterior probabilities can be expressed

using a softmax transformation involving functions of the input featuresx:

p(t = c|x) =
exp(ac)

∑ j exp(a j)
(2.52)

The goal of discriminative models is to directly maximize the likelihood of the conditional

distribution p(t = c|x). Let us assume thatak are given by linear functions on the features:

ac = wcx. By performing the kernel trick, we can also replacex with basis functions, so that

ac = wcφ .

Our goal now is to determine the parametersw using directly maximum likelihood on this

model. This approach is known as ”logistic regression”, as we essentially attempt to fit a

sigmoid function for each class. The likelihood function isgiven by:

p(t|w) =
N

∏
i=1

C

∏
c=1

p(t = c|φ)tic (2.53)

wheretic is defined as above. The negative log-likelihood is given by:

−lnp(t|w) =−
N

∑
i=1

C

∑
c=1

t ic ln p(ti = c|φ i) (2.54)

Due to the nonlinearity of the sigmoid function, we cannot find a closed-form solution, as we

did in the case of maximum likelihood for regression. Thus, the negative log-likelihood can

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 39

be minimized using an optimization technique, for which we should also provide its analytic

gradient.

Similar to the case of regression 2.2.3, we can also add a regularization term to avoid overfitting

the parametersw. Based on the ridge regression approach, we can minimize the following cost

function:

L(w) =−
N

∑
i=1

C

∑
c=1

t ic ln p(ti = c|φ i)+λ
D

∑
d=1

w2
d (2.55)

The Lasso formulation can provide an even sparser model. In this case, we minimize:

L(w) =−
N

∑
i=1

C

∑
c=1

t ic ln p(ti = c|φ i)+λ
D

∑
d=1

|wd| (2.56)

The parameterλ needs to be cross-validated. An alternative approach is to define a prior

distribution over the weights, as in the case of Bayesian regression (section 2.2.3) and perform

Bayesian inference [11].

Logistic regression is a pretty powerful approach for classification, however, estimating the

parametersw relies on the solution of a non-linear optimization problemthat could also be

computationally expensive especially in very-high dimensional spaces. As in the case of re-

gression, regularization might pull several parameters tobe small instead of generating a few

non-zero parameters that would better approximate the ground truth hypothesis. In this case,

it might be better to proceed with an ”aggressive” feature selection technique that attempts to

combines classification models of selected features. This can be achieved with the boosting

techniques that we will discuss in section 2.4.

I show the results of using the Logistic Regression classifierincluding the Lasso regularization

technique for the mesh labeling problem in Figure 2.4. The classification results are good for

humans, but for animals, several parts are mislabeled (neckand tail).

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 40

2.3.4 Conditional Random Fields for Classification

In some cases, we want to classify multiple target properties that have interdependencies on

their discrete values. For example, this can happen in imageor mesh labeling problems when

we want to classify image or mesh elements (e.g., pixels, vertices, triangles) respectively into

a set of categories according to their features. One option would be to classify each element

separately based on its features. However, in such structured data, assigning a label to an

element strongly depends on the labels assigned to its neighbors. Even if the features are

locally continuous, classifying each element independently from the others can easily yield

discontinuous and noisy results especially for elements whose features lie close to decision

surfaces.

A naive solution to this problem would be to find all the labelsassigned to the neighbors of

each element and then assign the most common label to it. However, such solution would be

strongly dependent on the parameter that determines the size of the neighborhood, would not

have any probabilistic interpretation and would still yield noisy boundaries.

A much better way to treat this problem is to find a probabilistic formulation such that the

decision for the label assigned to an element takes into account the assignment of labels of its

neighbors. Since the labels of its neighbors also depend on the labels of their neighbors and

so on, this labeling problem should be solved in a global fashion, such that the labels of all the

elements are jointly optimized.

When there are such probabilistic dependencies between the random variables in our problem,

structured probabilistic models are more appropriate to use. In the machine learning literature,

these models are usually represented by graphs; the graphs comprise of nodes representing the

random variables and links which express the probabilisticrelationships between the variables.

As a result, the graph encodes the joint distribution over the random variables as well the

factorized representation of the set of independences thathold in the joint distribution.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 41

There are two main classes of graphical representations: Belief networks and Markov Random

Fields. The Belief Networks use directed acyclic graphs to represent a factorization of the joint

probability distribution of the random variables into a product of local conditional distribu-

tions. They are more useful for expressing causal relationships between random variables. The

Markov Random Fields use undirected graphs that specify botha factorization and induced

dependencies between the random variables. These are better suited to express constraints

between random variables. For more information on Belief Networks and Markov Random

Fields, see [11].

Here, we focus on a variant of Markov Random Fields (MRFs), called Conditional Random

Fields (CRFs) [82] which are undirected graphical model especially suited for classification.

CRFs are often used for the labeling or parsing of sequential data, such as natural language

text or biological sequences and have been also used for segmentation and labeling of images

in computer vision [127, 88].

Each node in a CRF graph corresponds to a random variableci which represents an element

to be labeled and whose distribution is to be inferred, and links represent label dependencies

between the random variables. Each random variable may alsobe conditioned upon a set of

observationsx. The links form cliques in the graph that are defined as a subset of nodes such

that there is a link between all pairs of nodes in the subset. Amaximal clique is a clique such

that it is impossible to include any other nodes in the set without it ceasing to be a clique. For

example, in Figure 2.5, we show a portion of a CRF graph defined over a mesh whose faces

we want to label according to some underlying featuresx. The nodesci represent mesh faces

that are connected for adjacent faces. The labels of mesh faces are conditioned upon a set

of observed featuresbxi on the faces. The choice of labels for adjacent faces is additionally

conditioned upon a set of some other observed featuresbxi j related to these adjacent faces. The

maximal cliques are{ci ,c j1,xi j1}, {ci ,c j2,xi j2}, {ci ,c j3,xi j3}, {ci ,xi}, {c j1,x j1}, {c j2,x j2},

{c j3,x j3} etc (not all nodes for the mesh faces are shown in the graph forclarity reasons).

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 42

ci

cj2

cj1

cj3

xi xj3 xj2xj1

xij1 xij3xij2

Figure 2.5: A CRF graph defined mesh faces we wish to label according to some underlying

unary featuresxi and pairwise featuresxi j . The open circles represent the nodes ci to be

labeled. There are links for nodes that have their corresponding mesh faces adjacent. The

shaded circles represent the observed features and are not generated by the CRF model

The conditional probability of the set of labelsc = {c1,c2, ...,cV} is written as a product of

potential functionsψq(cq,xq) over the maximal cliquesq in the graph:

p(c|x,θ) =
1

Z(x,θ) ∏
q∈C

ψq(cq,xq) (2.57)

whereθ are the parameters governing the conditional distributionp(c|x,θ) and Z(x,θ) is

called the partition function, which ensures that the conditional distribution is correctly nor-

malized:

Z(x,θ) = ∑
c

∏
q∈C

ψq(cq,xq) (2.58)

Note that the potential functions are not restricted to havea specific probabilistic interpretation.

Thus, they are not necessarily probability functions. In order to ensure thatp(c|x,θ) > 0, we

are restricted to potential functions that are strictly positive, thus it is convenient to express

them as exponentialsψq(cq,xq) = exp(−E(cq,xq), whereE(cq,xq) is called an energy func-

tion. The energy functions play the role of expressing whichlabeling settings of the random

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 43

variables in a clique are preferred to others. In the exampleof Figure 2.5, the conditional

probability can be rewritten as:

p(c|x,θ) =
1

Z(x,θ)
exp(

v

∑
i=1

E1(ci ,xi)+
v

∑
i=1

N(i)

∑
j=1

E2(ci ,c j ,xi j)) (2.59)

whereN(i) is the set of faces that are adjacent to the face with indexi. The termE1 measures

consistency between the featuresxi of mesh facei and its labelci . Such terms involving one

random variable and the related observations are usually called unary terms. The termE2

measures consistency between adjacent face labelsci andc j , given featuresxi j . These terms

involving two linked random variables are usually called pairwise terms. In this thesis, we

will show applications of CRFs of the above form. Examples of applying CRFs for labeling

problems are shown later in the thesis (Figures 3.2 and 4.3).

The main limitation of CRFs (and similarly MRFs in general) is that if we haveV nodes for

labeling, and each of them haveC possible labels, then the evaluation of the normalization term

requires summing over allCV possible assignments, as it can been seen in Equation 2.57. Thus,

inferring the most probable assignment of labels for general graphs (including the example

graph of Figure 2.5) is a #P-complete problem, and thus computationally intractable in the

general case. If the graph has a simple structure as e.g. in linear-chain CRFs, where each node

is linked to exactly one other node, the forward-backward algorithm can be used for inference

which has polynomial time complexity. For general graphs, approximate inference techniques

are used, such as variational inference, loopy belief propagation and Monte Carlo sampling

methods and graph-cuts. Detailed discussion of these are beyond the scope of this thesis.

Learning the parametersθ in CRFs based on training dataxi ,ci involves maximizing the log-

likelihood for the CRF which is expressed as follows:

L(θ) =
N

∑
i=1

ln
1

Z(xi ,θ)
+ ∑

q∈C

E(ciq,xiq)) (2.60)

For general graphs, it is also not possible to analytically determine the parameter values that

maximize the log-likelihood. Setting the gradient to zero does not yield a closed form solution.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 44

Parameter estimation can be performed approximately by using approximate techniques such

as pseudo-likelihood, piecewise training [136] or contrastive divergence [48].

2.4 Boosting techniques

Boosting is a class of techniques for combining multiple ”base” classifiers to produce predic-

tions that are better than any of the ”base” classifiers. Evenif the ”base” classifiers perform

slightly better than random guesses, boosting can still combine them appropriately to yield

much better classification performance. The ”base” classifiers are called ”weak learners” and

their resulting combination is usually called ”strong learner”. The weak learners can be any

classifiers, however, most commonly, it is sufficient to use simple ones, such as decision stumps

or decision trees. Most commonly, these simple classifiers may also use only one of the fea-

tures (dimensions) of the input vectorx. As a result, boosting combines weak learners that

select specific features, that are more relevant for the classification task. This kind of feature

selection makes boosting ideal for handling very high-dimensional input spaces, when only a

few dimensions are relevant for each task.

The key idea of boosting is to train the ”base” classifiers in sequence, where each ”base”

classifier is trained using a weighted form of the training dataset. At each boosting iteration,

one ”base” classifier is selected that yields the best classification performance among all other

”base” classifiers based on the current weighted form of the training dataset. Then, the training

data points are re-weighted so that each weight associated with each data point depends on the

performance of the previously selected classifier. Misclassified data points are associated with

higher weight, so that subsequent classifiers have the chance to classify it correctly.

Boosting was originally developed for classification tasks by Freund and Schapire [34]. Later,

it was also extended to solve regression problems, where in this case, the ”weak learners” are

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 45

simple regressors that are combined to yield a much better approximating regression function.

Here, I will briefly refer to the most popular version of boosting, called AdaBoost (Adaptive

Boosting), and then I will focus on multiclass classificationwith JointBoost [142]. Then, I will

refer to a boosting algorithm for regression [155].

2.4.1 Adaboost

The original version of Adaboost deals with binary classification problems. GivenN training

samples{xi , ti}, whereti = {−1,1}, we associate a weightwi for each sample, which is initially

set to 1/N. Then, at each boosting iterationm= 1,2, ...,M, we perform the following steps:

• select a base classifierhm(x) which best minimizes the weighted classification error func-

tion: Jm= ∑N
i=1wiI(hm(xi) 6= ti) whereI(hm(xi) 6= ti) is an indicator function that equals

1 if hm(xi) 6= ti and 0 otherwise.

• evaluate the normalized error of the weak learner:εm = ∑N
i=1wi I(hm(xi) 6=ti)

∑N
i=1wi

and thenαm =

ln(1− εm)/εm

• update the weights:wi = wi exp(αmI(hm(xi) 6= ti) and normalize them so that they sum

to 1.

Finally, the predictions are done by linearly combining thepredictions of the weak classifiers:

H(xi) = sign(
M

∑
m=1

αmhm(x)) (2.61)

The choice of the above weights on the sampleswi and weak learnersαm were motivated by

findings in the statistical learning theory. It can be provedthat if there is a bounded probability

that the error of the weak learners is less than 50%, then there is a bound on the training and

generalization error. More specifically, suppose thatPr(εm < 0.5− γm) < δ , whereγm is a

constant that measures how much better than random the predictions of the weak learnerm

are, andδ is a constant the bounds this probability. Then, it can be proved that training error

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 46

E ≤ exp(−2∑M
m=1γ2

m). Practically, this means that if the weak learner is slightly better than

random, then the training error drops exponentially fast. There is also an upper bound for the

generalization errorE ≤ E+O(
√

(M ·V/N), whereM is the number of boosting iterations,N

is the number of samples andV is the VC-dimension of the weak learner. The VC-dimension

corresponds to the largest set of data points in the feature space that can be split by the weak

classifier in any possible labels assignment and arrangement of them. This bound is rather

loose and practically may not be that useful.

A different interpretation of Adaboost was given by Friedman et al. [35]. It can be proved

that based on the above formulation, Adaboost minimizes an exponential error function corre-

sponding to the classification error:

E =
N

∑
n=1

exp(−tihm(xi)) (2.62)

The exponential error function heavily penalizes data points that are misclassified. There are

other variants of Adaboost that can be used to minimize the above exponential error function.

A particular variant that is more numerically stable is GentleBoost [35]. Gentleboost performs

each boosting iteration, as follows:

• select a base classifierhm(x) to the training data which best minimizes the weighted

classification error function.

• update the weights:wi = wi exp(−hm(xi)ti) and normalize them so that they sum to 1.

The output of the strong learner is given by:

H(xi) = sign(
M

∑
m=1

hm(x)) (2.63)

Both Adaboost and GentleBoost have been extended for multiclass classification problems.

Below, we focus on perhaps one of the most powerful versions for multiclass classification,

called JointBoost.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 47

2.4.2 JointBoost

Jointboost was introduced by Torralbaet al. [142] and its main characteristic is its ability to

deal with multiple overlapping subsets of classes in the feature space. For example, in the

case of part labeling of a hand, imagine that a feature (e.g.,shape diameter) is excellent for

distinguishing the index, middle, and ring fingers from the palm and the thumb, but not for

distinguishing the index from the ring fingers, since they may have approximately the same

values for this feature (e.g., shape diameter). Many multiclass classifiers (e.g., SVMs) adopt

a one-against-the-rest strategy, which attempts to separate each class from all the rest. Such

classifiers would not be able to benefit from this feature in this case, since its values are not

clearly discriminating all classes. In fact, there might beno class-specific features at all. Joint-

Boost can exploit this feature to distinguish these fingers first, and then in the next rounds of

boosting, other features can be selected to further discriminate them. This process of finding

commonalities between classes substantially improves thegeneralization error as shown by

Torralbaet al. [142].

The classifier is composed ofdecision stumps. A decision stump is a very simple classifier that

scores each possible class labelc, given the feature vectorx, based only on thresholding its

f -th entryxf . A JointBoost decision stump can be written as:

h(x,c;φ) =

a xf > τ andc∈ CS

b xf ≤ τ andc∈ CS

kc c /∈ CS

(2.64)

In other words, each decision stump stores a set of classesCS. If c ∈ CS, then the stump

comparesxf against a thresholdτ, and returns a constanta if xf > τ, and another constantb

otherwise. Ifc /∈ CS, then the comparison is ignored; instead, a constantkc is returned instead.

There is onekc for eachc /∈ CS. The parametersφ of a single decision stump aref ,a,b,τ, the

setCS, andkc for eachc /∈ CS.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 48

The probability of a given classc is then computed by summing the decision stumps and then

performing the softmax transformation:

H(x,c) = ∑
m

hm(x,c;φm) (2.65)

P(c|x) =
exp(H(x,c))

∑C
j=1exp(H(x, j))

(2.66)

GivenN training pairs(xi , ti), JointBoost minimizes the weighted multiclass exponentialloss

over the training set:

J =
N

∑
i=1

∑
c∈C

wi,cexp(−I(ti ,c) H(xi ,c)) (2.67)

where each training pair is assigned a per-class weightwi,c, H(z, l) is defined in Equation 2.65,

C is the set of possible class labels, andI(ti ,c) is an indicator function that is 1 whenti = c and

−1 otherwise.

The algorithm proceeds iteratively as Adaboost. The algorithm stores a set of weights ˜wi,c

that are initialized to the weightswi,c, representing the confidence for each sample. Then, at

each iteration, one decision stump (Equation 2.64) is addedto the classifier. The parameters

φm of the stump at iterationm are computed to optimize the following weighted least-squares

objective:

Jwse(φm) = ∑
c∈C

N

∑
i=1

w̃i,c(I(ti ,c)−hm(xi ,c;φm))
2 (2.68)

whereC are the possible class labels. The optimala,b,kc are computed in closed-form, and

f ,τ,CS are computed by brute-force. When the number of labels|C | is large, then a greedy

heuristic search can be used forCS [142]. Once the parametersφm are determined, the weights

are updated as:

w̃i,c← w̃i,cexp(−I(ti ,c) h(xi ,c;φm)) (2.69)

and the algorithm continues with the next decision stump.

The complexity of JointBoost isO(|C |2 ·N ·D ·T), if greedy search is used for findingCS, and

O((2|C |) ·N ·D ·T) if brute force search is used, where|C | is the number of labels,N is the

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 49

number of training samples,D is the number of dimensions ofx, T is the number of boosting

rounds.

We show results of applying the JointBoost algorithm for the mesh labeling problem in Fig-

ure 2.4. The validation meshes are used to determine when to stop the boosting iterations; at

each iteration, the classification error is measured on the validation meshes. We stop at the

iteration where the validation error is minimized. Jointboost has reasonable results in both the

humans and animals example. However, I have to emphasize that by no means Jointboost or

boosting are the best classification techniques for any taskin general. In the problems pre-

sented in this thesis, boosting was an appropriate choice, because we are dealing with very

high-dimensional input feature spaces, where only a few different features might be relevant

for each task. Boosting also offers fast sequential learningalgorithms that was also important in

our problems, since we were dealing with large training datasets. Jointboost also produced out-

put probabilities suitable for combination with other terms in the Conditional Random Fields

models that we used in our problems.

However, boosting also has a number of limitations. The greedy weak learner selection strategy

may not always yield the optimal set of features that are relevant for a task. The exponential

cost function that boosting mainly deals with, is not robustto outliers. The number of boosting

iterations is a parameter that is usually user-adjusted. Running too many boosting iterations

might result in overfitting, although Adaboost has been shown to have very good generalization

performance in many applications. Alternatively, the boosting iterations can be terminated

when the error measured in a validation set reaches to a minimum. However, using a validation

set prevents us from using the whole training dataset and thegeneralization performance might

strongly depend on the specific selection of the validation set.

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 50

2.4.3 Boosting for regression

Adaboost has been extended for regression as well. If we consider a sum-of-squares error

function for regression, then the iterative minimization of an additive model of the form 2.61

simply involves fitting each weak learner to the residual errors ti − fm−1(x) of the previous

model [35]. Here, the weak learner can be a simple regressionfunction involving one of the

input features, as also in the case of boosting for classification.

Here we will focus on a technique, that aims at approximatingthe target property itself rather

than the residuals at each boosting iteration, since it is better for learning complex target prop-

erties and is less prone to overfitting. This technique was introduced by Zemel and Pitassi [155]

and is known as gradient-based boosting for regression. thegradient-based boosting technique

aims at learning an additive model of the following form to approximate a target property:

F(x) = ∑
m

αmφm(x) (2.70)

where the functionsφm(x) are the weak learners andαm are their corresponding weights. The

functionsφm(x) can be selected to be linear functions of single features, asin the case of

boosting for classification with decision stumps.

GivenN training pairs{xi , ti}, i = {1,2, ...,N}, whereti are exemplar values of the target prop-

erty, the gradient-based boosting algorithm attempts to minimize the average error of the weak

learners with respect to the weight vectorm:

L(r) =
N

∑
i=1

(
M

∏
m=1

rm
−0.5)exp(

M

∑
m=1

rm · (ti−φm(xi))
2) (2.71)

This objective function is minimized iteratively by updating a set of weights{wi} on the train-

ing samples. The weights are initialized to be uniform i.e.wi = 1/N, unless there is a prior

confidence on each sample. In this case, the weights can be initialized according to this confi-

dence. Then, we initiate the boosting iterations that have the following steps:

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 51

• for each weak learner, we minimize the following function:

Lm =
N

∑
i=1

wi(r
−0.5
m exp(rm(ti−φm(xi)))

2) (2.72)

with respect torm as well as the parameters of the weak learner functions. The parameter

rm are optimized with line search. For the first boosting iteration m= 1, we setrm = 1

always.

• we select the weak learner that yields the lowest value forLm.

• we update the weights on the training pairs:

wi = wi · r
−0.5
m exp(rm(ti−φm(xi))

2 (2.73)

• we normalizewi = wi/∑i wi so that they sum to 1.

Finally, we normalize the weightsrm = rm/∑k rm so that they sum to 1. The final prediction is

given by Eq. 2.70. The number of boosting iterations can be given as a parameter or we can

measure the hold-out validation error at each round and terminate boosting when it reaches a

minimum.

As in the case of boosting for classification, boosting for regression has the same limitations.

The greedy weak learner strategy might be suboptimal and theexponential cost function (Equa-

tion 2.71) is not robust to outliers. Terminating the boosting iterations using hold-out validation

error may also be suboptimal and is not using the whole training dataset.

2.5 Dimensionality Reduction

For many problems, the input datax or target property datat may be very high-dimensional.

On the other hand, our data points may lie close to a manifold of much lower dimensionality

than our original data space. For example, consider the caseof a vertex attribute on an ani-

mated mesh. The attribute data areNxD matrices, whereN is the number of animation frames

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 52

andD is the number of vertices on the mesh. The vertex attribute may have significant spatial

correlations on the mesh during the animation e.g., the position, the normal or the high-order

derivatives of a vertex of nearby vertices are significantlycorrelated. Thus, we can apply a

transformation to project the vertex attribute data to a lower subspace of much lower dimen-

sionality M << D. As a result, we can now perform processing of this reduced data in this

subspace. For example, if we want to predict surface curvature from animation parameters,

instead of learning a function for each vertex, we can learn much fewer functions for the com-

ponents of this subspace. This results in more compact models that can also be evaluated more

efficiently during runtime. We can re-project the reduced data back to the original space by

applying the inverse transformation. There are many other scenarios, where dimensionality

reduction can be useful and has been used extensively. For skeletal-based mesh animations,

the vertices positions are heavily correlated spatially when they are displaced according to the

rotations of joints, thus dimensionality reduction can be used to avoid computing coordinates

of each single vertex [149]. Dimensionality reduction can be also applied to the space of dis-

placement fields that move the vertices from a reference posedue to their redundancy e.g., skin

bulging in similar directions [2, 80, 121]. Similarly, dimensionality reduction is employed to

reduce the space the state space parameterization of deformable shapes and also find low-rank

approximations of diffuse radiance transfer for low-frequency lighting [61, 104, 102].

The most common technique for dimensionality reduction in computer graphics is Principal

Component Analysis. PCA can be defined as the orthogonal projection of the data onto a

linear subspace, known as principal subspace, such that thevariance of the projected data is

maximized. Alternatively, PCA can be defined as the linear projection that minimizes the

squared error between the original data points and their projections. In both cases, the solution

is the same. Given a training data setY, first, we subtract its mean̄Y = 1
N ∑N

i=1Y i from it.

Then we compute the eigenvectors of the covariance matrixSYY = 1
N ∑N

i=1(Y i − Ȳ)(Y i − Ȳ)T

and retain a subsetV of them corresponding to the largest eigenvalues. The columns of this

subset are orthonormal basis vectors. The dataY are projected to their linear subspace using:

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 53

Ys = VTY.

Here, we will present PCA from a probabilistic point of view. We will show that PCA gives

the maximum likelihood solution to a particular form of linear Gaussian latent variable model

(Section 2.5.1). Then, we will see another dimensionality reduction technique, called Inde-

pendent Component Analysis, which is based on the completelydifferent assumption that the

latent variable model is non-Gaussian. Finally, we will briefly refer to non-linear dimensional-

ity reduction techniques.

2.5.1 Principal Component Analysis

Let y be theD−dimensional variable whose dimensionality we wish to reduce. Letz be the

unknownM−dimensional latent variable withM << D onto whichy is projected. We assume

that the variablez is Gaussian-distributed, has zero mean and unit covariance: p(z) =N (0
¯
, I).

Based on the PCA model, we wish to find a linear transformation that maps fromz to y plus

noise:

y =Wz+µ + ε (2.74)

whereW is the unknownDxM re-projection matrix,ε is aD−dimensional zero-mean Gaussian

distributed noise variable with covarianceσ2I . This corresponds to a linear-Gaussian model,

thus the distribution ofy is also Gaussian with the same mean:

p(y) = N (y|µ ,C) (2.75)

The covariance matrixC can be expressed in terms ofW as follows:

C= E[(Wz+ ε)(Wz+ ε)T] = E[WzzTWT]+E[εεT] = WWT +σ2I (2.76)

(E here represents expectation). The posterior distributionp(z|y) will have the following form

[11]:

p(z|y) = N (z|(WTW+σ2I)−1WT(y−µ),σ−2WTW+ I) (2.77)

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 54

We wish now to estimateW,µ,σ with maximum-likelihood. Given a training data setY, the

corresponding log-likelihood is given as:

lnp(Y|µ,W,σ2)=
N

∑
i=1

lnp(yi |W,µ,σ2)=−
ND
2

ln(2π)−
N
2

lndet(C)−
1
2

N

∑
i=1

(Y i−µ)TC−1(Y i−µ)

(2.78)

Setting the derivative of log-likelihood, the following solutions forµ ,σ2, andW can be found:

µML = Ȳ = 1
N ∑N

i=1Y i

σ2
ML = 1

D−M

D
∑

i=M+1
λi

WML = U
(

L −σ2I
)1/2R

(2.79)

whereU is aDxM matrix which is any subset (of sizeM) of the eigenvectors of the covariance

matrixSYY of Y, λi are its corresponding eigenvalues,L is aMxM diagonal matrix that has the

eigenvaluesλi as diagonal elements, andR is an arbitrary rotation matrix. This means that the

maximum-likelihood estimation ofW is uniquely defined up to a rotation i.e., the distribution

of y is left unchanged if we apply rotations to the latent space, since the distribution of the

latent variablez is isotropic Gaussian. In the classical PCA, it is assumed that R = I . In this

case, the columns ofWML are scaled versions of the eigenvectors of the covariance matrix S

(known as principal components). The maximum of the likelihood is obtain by selecting theM

eigenvectors corresponding to theM largestλi eigenvalues of the covariance matrixS.

From the above, in order to project they to the corresponding linear subspace based on PCA,

we find the mean of the posterior of Eq. 2.77:

E[z|y] = (WT
MLWML +σ2I)−1WT

ML(y− Ȳ) (2.80)

In the special case where we assumeσ2→ 0 i.e., there is no noise in Equation 2.74, then the

posterior mean is simplified as follows:

E[z|y] = (WT
MLWML)

−1WT
ML(y− Ȳ) (2.81)

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 55

If we computeW based on the eigendecomposition ofSwhich results in orthogonal columns

for W, thenE[z|y] =WT
ML(y−Ȳ), which is the result of the classical PCA (assuming an orthog-

onalW also results in much faster projections since there is much less computation involved).

Thus, classical PCA is a special case of this probabilistic formulation. The probabilistic for-

mulation of PCA is also called Probabilistic PCA (PPCA) and allows to handle missing values

in the training data. It also allows to compute the principalcomponents using other algorithms

(such as Expectation-Maximization), that are more efficient than performing eigendecomposi-

tion in the covariance matrix (or alternatively, Singular Value Decomposition onY), especially

whenD is very large.

An issue with PCA and its probabilistic formulation is how to select M i.e., assuming that

we perform eigendecomposition on the data covariance matrix, how many eigenvectors we

should keep. A typical solution is to retain the first eigenvectors that correspond to a prescribed

variance of the data. This threshold however assumes that weknow how much percentage of

the variance corresponds to noise. This might not be always possible. Another technique is to

use a hold-out validation set, and check for which values ofM the log-likelihood of Equation

2.78 is maximized for this set. This can be however costly andalso enforces us not to use the

whole training dataset. A different approach is to use a Bayesian approach for PCA, where we

marginalize out the model parametersW,µ,σ2 with respect to prior distributions. Specifically,

it is common to use a Gaussian prior over each column ofW, that could also lead to a sparse

solution for it. More details for performing Bayesian PCA can be found here [11].

This version of PCA has also several limitations. First, it finds the principal components of the

data under the strict assumption that we have a linear Gaussian model of the form 2.74. How-

ever, there might be no appropriate subspace that is linearly related to our data and even worse,

the latent variables might not follow Gaussian distributions. PCA is also based on the assump-

tion that the high-variance principal components correspond to the interesting dynamics of the

data while the low-variance ones correspond to noise. This might not be also true, especially in

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 56

PCA base 1 PCA base 2 PCA base 5

ICA base 1 ICA base 2 ICA base 5

Figure 2.6: Cloth curvature-bases found by PCA (top) and ICA (bottom). The ICA bases

exhibit much greater sparsity and locality, capturing foldand wrinkle structures. Colors cor-

respond to magnitude, with white for zero and red for the largest magnitude.

the case where we have geometry data that have some structuree.g., they are correlated locally.

For example, in the case of data-driven curvature, in Figure2.6 we show that PCA yields basis

vectors that are rather global, and does not correspond to the localized structure of curvature

on a mesh. ”The main reason for this is that it chooses orthogonal basis vectors that mainly

correspond to high-variance in the data. These are optimal in terms of minimizing the mean

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 57

squared error between the original data points and their projections, however this version of

PCA does not impose any requirements for them to be sparse or localized.”.

2.5.2 Independent Component Analysis

As we saw above, PCA assumes models with latent variables based on linear-Gaussian distri-

butions. This limitation lead us to search for other formulations of dimensionality reduction

where the distributions of the latent variables are non-Gaussian. A particular class of such

models attempts to find models of the formz= Qy by assuming that the distributions over the

latent variables factorizes so that:

p(z) =
M

∏
j=1

p(z j) (2.82)

In this case, the latent space consists of statistically independent latent variables represented

by z j . This class of models is also known as Independent Component Analysis. Finding such

independent components is not possible with PCA that assumesa Gaussian distribution on

the latent variables i.e., the PCA model cannot distinguish between two different choices of

latent components that differ by a rotation in latent space.Instead, in order to estimate the

independent latent components, we need to assume that they are non-gaussian. One popular

way to find independent components is to find the transformationz= Qy that maximizes non-

gaussianity. There are many different ways to measure non-gaussianity. One way to measure

it is by estimating the kurtosis ofQy. The kurtosis is a statistical measure of the ”peakedness”

of the probability distribution of a real-valued random variable. The kurtosis is zero for a

gaussian random variable. For most (but not quite all) non-gaussian random variables, kurtosis

is nonzero. Thus, the goal in this formulation would be to maximize the absolute kurtosis.

argmax
Q
{E[z4]−3(E[z2])2} (2.83)

whereE represents again expectation. In practice we would start from an initialization ofQ,

compute the direction in which the kurtosis is growing most strongly (if kurtosis is positive)

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 58

or decreasing most strongly (if kurtosis is negative) basedon an optimization technique. A

problem with using kurtosis is that it is very sensitive to outlier samples ofy.

Another way to measure non-gaussianity is to maximize the negentropy of the distribution

associated withz, which is defined as follows:

J(z) = H(zgauss)−H(z) (2.84)

wherezgaussis the Gaussian random variable of the same covariance matrix asz andH(z) is

the entropy of the distribution ofz:

H(z) =−∑
i

p(z) logp(z) (2.85)

Negentropy has the property to be always non-negative, and is zero if and only ifz has a

Gaussian distribution.

Another option is to use maximum-likelihood by assuming a specific non-Gaussian distribution

on the latent components. In practice, a common choice for the latent-variable distribution is

the following:

p(z j) =
1

π cosh(z j)
=

1
π(ez j +e−z j)

(2.86)

There are many more techniques to estimate the independent components in the latent space;

a tutorial can be found here [57]. In general, ICA is more appropriate to use than PCA in

geometry processing applications for which we expect that the geometry signal is a linear

superposition of other signals, possibly localized. It hasbeen often noted in the literature of

image processing that ICA applied to image data yields localized basis, e.g., [7, 9]. In the

case of data-driven curvature, in Figure 2.6 we show that ICA yields more localized and sparse

basis vectors corresponding to structure in the data, such as folds, wrinkles, and other similar

structures.

ICA also has its limitations. First, depending on the specificformulation of ICA, different

sets of independent components can be found. Finding is alsothe independent components is a

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 59

non-linear problem in contract to PCA. In practice, different techniques should be tested. In ad-

dition, in contrast to PCA, we cannot also determine the orderof the independent components

or their associated variance.

2.5.3 Non-linear dimensionality reduction techniques

PCA and ICA assume linear subspaces for dimensionality reduction i.e., the projected data are

linearly related to the original data. However, there couldbe cases where the data points may

lie close to a non-linear manifold of much lower dimensionality. The PCA and ICA models

can be extended to learn non-linear manifolds, by applying the kernel trick on the input data

points, using various kernels, such as the ones described inSection 2.2.2. This gave rise to the

kernel PCA and kernel ICA models. Kernel-based techniques require much more training data

to reliably learn a non-linear manifold and require significant more computation. Fortunately,

in many cases, much of the computation may not need to be performed in feature spaceφ(y),

since the kernel trick can factor away much of the computation [11].

Other techniques attempt to compute a non-linear embeddingso that relationships in local

neighborhoods of data-points are preserved, such as geodesic distances (Isomap [138], Curvi-

linear Distance Analysis ([24]). Alternatively, a graph isconstructed so that neighborhood in-

formation of the data points is incorporated and then the Laplacian of the graph is used to com-

pute a low-dimensional representation of the data (Laplacian Eigenmap [8]). The method of

Locally-Linear Embedding similarly expresses each point as a linear combination of its neigh-

bors and then an eigenvector-based optimization techniqueis used to find the low-dimensional

embedding of points [114]. A different approach to nonlinear dimensionality reduction is

through the use of autoencoders, a special kind of feed-forward neural networks [54].

A complete analysis of non-linear dimensionality techniques is beyond the scope of this thesis.

More information on non-linear dimensionality reduction techniques can be found in [11].

CHAPTER 2. MACHINE LEARNING TECHNIQUES FOR GEOMETRY PROCESSING 60

2.6 Other learning topics

The literature in machine learning is vast and it is worth exploring many different topics and

techniques for applications in geometry processing. This chapter focused on several impor-

tant concepts in machine learning in regression, classification, boosting, and dimensionality

reduction that are common in problems that we want to learn a mapping from a input fea-

ture space to a set of continuous or categorical properties.There are several other areas in

machine learning that are beyond the scope of this thesis, such as Bayesian inference, neural

networks, Bayesian networks, sampling techniques from probability distributions (e.g., Monte

Carlo sampling techniques), dynamic graphical models (e.g., Hidden Markov Models), mod-

eling of probability distributions (e.g., density estimation) to name a few. On the other hand,

possible applications of techniques from these areas for geometry processing and computer

graphics in general can be worth exploring in the future.

Chapter 3

Learning mesh segmentation and labeling

In this chapter, I present a machine learning approach for 3Dmesh segmentation and labeling of

parts1. Segmentation and labeling of shapes into meaningful partsis fundamental to shape un-

derstanding and processing. Numerous tasks in geometric modeling, manufacturing, animation

and texturing of 3D meshes rely on their segmentation into parts. Many of these problems fur-

ther require labeled segmentations, where the parts are also recognized as instances of known

part types. For most of these applications, the segmentation and labeling of the input shape is

manually specified. For example, to synthesize texture for ahumanoid mesh, one must identify

which parts should have “arm” texture, which should have “leg” texture, and so on. Even tasks

such as 3D shape matching or retrieval, which do not directlyrequire labeled-segmentations,

could benefit from knowledge of constituent parts and labels. However, there has been very

little research in part labeling for 3D meshes, and 3D objectsegmentation likewise remains an

open research problem [16].

1The work presented in this chapter is also published in ACM Transactions on Graphics, Vol. 29, No.
3, 2010 [68]. Project web page: http://www.dgp.toronto.edu/~kalo/papers/LabelMeshes/, ©ACM, (2010).
This is the author’s version of the work. It is posted here by permission of ACM for your personal
use. The definitive version was published in ACM Transactions on Graphics, Vol. 29, No. 3, 2010,
http://doi.acm.org/10.1145/1833349.1778839

61

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 62

Labeling of mesh parts is expressed as a problem of learning amapping from shape-based

features to segment labels for each face. The segment labelsare categorical target properties,

thus, this mapping is a classification problem (Section 2.3). The labels of neighboring faces are

strongly correlated, thus, the labeling is expressed as a problem of optimizing a Conditional

Random Field 2.3.4. The CRF objective function includes unary terms that assess the consis-

tency of faces with labels, and pairwise terms between labels of adjacent faces. The objective

function is learned from a collection of labeled training meshes. The basic terms of the CRF

are learned using JointBoost classifiers 2.4.2, which automatically select from among hundreds

of possible geometric features to choose those that are relevant for a particular segmentation

task. Holdout validation is used to learn additional CRF parameters.

We evaluate our method on the Princeton Segmentation Benchmark, with manually-added la-

bels. Our method yields 94% labeling accuracy, and is the first labeling method applicable

to such a broad range of meshes. In segmentation, our method yields 9.5% Rand Index er-

ror, significantly better than the current state-of-the-art, with results similar to human-provided

segmentations for most classes. No manual parameter tuningis required. The main limitation

of our approach is that it requires a consistently-labeled training set; however, we find that, for

many cases, just a few training meshes suffice to obtain high-quality results. Different seg-

mentation tasks can be specified by providing examples of thenew task, without requiring any

manual parameter adjustments. Once learned, the algorithmcan be applied to databases of the

same type of objects to automatically segment and label them.

To date, nearly all existing mesh segmentation methods attempt segmentation without recogni-

tion. When the goal of segmentation can be formulated mathematically (e.g., partitioning into

developable patches), low-level geometric cues may be sufficient. However, many tasks require

some understanding of the functions or relationships of parts, which are not readily available

from low-level geometric cues. It is unknown whether human-level 3D mesh segmentation is

possible without the benefit of higher-level cues. It is worth noting that, in computer vision,

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 63

after decades of research on performing image segmentationalone, most work has turned to the

joint segmentation and recognition of images. Furthermore, current models are learned from

training data, allowing them to employ much more sophisticated models than are possible with

manually-tuned models. These methods produce state-of-the-art results on several benchmark

tests. Hence, it is worth asking: is part recognition usefulfor 3D mesh segmentation? Further-

more, can segmentation algorithms benefit from models learned from human-labeled meshes?

Our work provides positive evidence for both questions.

3.1 Related work

Mesh segmentation has been a very active area of research in computer graphics. Most effort

has focused on finding simple geometric criteria for segmentation of a single input mesh [93,

125, 74, 90, 73, 128, 6, 89, 40, 87, 83, 84, 55]; see [5, 123, 16]for surveys. Such approaches

employ simple, interpretable geometric algorithms, but are limited to a single generic rule

(e.g., concavity, skeleton topology, fitting shape primitives) or a single feature (e.g., shape

diameter, curvature tensor, geodesic distances) to partition an input mesh. Our method employs

many of the geometric features proposed by these methods. For many problems, different

types of surfaces and different surface parts may require different features for segmentation.

Because our model is learned, it can employ many different geometric features to partition

the input mesh. Our algorithm learns problem-specific parameters from training examples,

rather than requiring manually-tuned parameters. Furthermore, our method jointly segments

and labels meshes. Simariet al. [129] perform segmentation and labeling jointly. However,

this method requires manual definition and tuning of objective functions for each type of part,

and is sensitive to local minima.

A few approaches make use of part matching for segmentation,and can transfer part labels

based on the matches. Kraevoyet al. [79] and Shapiraet al. [124] perform an initial segmenta-

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 64

head
torso
upper arm
lower arm
hand
upper leg
lower leg
foot

arm
lens
bridge

fin
stabilizer
body
wing

tail
body
fin

ear
head
torso
arm
leg

top
leg

antenna
head
thorax
leg
abdomen

thumb
index
middle
ring
pinky
palm

cup
handle

face
hair
neck

big roller
medium roller
axle

handle
cup
top
base

head
tentacle

back
middle
seat
leg

head
neck
torso
leg
tail

head
wing
body
leg
tail

handle
joint
jaws

big cube
small cube

ear
head
torso
back
upper arm
lower arm
hand
upper leg
lower leg
foot
tail

Figure 3.1: Labeling and segmentation results from applying our algorithm to one mesh each

from every category in the Princeton Segmentation Benchmark [16]. For each result, the algo-

rithm was trained on the other meshes in the same class.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 65

tion, and then match segments and transfer labels based on this segmentation. These methods

require the initial segmentation to be sufficiently reliable. Pekelny and Gotsman [108] track and

label rigid components in sequences of 3D range data throughthe Iterated Closest Point reg-

istration algorithm, given an initial user segmentation. Similarly, Golovinskiy and Funkhouser

[41] simultaneously partition collections of 3D models by matching points between meshes

based on rigid mesh alignment. A user may provide example segmentations to be included

in the matching. These methods are limited to cases where an accurate rigid correspondence

exists.

Joint image segmentation and recognition has recently beenan active topic in computer vision

research. Early works in this area include [26, 48, 78, 81, 144, 122]. Our method is most

directly inspired by TextonBoost [127], which performs joint image segmentation and recog-

nition, using a model learned from a training database. As inTextonboost, we also make use of

JointBoost and Conditional Random Fields. We add new components to the model, including

3D geometric feature vectors, 3D contextual features, cascades of classifiers, and a learned

pairwise classifier term, all of which we find to be essential to obtaining good results.

Our work is also related to segmentation and recognition of 3D range data [3, 88, 98]. These

methods employ small sets of features, such as local point density or height from ground,

which are specialized to discriminate a few object categories in outdoor scenes, or to separate

foreground from background. Golovinskiy et al. [42] segment urban range data using a graph

cut method, and then apply a learned classifier, based on geometric and contextual shape cues.

Range data methods aim to identify large-scale structures from point clouds, such as separating

cars from roads, whereas we aim to distinguish smaller partsin 3D meshes. Hence, unlike

these methods, we employ a large variety of shape-based meshfeatures along with appropriate

contextual features, and also use sophisticated classifiers for the unary and pairwise terms.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 66

head
torso
upper arm
lower arm
hand
upper leg
lower leg
foot

0.0

0.2

0.4

0.6

0.8

1.0

(a) Training meshes
(b) Result using only
the unary classifier

(c) Entropy of
the unary classifier

(d) Geometry-dependent
pairwise term

(e) CRF w/o boosting
for pairwise term

(f) CRF w/o contextual
features

(g) Full CRF
result

Figure 3.2: Components of our algorithm.(a) The entire training set for this example consists

of four meshes. The bottom-right mesh is used as the validation set.(b) Labeling result using

only the unary classifier.(c) Visualization of classifier uncertainty, computed as the entropy of

the probabilities output by the unary classifier. Red valuesindicate greater uncertainty. The

classifier is uncertain mainly near object boundaries, and where corresponding parts in the

training meshes have inconsistent boundaries.(d) Geometry-dependent pairwise term (expo-

nentiated and normalized). This term prefers boundaries tooccur at specific locations.(e)

Result of applying a CRF model without JointBoost for the pairwise term.(f) CRF result, but

omitting contextual label features.(g) Result of applying our complete CRF model. Note the

accuracy of the result, despite the mesh having different pose and body shape from the training

meshes.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 67

3.2 CRF model for segmentation and labeling

We now describe our algorithm for segmenting and recognizing parts of a mesh; the procedure

for learning this model is described in Section 3.3. Our goalis to label each mesh facei with a

labell ∈C , whereC is a predefined set of possible labels, such as “arm,” “leg,” or “torso.” Each

face has a vector ofunary featuresxi, which includes descriptors of local surface geometry and

context, such as curvatures, shape diameter, and shape context. These features provide cues

for face labeling. In addition, for each adjacent pair of faces, we define a vector ofpairwise

featuresyi j , such as dihedral angles, which provide cues to whether adjacent faces should have

the same label. Then, computing all mesh labels involves minimizing the following objective

function:

E(c;θ) = ∑
i

aiE1(ci ;xi ,θ1)+∑
i, j

ℓi j E2(ci ,c j ;yi j ,θ2) (3.1)

where the unary termE1 measures consistency between the featuresxi of mesh facei and its

label ci, the pairwise termE2 measures consistency between adjacent face labelsci andc j ,

given pairwise featuresyi j . The model parameters areθ = {θ1,θ2}. The terms are weighted

by the areaai of facei, and the length of the edgeℓi j between facesi and j. In order to make

energies comparable across meshes, the areasai are normalized by the median face area in the

mesh, and the edge lengthsℓi j are normalized by the median edge length. Details of the energy

terms and feature vectors are given later in this section.

As mentioned in Section 2.3.4, this type of model is referredto as a Conditional Random Field.

The conditional probability of a labeling given the mesh is shown in Equation 2.57. The CRF

model is more appropriate for segmentation and labeling than a Markov Random Field model

that would define a joint probability over the mesh and the labels, from which the conditional

may then be derived. CRFs have two advantages over MRFs for segmentation and labeling.

Since the CRF allows the labels to be conditioned upon a set of observed features, the pairwise

termE2 in a CRF can depend on the input data, which is not true in an MRF. This allows us, for

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 68

example, to express that segment boundaries are more likelyto occur between a pair of faces

with a small exterior dihedral angle. Second, CRF learning algorithms optimize for labeling

performance, whereas MRF learning algorithms attempt to model both the input features and

the labels, and thus may have worse labeling performance.

The objectiveE(c;θ) is optimized using alpha-expansion graph-cuts [12]. The resulting label-

ing c implicitly defines a segmentation of the mesh, with segment boundaries lying between

each pair of faces with differing labels. Note that this means that our method cannot separate

adjacent parts that share the same label. Furthermore, our method is only suitable for learning

segmentations that have attached labels. However, we do notrequire the number of segments

to be specified in advance.

3.2.1 Unary Energy Term

The unary energy term evaluates a classifier. The classifier takes the feature vectorx for a face

as input, and returns a probability distribution of labels for that face:P(c|x,θ1). Specifically,

we use a JointBoost classifier [127, 142], summarized in Section 2.4.2. Then, the unary energy

of a labelc is equal to its negative log-probability:

E1(c;x,θ1) =− logP(c|x,θ1) (3.2)

The unary classifier is the most important component of our system. As illustrated in Figure

3.2(b), labeling using just this term alone gives good results in part interiors, but not near

boundaries. This is accurately reflected by the uncertaintyof the classifier (Figure 3.2(c)).

Next, we add a pairwise term to refine these boundaries.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 69

3.2.2 Pairwise Energy Term

The pairwise energy term penalizes neighboring faces beingassigned different labels:

E2(c,c
′;y,θ2) = L(c,c′) G(y) (3.3)

This term consists of a label-compatibility termL, weighted by a geometry-dependent termG.

The main role of the pairwise term is to improve boundaries between segments and to prevent

incompatible segments from being adjacent. The pairwise energy term is always zero whenc

andc′ have the same label. Hence, the pairwise term cannot be used on its own, since it assigns

zero energy when all faces have the same label. The geometry-dependent term is visualized in

Figure 3.2(d).

The label-compatibility termL(c,c′) measures the consistency between two adjacent labels.

This term is represented as a matrix of penalties for each possible pair of labels, which allows

different pairs of labels to incur different penalties. Forexample, head-ear boundary edges may

need to be penalized less than head-torso boundary edges (since ears might be much smaller

parts and less common in the training examples) while head-foot boundaries might never occur.

The costs are non-negative(0≤ L(k, l)) and symmetric(L(k, l) = L(l ,k)), for labelsk, l ∈ C .

Furthermore, we constrain there to be no penalty when there is no discontinuity:L(k,k) = 0

for all k.

The geometry-dependent termG(y) measures the likelihood of there being a difference in

labels, as a function of the geometry alone. This term has thefollowing form:

G(y) =−κ logP(c 6= c′|y,ξ)

−λ log(1−min(ω/π,1)+ ε)+µ (3.4)

The first term is the output of a JointBoost classifier that computesP(c 6= c′|y,ξ), the probabil-

ity of two adjacent faces having distinct labels, as a function of pairwise geometric featuresy.

This classifier helps detect boundaries better than using only dihedral angles (Figure 3.2e). The

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 70

second term penalizes boundaries between faces with high exterior dihedral angleω, following

Shapira et al. [124]. Theµ term penalizes boundary length and is helpful for preventing jaggy

boundaries and for removing small, isolated segments [40, 124]. A small constantε is added

to avoid computing log0.

3.2.3 Feature vectors

We do not know in advance which features will be useful for segmentation. Furthermore, it

may be that different features are informative for different mesh parts and for different styles

of segmentation. As a result, we construct our feature vectors out of as many informative

features as possible. Since the JointBoost algorithm performs automatic feature selection, each

classifier only uses a subset of the provided features. In ourexperiments, we have not found a

case where adding informative features led to worse results. Hence, one may add other features

besides the ones listed here. We find that the precise form of the features is important: careful

selection of details, such as binning strategy and normalization, can improve results. Adding

features does increase computation time, especially for preprocessing and learning. Hence, we

have attempted to design features that are as informative aspossible.

Unary features. We use multi-scale surface curvature, singular values extracted from Prin-

cipal Component Analysis of local shape, shape diameter [124], distances from medial surface

points [91], average geodesic distances [53, 157], shape contexts [10], and spin images [64] to

form a basic 651-dimensional feature vectorx̃i per facei. Full details of our implementation

for these features are given in Appendix A.1.

Contextual label features. Training a classifier using only the above features is often suf-

ficient for labeling. However, in many cases, better resultscan be achieved by re-training an

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 71

additional classifier that uses information about the global distribution of labels around each

mesh face. Since the labels are not known in advance, they areapproximated by an initial ap-

plication of the classifier with the above features. We introducecontextual label featuresbased

on these initial labels.

We first train an initial JointBoost classifier using the initial feature vector̃x. This classifier can

be applied to each training mesh to produce per-face class probabilitiesP(c|x̃). Then, for each

facei, we compute a histogram of these probabilities, which captures the global distribution of

part labels relative to the face, in a manner inspired by shape contexts [10], and similar to image

auto-contexts [143] and bags of semantic textons [126]. Thehistogram bins are determined as

a function of geodesic and euclidean distances. These features allow the algorithm to make use

of estimates of labels from the global context of each face. Details of the histograms are given

in the Appendix.

The values of these histogram bins form a setx̄1 of contextual label features that are concate-

nated withx̃ to produce the full feature vectorx1 = [x̃T , x̄T
1]

T . The new feature vector has

651+35· |C | features, where|C | is the number of labels. Then, we train a new JointBoost

classifier fromx̄1 to class probabilities. The new classifier will now take intoaccount the gener-

ated contextual features to further discriminate parts, asshown in Figure 3.2g, compared to the

result of Figure 3.2f, where only the initial JointBoost classifier is used (without the contextual

label features).

After training the second classifier, we bin the newly produced class probabilitiesP(c|x1) to

produce new contextual label featuresx̄2. These are concatenated withx̃ to produce a third fea-

ture vectorx2. Then, we can train a third classifier based on the feature vector x2. This process

can be iterated to further refine the discrimination of classes, similar to cascade generalization

[39]. This approach may be iteratedN times to produceN feature vectors, until the error on

the validation set does not increase. In our experiments, the algorithm usually selectsN = 3.

Computing the feature vectors for a new surface entails repeating the same process as above:x̃

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 72

is computed for each face, then the first JointBoost produces the first set of contextual features

x̄, and the process repeats until gettingxN, which is used as the complete feature vectorx. We

find that using these contextual features produces a significant improvement in performance,

about 3−10%, depending on the mesh category.

Pairwise features. The pairwise feature vectoryi j between facesi and j consists of the dihe-

dral angles between the faces, and differences of the following features between the faces: cur-

vatures and surface third-derivatives, shape diameter differences, and differences of distances

from medial surface points. We note that dihedral angles areincluded in both the pairwise

features and in Equation 3.4. The reason is that the probability of two adjacent faces having

distinct labels, as outputted by the pairwise classifier, might not be very well localized around

a potential boundary. This especially happens when the boundaries of the training human seg-

mentations are noisy. Including the dihedral angles in Equation 3.4 may further ”move” the

segmentation boundaries towards faces with high exterior dihedral angle more accurately.

We also use contextual label features, similar to the features above; however, we found in

our experiments that these contextual features have littleimpact on the results (about 0.5%

improvement). The complete feature vectory is 191-dimensional. Details of the pairwise

features are given in Appendix A.2.

3.3 Learning CRF parameters

We now describe a procedure for learning the parameters of the CRF model, given a set of

labeled training meshes. The natural approach to CRF learningis Maximum Likelihood or

MAP, e.g., maximizing Equation 2.57 over all training meshes. Unfortunately, as mentioned in

2.3.4, computing the normalizationZ is intractable. While contrastive divergence can be used

for this optimization [48], this method is computationallyexpensive, and would not be feasible

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 73

at the scale of mesh processing.

Instead, we perform the following steps, based on the approach of Shotton et al. [127]. First, we

randomly split the training meshes into anexemplar setand avalidation set, in a proportion of

approximately 4 : 1. We then learn the JointBoost classifiers for the unary term and the pairwise

term from the exemplar set. Finally, the remaining CRF parameters are learned by iteratively

optimizing segmentation performance on the validation set. These steps are described below.

3.3.1 Learning JointBoost classifiers

Here, we summarize the JointBoost learning algorithm, for learning classifiers of the form

described in Section 2.4.2. See also [142] for an excellent explanation and derivation of the

algorithm.

The input to the algorithm is a collection ofM training pairs(zi ,ci), wherezi is a feature

vector andci is the corresponding class label for that feature. Furthermore, each training pair

is assigned a per-class weightwi,c. JointBoost minimizes the weighted multiclass exponential

loss over the exemplar set:

J =
M

∑
i=1

∑
l∈C

wi,cexp(−I(ci , l) H(zi , l)) (3.5)

whereH(z, l) is defined in Equation 2.65,C is the set of possible class labels, andI(c,c′) is an

indicator function that is 1 whenc= c′ and -1 otherwise.

For the unary terms, the training pairs are the per-face feature vectors and their labels(xi ,ci)

for all mesh faces in the exemplar set. For the pairwise terms, the training pairs are the pairwise

feature vectors and their binary labels(yi j ,ci 6= c j). For the unary term, thewi,c is the area of

face i. For the pairwise term,wi,c is used to re-weight the boundary edges, since the training

data contains many more non-boundary edges. LetNB andNNB be the number of each type of

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 74

edge, thenwi,c = ℓNB for non-boundary edges andwi,c = ℓNNB for boundary edges, whereℓ is

the corresponding edge length.

The algorithm proceeds iteratively. The algorithm stores aset of weights ˜wi,c that are initialized

to the weightswi,c. Then, at each iteration, one decision stump (Equation 2.64) is added to the

classifier. The parametersφ j of the stump at iterationj are computed to optimize the following

weighted least-squares objective:

Jwse(φ j) = ∑
l∈C

M

∑
i=1

w̃i,l
(

I(ci , l)−h(zi , l ;φ j)
)2

(3.6)

whereC are the possible class labels. Following Torralba et al. [142], the optimala,b,kl are

computed in closed-form, andf ,τ,CS are computed by brute-force. When the number of labels

|C | is greater than 6, the greedy heuristic search is used forCS. Once the parametersφ j are

determined, the weights are updated as:

w̃i,c← w̃i,cexp(−I(ci , l) h(zi , l ;φ j)) (3.7)

and the algorithm continues with the next decision stump.

We run the algorithm for at most 300 iterations. To avoid overfitting, we also monitor the clas-

sifier’s performance on the validation set by computing the cost function of Eq. 3.5 after each

iteration, and keep track of which iterationj∗ gave the best score. At the end of the process,

we return the classifier from stepj∗ (i.e., discarding decision stumps from after stepj∗). We

also terminate early if the classifier’s performance in the validation set has not improved over

the last 50 iterations.

3.3.2 Learning the remaining parameters

Once the JointBoost classifiers have been learned, we learn the remaining parameters of the

pairwise term(κ,λ ,µ,L) by hold-out validation. Specifically, for any particular setting of these

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 75

(a)

(b) (c)

(d) (e) (a)

(b) (c)

(d) (e)

(b) (c)

(d) (e)
(a)

back
middle
seat
leg

Training meshes

(a) (a) (a)

(b)
(b) (b)

(c)
(c) (c)

(d) (e)

(d)
(d)

(e)
(e)

head

tentacle

Training meshes

(a) (a)

(b) (b)(c) (c)

(d) (e) (d) (e)

head
neck
torso
leg
tail
ear

Training meshes

Figure 3.3: Comparisons to previous segmentation methods, for chairs, octopuses, and

quadrupeds. For each test, the entire training set is shown onthe left. In each figure, the

methods compared are:(a) our method,(b) average human segmentation from the Princeton

Segmentation Benchmark,(c) Consistent Segmentation [Golovinskiy 2009],(d) Shape Diame-

ter [Shapira In Press],(e)Randomized Cuts [Golovinskiy 2008], with number of segments de-

fined as the average number of segments in the category. The Consistent Segmentation method

provides labels in addition to segmentation based on the same training set. The other methods

only perform segmentation, and do not make use of training data.

parameters, we can apply the CRF to all of the validation meshes, and evaluate the classification

results. We seek the values of these parameters that give thebest score on the validation meshes.

We need to define an error function by which to evaluate classification results. A obvious

choice would be to measure what percentage of the mesh’s surface area is correctly labeled.

We refer to this as the Classification Error:

E =

(

∑
i

ai(I(ci ,c
∗
i)+1)/2

)

/

(

∑
i

ai

)

(3.8)

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 76

whereai is the area of facei, ci is the ground-truth label for facei, c∗i = argmaxP(c|xi) is the

output of the classifier for facei, andI(c,c′) defined as in Section 3.3.1. However, when train-

ing against this error, the algorithm tends to mostly refine boundaries between larger parts but

skip cuts that generate small parts, producing noticeable errors in the results without incurring

much penalty.

Instead, we optimize with respect to the Segment-Weighted Error which weighs each segment

equally:

ES= ∑
i

ai

Aci

(I(ci ,c
∗
i)+1)/2 (3.9)

whereAci is the total area of all faces within the segment that has ground-truth labelci.

These parameters are optimized in two steps. First, the Segment-Weighted Error is minimized

over a coarse grid in parameter space by brute-force search.Second, starting from the minimal

point in the grid, optimization continues using MATLAB’s implementation of Preconditioned

Conjugate Gradient with numerically-estimated gradients.

3.4 Results

We now describe experimental validation and analysis of ourapproach.

Data set. We employed data from the Princeton Segmentation Benchmark [16] for all of

our tests. The dataset provides 19 categories of meshes, segmentations provided by human

users, source code for computing evaluation scores, and theresults of applying many previous

segmentation methods.

We performed a few initial steps to process the data. Since segment labels are not provided

with the data, we manually assigned a set of labels to each class (Figure 3.1), according to

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 77

Rand Index

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

HumanTrain.
Data

SB19 SB12 SB6 SB3 Rand
Cuts

Shape
DiamConsistency Error

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

HumanTrain.
Data

SB19 SB12 SB6 SB3 Rand
Cuts

Shape
Diam

GCE

LCE

Figure 3.4: Evaluation of segmentation. For all methods, evaluations are performed accord-

ing to the protocols of [Chen et al. 2009], using all human segmentations in the Princeton

Segmentation Benchmark. ’SB19’ represents leave-one-out-error of our technique averaged

over all the categories of the benchmark. ’SB12’, ’SB6’, ’SB3’ represents the average error

using training sets of size 12,7,6, and 3 (see text for details). SB19 performs almost50%better

than the best existing methods. Performance drops with less training data, but, even with only

3 examples, our method still out-performs previous methods by a small margin.

the average human segmentation for each category. For example, almost all users partition the

elements of the chair class (Fig. 3.3) into legs, seats, back, and middle.

For each mesh, the Princeton benchmark provides multiple segmentations. The dataset con-

tains significant variations in types of segmentations: while many segmentations are consis-

tent with each other, one user might segment a human into just4 segments, whereas another

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 78

might use 50 segments. We select one of these segmentations to be labeled and used as the

training/test data for that mesh, in order to reduce the sizeof the dataset and remove outlier

segmentations. For most meshes, the exemplar segmentationwas selected as the segmentation

with the lowest average Rand Index to all other segmentationsfor that mesh. However, in a few

cases, the mesh with the best score had a very atypical segmentation to the rest of the category

(e.g., the best segmentation for one octopus mesh had tentacles subdivided into many parts,

whereas the tentacles in the rest of the category were not), in which case, we manually merged

segments or chose the second-best segmentation.

Labeling results. We now evaluate the quality of the labels produced by our method. Be-

cause each category in the database has only 20 meshes, we evaluate our method using leave-

one-out cross-validation. For each meshi in each category, we train a CRF model on the

other 19 meshes in that class, and then apply it to meshi, and compute the Classification Error

(Eq. 3.8) according to the ground-truth data. We report Recognition Rate, which is one mi-

nus Classification Error, reported as a percentage. Averaging over all categories, our method

obtains approximately 94% accuracy.

In order to determine the effect of training set size, we repeated the experiment with smaller

training sets. When testing on meshi, the CRF is trained on a subset ofM of the remaining

19 meshes. These are averaged over 5 randomly-selected subsets. We tested withM = 3,6,12.

Table 3.1(left) shows scores of our method for different mesh categories and for different values

of M. When reducing the training set size, we find that our method still gives excellent results

for categories with little geometric variation (such as theOctopus), whereas other categories,

such as Bust and Bearing, have very different geometric parts;a subset of 3 meshes often lacks

some of the labels used elsewhere in the category.

The Segment-Weighted Error (Eq. 3.9) scores of our algorithm are: 89% (leave-one-out error),

85% (M = 12 training examples), 81% (M = 6 training examples) and drops to 75% (M = 3

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 79

training examples). The scores using this metric are lower than those of Classification Error,

because tiny missing segments cause disproportionally large penalties.

To our knowledge, the only previous method that can label meshes by example is that of

Golovinskiy and Funkhouser [41]. This method assumes that rigid alignment can be performed

between a mesh and the training data, which does not hold for most of the benchmark data;

comparisons are shown in Figure 3.3. To our knowledge, our method is the first to be able to

accurately label such a broad class of meshes.

Segmentation results. In contrast to labeling, we test our segmentation algorithmusing all

original human segmentations for all meshes, according to the protocol from Chen et al. [16].

Results are shown in Figure 3.4, and comparisons to previous methods are shown in Figure

3.3. Our method gives a significant improvement over the previous state-of-the-art, according

to all measures proposed by Chen et al. [16]. Even when training on just three meshes, our

method obtains better scores than other methods in nearly all cases. Table 3.1(right) provides

Rand Index scores for each category and for different choicesof training set size as above.

There are a few details to note about these experiments. First, Rand Cuts requires as input the

number of segments for the mesh. For this, we used the averagenumber of segments for each

category. Second, the Human Score is worse than the score forour training data (computed

as in [16]) because we reduce the training set as described above. Third, when disconnected

parts on the same mesh have the same label (e.g., the two handson a human), they are scored

as separate segments.

Feature selection. Figure 3.5 visualizes which features were selected by JointBoost in the

unary term, for various subsets of the data. For example, thetop row shows, for each type

of feature, the percentage of this feature that was used, across the entire benchmark dataset.

The most features came from Shape Contexts [10] and the Contextual Label. The third row

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 80

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

all models,
all classifiers

all models,
first classifier

all models,
ten first feat.

human,
all classifiers

airplane,
all classifiers

chair,
all classifiers

bird,
all classifiers

quadruped,
all classifiers

Curv.

PCA

SC

AGD

SD

MD

SI

CL

Figure 3.5: Percentages of features used by JointBoost for different cases. See text for details.

Legend: Curv.=curvature, PCA=PCA singular values, SC=shape contexts, AGD=average

geodesic distances, SD=shape diameter, MD=distance from medial surface, SI = Spin Images,

CL = contextual label features.

shows the ten features that were selected by the first ten rounds of JointBoost (i.e., the features

used by the first ten decision stumps). The remaining rows show features used for individual

categories. These results indicate that the Shape Context features were the most important

among the basic features. However, each type of feature was used multiple times. This is a

common theme among boosting algorithms: adding more features that provide independent

sources of information typically improves results.

Generalizing to different categories. Fig. 3.6 shows results in which we train on one cate-

gory and test on another. The algorithm yields reasonable results when labeling airplanes like

birds, tables like chairs, and people like quadrupeds.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 81

head
wing
body

tail

back
middle
seat
leg

head

neck

torso

leg

tail

Figure 3.6: Experiments where training and test categories are different. Sample training data

shown on the left (complete training sets not shown).Top row: Training on birds, applying to

planes.Middle row: Labeling tables as chairs.Bottom row:Labeling humans as quadrupeds.

A failure case here is in the lower-right, where much of the child’s face is confused for a neck.

The seated humans illustrate a limitation of our method, i.e., that connected segments with the

same label are not separated; here, a left arm is not separated from a leg when they connect.

Different styles of segmentations. Our algorithm can be used to learn different styles of

segmentation for different tasks. We demonstrate this capability with a set of animal segmen-

tations from the benchmark data that separate the torso intothree segments (Fig. 3.7), unlike

the dataset used for quantitative evaluation. Our algorithm correctly applies these labels to

several test meshes, except the giraffe.

Merging categories. Figure 3.8 shows an example in which a CRF was learned on a training

set consisting of both humans and teddy bears, and applied tonew humans and teddy bears.

The algorithm successfully learns a model given the non-homogeneous data.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 82

head
front torso
middle torso
back torso
front leg
back leg
tail

Test MeshesTraining Meshes

Figure 3.7: Using an alternative segmentation style. Our main quantitative experiments used

a segmentation style from the Princeton Benchmark in which each animal has a single torso

(e.g., see Fig. 3.3). Here we train on examples from the Benchmark in which the torso is split

into three segments. The six training meshes are shown on the left. Changing the style does

not require any manual parameter tuning. Good results are obtained for several test meshes,

except the giraffe, where the torso is not labeled accurately.

head
torso
arm
hand
leg
foot

Training meshes Test meshes

Figure 3.8: Merging categories. A CRF was learned from the training mesheson the left,

which include both humans and teddy bears. Results on a test human and bears shown on

right.

3.5 Applications

We now briefly describe a few procedures that illustrate how our approach could be used to

automate workflows that would otherwise involve laborious manual effort. For each applica-

tion, we implemented an automatic pipeline that takes a meshof an object category as input,

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 83

(a) (c)

(e)

(i)

(d)

(h)

(b)

(f) (g)

(k)(j)

arm

lens

bridge

head

torso

upper arm

lower arm

upper leg

lower leg

ear

head

torso

back

upper arm

lower arm

hand

upper leg

lower leg

foot

tail

Figure 3.9: Top row: Automatic procedure for converting Glasses meshes into manufacturable

3D objects with lenses and hinges.(a) The mesh is broken at the segment boundaries between

the frame and arms with our labeling technique, and corresponding hinges are placed. Lenses

are procedurally offset and subtracted from the frame.(b-c) Two example glasses created

with this procedure.(d) A functional prototype, with working hinges, printed on a 3D printer.

Middle row: Automatic shader assignment and rigging based on segment labels.(e) Labeled

armadillo. (f) Procedural shaders assigned based on part labels, e.g., furfor the torso.(g) An

animation skeleton is fitted to Armadillo automatically by placing the joints at the centroids of

corresponding segment boundaries.(h) Posed armadillo.Bottom row: Automatic conversion

of a 3D model drawn with the Teddy sketching package into an articulated mannequin.(i)

Sketched 3D model.(j) Labeled model with mechanical joints placed at segment boundaries.

(k) Articulated model.

computes segmentation and labeling, and then processes theextracted parts. Such procedures

could automate processing of large databases of objects of the same category.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 84

Functional prototyping. Functional prototyping entails creating a real and working3D ob-

ject from a mesh, such as created by a designer. Our eyeglass pipeline (Figure 3.9(a-d)) takes

a mesh as input and computes segmentation and labeling. The frontal silhouettes of thelens

parts are offset, extruded, and subtracted from the object to create a frame. A frontal plane

passing through the combined centroid of the two arm-lens segment boundaries is used to cut

the mesh, separating the arms from the frame. Hinges and pinsare created at the cut, resulting

in a wearable pair of glasses. We have also implemented a procedure that, using a modeling

tool like Teddy [58], converts a single sketched stroke intoan articulated 3D mannequin, with

joint-types based on extracted part labels (Figure 3.9i-k).

Rigging and texturing. Given an automatically computed segmentation and labeling, a skele-

ton may be created by placing joints at centroids of part boundaries. We further create texture

for armadillo meshes (Figure 3.9(e-h)), using textures andaccessories assigned to different

labels, such as leathery skin for the feet, fur for the torso,and a hook in place of a missing

hand.

3.6 Discussion

We have described the first learning algorithm for both labeling and segmentation of 3D meshes.

The model is learned from a training set without requiring any manual parameter tuning, and

it obtains state-of-the-art results on all categories in the Princeton Segmentation Benchmark.

Our method is the first to demonstrate effective labeling on abroad class of meshes. As our

method represents an early attempt in this area, there are several limitations to our method

(Figure 3.10), and many exciting directions for future work.

While considerable effort has rightly been put into devisinggeometric criteria for shape clas-

sification, it remains an open question as to whether simple geometric criteria are sufficient

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 85

for segmenting the way humans do. Our work suggests that learning models from data—using

carefully-chosen geometric features—can significantly improve results. While this method is

not easily interpretable in terms of geometric intuitions,this kind of approach may nonetheless

be of great practical value.

A major limitation of our approach is the need for labeled training data. The dataset must have

consistent labels, although some variation can be tolerated. For example, in Figure 3.3, the pig

does not have a neck segment, unlike the other meshes in the training data.

Generalization performance typically drops with fewer training meshes. Classes with larger

variability across the data require larger training sets for good results. For example, the Ant

and Octopus classes give good results with very few trainingexamples, whereas the Bust and

Vase categories give very poor results with small training sets (Table 3.1). For all classes,

increasing the training set size improves performance.

Our method cannot learn “generic” segmentations, that is, segmentation without class-specific

labels. The method cannot model segmentations where connected parts share labels (Figure

3.10(a-b)). We also assume that the target mesh is consistent with the training data; e.g., there

are no outlier segments. However, we believe that elements of our approach could be useful

for these or related problems. For example, our pairwise term could be used with a different

unary term, such as one based on interactive labeling or meshalignment.

Adding additional informative geometric features should improve results. At present, our algo-

rithm cannot distinguish left/right/up/down (e.g., left arm vs. right arm); features informative

of orientation [36] may help. Symmetry-based features and constraints could also be useful.

Because many of our features depend on geodesic distances, they may not be very accurate

when a test mesh exhibits significantly different topology than the training. Developing new

part-aware and topology-insensitive shape descriptor features may help our method.

Our choice of features assumes that each shape is described by a watertight 3D mesh with a

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 86

(a) (b) (d)

(c)

head

torso

upper arm

lower arm

hand

upper leg

lower leg

foot

face

hair

neck

nose

handle
cup

Figure 3.10: Examples of limitations of our algorithm:(a) Shiva statue (not included in the

benchmark), classified with a CRF learned from the Human category. The algorithm correctly

labels the multiple heads and arms, but cannot separate connected segments with the same

label. (b) Example of a test human mesh that has significantly differenttopology than the

other training meshes of the Human category; its arms are connected to the legs, causing

the algorithm to mislabel the lower arms, hands and upper torso. (c) Our lowest scores in

the benchmark were on the Bust category; even when all the otherbusts are used as training

meshes, our algorithm can still have significant errors.(d) Example of a vase, classified with

a model learned from3 other training meshes from the Vase category; the performance drops

significantly in some categories with large variability, whenfew training meshes are used.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 87

single connected component. Applying our technique for point clouds or polygon soups would

require several modifications in our feature set. This should allow our method to be applied to

data such as found in 3D scanning and architectural applications.

The size of our training set is limited by training time, which is several days for our largest

datasets. Some of the features are expensive to compute e.g., computing geodesic distances

between all faces on a mesh isO(N2logN) in our implementation or computing shape diameter,

shape context and spin images has complexity ofO(N2). For example, our implementation for

SDF computation takes several minutes per mesh, since we perform exhaustive ray-triangle

intersections. However, it is important to note that our implementation for feature extraction is

far from optimal and can be accelerated with several ways (i.e, use spatial search structure to

accelerate computations of intersections).

Training the JointBoost classifier is also a computationallyexpensive procedure i.e., it has

complexity of O(|C |2 ·N ·D · T), if greedy search is used for findingCS, where|C | is the

number of labels,N is the number of training samples,D is the number of features used,

T is the number of boosting rounds. JointBoost can be accelerated by using less number

of samples (i.e., instead of using every single mesh face as atraining sample) and by using

randomized feature selection at each boosting round [127].The CRF inference with graph-cut

alpha-expansion relies on maximum flow on graphs to compute the minimum cut; empirically,

it seems to scale near-linearly with the mesh size and the number of labels [12].

For example, training on the quadrupeds category with 6 training meshes of about 10K-30K

faces and 6 labels, takes about 8 hours on a single Xeon E5355 2.66GHz processor. Approx-

imately 30% of the time is consumed by feature extraction, 50% is consumed by JointBoost,

20% of the time is used by hold-out validation. Testing on another animal mesh of, e.g. 20K

faces takes about 15 minutes and the vast majority of the timeis consumed by feature extraction

(CRF inference and evaluating decision stumps take a few seconds at most). If feature extrac-

tion is improved (e.g. SDF computations could be reduced to afew seconds), if JointBoost is

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 88

implemented more optimally along with subsampling and randomized feature selection, and if

hold-out validation is handled by a more efficient optimizer(in C/C++ rather than Matlab), a

rough estimate could be much less than an hour for training onsuch dataset and far less than

5 minutes for testing per mesh. Such improvements could permit the method to train on much

larger datasets with more classes still within reasonable amounts of time in the future.

CHAPTER 3. LEARNING MESH SEGMENTATION AND LABELING 89

Labeling: Recognition Rate Segmentation: Rand Index

SB19 SB12 SB6 SB3Bench. Train. SB19 SB12 SB6 SB3

Human 93.6 93.2 89.4 83.2 13.5 11.2 11.9 12.9 14.3 14.7

Cup 99.6 99.6 99.1 96.3 13.6 9.8 9.9 9.9 10.0 10.0

Glasses 97.4 97.2 96.1 94.4 10.1 8.4 13.6 14.1 14.1 14.2

Airplane 96.3 96.1 95.5 91.2 9.2 7.4 7.9 8.2 8.0 10.2

Ant 98.8 98.8 98.7 97.4 3.0 1.7 1.9 2.2 2.3 2.6

Chair 98.5 98.4 97.8 97.1 8.9 5.2 5.4 5.6 6.1 6.6

Octopus 98.4 98.4 98.6 98.3 2.4 1.8 1.8 1.8 2.2 2.2

Table 99.4 99.3 99.1 99.0 9.3 5.9 6.2 6.6 6.4 11.1

Teddy 98.1 98.1 93.3 93.1 4.9 3.1 3.1 3.2 5.3 5.6

Hand 90.5 88.7 82.4 74.9 9.1 9.1 10.4 11.2 13.9 15.8

Plier 97.0 96.2 94.3 92.2 7.1 5.1 5.4 9.0 10.0 10.5

Fish 96.7 95.6 95.6 94.1 15.5 11.8 12.9 13.2 14.2 13.5

Bird 92.5 87.9 84.2 76.3 6.2 4.4 10.4 14.8 14.8 18.6

Armadillo 91.9 90.1 84.0 83.7 8.3 6.3 8.0 8.4 8.4 8.6

Bust 67.2 62.1 53.9 52.2 22.0 18.8 21.4 22.2 33.4 39.3

Mech 94.6 90.5 88.9 82.4 13.1 8.5 10.0 11.8 12.7 24.0

Bearing 95.2 86.6 84.8 61.3 10.4 6.8 9.7 17.6 21.7 32.7

Vase 87.2 85.8 77.0 74.3 14.4 10.5 16.0 17.1 19.9 25.3

FourLeg 88.7 86.2 85.0 82.0 14.9 11.6 13.3 13.9 14.7 16.3

Average 93.8 92.0 89.4 85.4 10.3 7.7 9.4 10.7 12.2 14.8

Table 3.1: Left: Recognition rate scores for our method across all categories in the bench-

mark, and for various training set sizes M= 3,6,12,19. Right: Rand Index scores for human

segmentations, training segmentations, and our method. Recognition rate is measured against

our labeling dataset (see text for details), whereas the RandIndex is measured against all

human segmentations in the Princeton benchmark.

Chapter 4

Learning hatching for pen-and-ink

illustration of surfaces

In this chapter, I present a machine learning method for creating pen-and-ink illustrations of

surfaces by example1. In contrast to previous hatching algorithms that are manually designed

from insight and intuition, this example-based method provide a largely automated and poten-

tially more natural workflow for an artist.

Given a single illustration of a 3D object, drawn by an artist, the method learns a model of the

artist’s hatching style, and can apply this style to rendering new views or new objects. Hatching

and cross-hatching illustrations use many finely-placed strokes to convey tone, shading, tex-

ture, and other qualities. Rather than trying to model individual strokes, the algorithm focuses

on thehatching propertiesacross an illustration: hatching level (hatching, cross-hatching, or

no hatching), stroke orientation, spacing, intensity, length, and thickness. Whereas the strokes

themselves may be loosely and randomly placed, hatching properties are more stable and pre-

1The work presented in this chapter is conditionally accepted to ACM Transactions on Graphics. Future
project web page: http://www.dgp.toronto.edu/~kalo/papers/MLHatching/

90

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 91

dictable. The learning is based on piecewise-smooth mappings from geometric, contextual,

and shading features to these hatching properties. Because we do not know in advance which

input features are the most important for different styles,we use the boosting techniques de-

scribed in Section 2.4. Because we found that artists appear to apply different types of stroke

direction fields and tone for different surface parts, we also use a mixture-of-experts model

(Section 2.2.5) to decompose the drawing into parts; a different model of stroke orientations

is extracted depending on each part. The identified parts produced by the mixture-of-experts

model are categorical properties that are also learned using Conditional Random Fields and

JointBoost, as in the case of part labeling in meshes.

To generate a drawing for a novel view and/or object, a Lambertian-shaded rendering of the

view is first generated, along with the selected per-pixel features. The learned mappings are

applied, in order to compute the desired per-pixel hatchingproperties. A stroke placement

algorithm then places hatching strokes to match these target properties. We demonstrate results

where the algorithm generalizes to different views of the training shape or and different shapes.

This work focuses on learning hatching properties; we use existing techniques to render feature

curves, such as contours, and an existing stroke synthesis procedure. We do not learn properties

like randomness, waviness, pentimenti, or stroke texture.Each style is learned from a single

example, without performing analysis across a broader corpus of examples. Nonetheless, our

method is still able to successfully reproduce many aspectsof a specific hatching style even

with a single training drawing.

4.1 Related Work

Previous work has explored various formulas for hatching properties. Saito and Takahashi

[119] introduced hatching based on isoparametric and planar curves. Winkenbach and Salesin

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 92

(a) Artist’s illustration
(b) Smoothed curvature directions

[52]
(c) Smoothed PCA axis directions

(d) Smoothed image gradient

directions
(e) Our algorithm,

without segmentation

(f) Our algorithm,

full version

(g) Results on new views and new objects.

Figure 4.1: Data-driven line art illustrations generated with our algorithm and comparisons

with alternative approaches. (a)Artist’s illustration of a screwdriver.(b) Illustration produced

by the algorithm of Hertzmann and Zorin [52]. Manual thresholding of~N ·~V is used to match

the tone of the hand-drawn illustration and globally-smoothed principal curvature directions

are used for the stroke orientations.(c) Illustration produced with the same algorithm, but

using local PCA axes for stroke orientations before smoothing. (d) Illustration produced with

the same algorithm, but using the gradient of image intensity for stroke orientations.(e) Illus-

tration whose properties are learned by our algorithm for thescrewdriver, but without using

segmentation (i.e., orientations are learned by fitting a single model on the whole drawing and

no contextual features are used for learning the stroke properties). (f) Illustration learnt by

applying all steps of our algorithm. This result more faithfully matches the style of the input

than the other approaches.(g) Results on new views and new objects.

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 93

[151, 152] identify many principles of hand-drawn illustration, and describe methods for ren-

dering polyhedral and smooth objects. Many other analytic formulae for hatching directions

have been proposed, including principal curvature directions [28, 52, 110, 77], isophotes [76],

shading gradients [130], other parametric curves [28] and user-defined direction fields (e.g.,

[107]). Stroke tone and density are normally proportional to depth, shading, or texture, or else

based on user-defined prioritized stroke textures [110, 151, 152]. In these methods, each hatch-

ing property is computed by a hand-picked function of a single feature of shape, shading, or

texture (e.g., proportional to depth or curvature). As a result, it is very hard for such approaches

to capture the variations evident in artistic hatching styles (Figure 4.1). We propose the first

method to learn hatching of 3D objects from examples.

There have been a few previous methods for transferring properties of artistic rendering by

example. Hamel and Strothotte [45] automatically transferuser-tuned rendering parameters

from one 3D object to another. Hertzmann et al. [50] transferdrawing and painting styles by

example using non-parametric synthesis, given image data as input. This method maps directly

from the input to stroke pixels. In general, the precise locations of strokes may be highly

random—and thus hard to learn—and non-parametric pixel synthesis can make strokes become

broken or blurred. Mertens et al. [95] transfer spatially-varying textures from source to target

geometry using non-parametric synthesis. Jodoin et al. [63] model relative locations of strokes,

but not conditioned on a target image or object. Kim et al. [135] employ texture similarity

metrics to transfer stipple features between images. In contrast to the above techniques, our

method maps to hatching properties, such as desired tone. Hence, though our method models

a narrower range of artistic styles, it can model these styles much more accurately.

A few 2D methods have also been proposed for transferring styles of individual curves [33, 51,

67], a problem which is complementary to ours; such methods could be useful for the rendering

step of our method.

A few previous methods learn synthesis of feature curves, such as contours and silhouettes.

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 94

Lum and Ma [92] use neural networks and Support Vector Machines to learn locations of

feature curves. Cole et al. [18] study feature curve locations in hand-drawn artwork. They

also fit a model of feature curve locations to a large trainingset of hand-drawn images. These

methods focus on learning locations of feature curves, whereas we focus on hatching. Hatching

exhibits substantially greater complexity and randomnessthan feature curves, since hatches

form a network of overlapping curves of varying orientation, thickness, density, and cross-

hatching level. Hatching also exhibits significant variation in artistic style.

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 95

Synthesis for novel

object and view

Synthesis for input

object and view

Analysis for input

object and view

Learning

Artist’s illustration

Input horse

Input cow

Data-driven illustration

Data-driven illustration

Extracted Thickness Extracted Spacing
Extracted

Hatching Level

Extracted Intensity Extracted Length Extracted Orientations

Synthesized Thickness Synthesized Spacing
Learnt

Hatching Level

Synthesized Intensity Synthesized Length Synthesized Orientations

Synthesized Thickness Synthesized Spacing
Synthesized

Hatching Level

Synthesized Intensity Synthesized Length Synthesized Orientations

no hatching

no hatching

no hatching

hatching

hatching

hatching

cross-hatching

cross-hatching

cross-hatching

Figure 4.2: Extraction of hatching properties from a drawing, and synthesis for newdrawings.

Top: The algorithm decomposes a given artist’s illustration into a set of hatching properties: stroke

thickness, spacing, hatching level, intensity, length, orientations. A mapping from input geometry is

learned for each of these properties.Middle: Synthesis of the hatching properties for the input object

and view. Our algorithm automatically separates and learns the hatching (blue-colored field) and cross-

hatching fields (green-colored fields).Bottom: Synthesis of the hatching properties for a novel object

and view.

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 96

4.2 Overview

Our approach has two main phases. First, we analyze a hand-drawn pen-and-ink illustration of

a 3D object, and learn a model of the artist’s style. This model can then be applied to synthesize

renderings of new views and new 3D objects.

Hatching properties Our goal is to model the way artists draw hatching strokes in line draw-

ings of 3D objects. The actual placements of individual strokes exhibit much variation and

apparent randomness, and so attempting to accurately predict individual strokes would be very

difficult. However, we observe that the individual strokes themselves are less important than

the overall appearance that they create together. Indeed, art instruction texts often focus on

achieving particular qualities such as tone or shading (e.g., [44]). Hence, similar to previous

work [151, 52], we model the rendering process in terms of a set of intermediatehatching

propertiesrelated to tone and orientation. Each pixel containing a stroke in a given illustration

is labeled with the following properties:

• Hatching level (h ∈ {0,1,2}) indicates whether a region contains no hatching, single

hatching, or cross-hatching.

• Orientation (φ1 ∈ [0...π]) is the stroke direction in image space, with 180-degree sym-

metry.

• Cross-hatching orientation (φ2 ∈ [0..π]) is the cross-hatch direction, when present.

Hatches and cross-hatches are not constrained to be perpendicular.

• Thickness (t ∈ℜ+) is the stroke width.

• Intensity (I ∈ [0..1]) is how light or dark the stroke is.

• Spacing (d ∈ℜ+) is the distance between parallel strokes.

• Length (l ∈ℜ+) is the length of the stroke.

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 97

The decomposition of an illustration into hatching properties is illustrated in Figure 4.2 (top).

In the analysis process, these properties are estimated from hand-drawn images, and models

are learned. During synthesis, the learned model generatesthese properties as targets for stroke

synthesis.

Modeling artists’ orientation fields presents special challenges. Previous work has used local

geometric rules for determining stroke orientations, suchas curvature [52] or gradient of shad-

ing intensity [130]. We find that, in many hand-drawn illustrations, no local geometric rule can

explain all stroke orientations. For example, in Figure 4.3, the strokes on the cylindrical part

of the screwdriver’s shaft can be explained as following thegradient of the shaded rendering,

whereas the strokes on the flat end of the handle can be explained by the gradient of ambi-

ent occlusion∇a. Hence, we segment the drawing into regions with distinct rules for stroke

orientation. We represent this segmentation by an additional per-pixel variable:

• Segment label (c ∈ C) is a discrete assignment of the pixel to one of a fixed set of

possible segment labelsC .

Each set of pixels with a given label will use a single rule to compute stroke orientations. For

example, pixels with labelc1 might use principal curvature orientations, and those withc2

might use a linear combination of isophote directions and local PCA axes. Our algorithm also

uses the labels to create contextual features (Section 4.4.2), which are also taken into account

for computing the rest of the hatching properties. For example, pixels with labelc1 may have

thicker strokes.

Features For a given 3D object and view, we define a set of features containing geometric,

shading, and contextual information for each pixel, as described in Appendices B.2 and B.3.

There are two types of features: “scalar” featuresx (Appendix B.2) and “orientation” features

θ (Appendix B.3). The features include many object-space and image-space properties which

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 98

may be relevant for hatching, including features that have been used by previous authors for

feature curve extraction, shading, and surface part labeling. The features are also computed at

multiple scales, in order to capture varying surface and image detail. These features are inputs

to the learning algorithms, which map from features to hatching properties.

Data acquisition and preprocessing The first step of our process is to gather training data

and to preprocess it into features and hatching properties.The training data is based on a single

drawing of a 3D model. An artist first chooses an image from ourcollection of rendered images

of 3D objects. The images are rendered with Lambertian reflectance, distant point lighting, and

spherical harmonic self-occlusion [131]. Then, the artistcreates a line illustration, either by

tracing over the illustration on paper with a light table, orin a software drawing package with a

tablet. If the illustration is drawn on paper, we scan the illustration and align it to the rendering

automatically by matching borders with brute force search.The artist is asked not to draw

silhouette and feature curves, or to draw them only in pencil, so that they can be erased. The

hatching properties(h,φ , t, I ,d, l) for each pixel are estimated by the preprocessing procedure

described in Appendix B.1.

Learning The training data comprise a single illustration with features x,θ and hatching

properties given for each pixel. The algorithm learns mappings from features to hatching prop-

erties (Section 4.4). The segmentationc and orientation propertiesφ are the most challenging

to learn, because neither the segmentationc nor the orientation rules are immediately evident

in the data; this represents a form of “chicken-and-egg” problem. We address this using a

learning and clustering algorithm based on Mixtures-of-Experts (Section 4.4.1).

Once the input pixels are classified, a pixel classifier is learned using Conditional Random

Fields with unary terms based on JointBoost (Section 4.4.2).Finally, each real-valued property

is learned using boosting for regression (Section 4.4.3). We use boosting techniques for clas-

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 99

sification and regression since we do not know in advance which input features are the most

important for different styles. Boosting can handle large number of features, can select the

most relevant features, and has a fast sequential learning algorithm.

Synthesis A hatching style is transferred to a target novel view and/orobject by first com-

puting the features for each pixel, and then applying the learned mappings to compute the

above hatching properties. A streamline synthesis algorithm [52] then places hatching strokes

to match the synthesized properties. Examples of this process are shown in Figure 4.2.

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 100

(a) Estimated clusters using
our mixture-of-experts model

(b) Learnt labeling
with Joint Boosting

(c) Learnt labeling
with Joint Boosting+CRF

(d) Synthesized labeling
for another object

~f1 = ∇a2
~f2 = .54(~kmax,1)+ .46(~r⊥)

~f1 = .73(∇I3)+ .27(~r)
~f2 = .69(~kmax,2)+ .31(∇I⊥,3)

~f1 = .59(~eb,3)+ .41(∇(~L ·~N)3)
~f2 = .63(~ea,3)+ .37(∇(~L ·~N)⊥,3)

~f1 = .88(∇a3)+ .12(∇(~L ·~N)3)

~f2 = .45(~kmax,2)+ .31(∇a⊥,3)+ .24(~ea,3)

~f1 = .77(~eb,3)+ .23(∇I3)

~f2 =~v

Figure 4.3: Clustering orientations.The algorithm clusters stroke orientations according to differ-

ent orientation rules. Each cluster specifies rules for hatching(~f1) and cross-hatching(~f2) directions.

Cluster labels are color-coded in the figure, with rules shown below. The cluster labels and the ori-

entation rules are estimated simultaneously during learning.(a) Inferred cluster labels for an artist’s

illustration of a screwdriver.(b) Output of the labeling step using the most likely labels returned by the

Joint Boosting classifier alone.(c) Output of the labeling step using our full CRF model.(d) Synthesis

of part labels for a novel object.Rules: In the legend, we show the corresponding orientation functions

for each region. In all cases, the learned models use one to three features. Subscripts{1,2,3} indicates

the scale used to compute the field. The⊥ operator rotates the field by 90 degrees in image-space. The

orientation features used here are: maximum and minimum principal curvature directions (~kmax,~kmin),

PCA directions corresponding to first and second largest eigenvalue (~ea,~eb), fields aligned with ridges

and valleys respectively (~r, ~v), Lambertian image gradient (∇I), gradient of ambient occlusion (∇a),

and gradient of~L ·~N (∇(~L ·~N)). Features that arise as 3D vectors are projected to the image plane. See

Appendix B.3 for details.

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 101

4.3 Synthesis Algorithm

The algorithm for computing a pen-and-ink illustration of aview of a 3D object algorithm

is as follows. For each pixel of the target image, the features x and θ are first computed

(Appendices B.2 and B.3). The segment label and hatching levelare each computed as a

function of the scalar featuresx, using image segmentation and recognition techniques. Given

these segments, orientation fields for the target image are computed by interpolation of the

orientation featuresθ . Then, the remaining hatching properties are computed by learning

functions of the scalar features. Finally, a streamline synthesis algorithm [52] renders strokes

to match these synthesized properties. A streamline is terminated when it crosses an occlusion

boundary, or the length grows past the value of the per-pixeltarget stroke lengthl , or violates

the target stroke spacingd.

We now describe these steps in more detail. In Section 4.4, wewill describe how the algo-

rithm’s parameters are learned.

4.3.1 Segmentation and labeling

For a given view of a 3D model, the algorithm first segments theimage into regions with

different orientation rules and levels of hatching. More precisely, given the feature setx for

each pixel, the algorithm computes the per-pixel segment labelsc∈ C and hatching levelh∈

{0,1,2}. There are a few important considerations when choosing an appropriate segmentation

and labeling algorithm. First, we do not know in advance which features inx are important,

and so we must use a method that can perform feature selection. Second, neighboring labels

are highly correlated, and performing classification on each pixel independently yields noisy

results (Figure 4.3). Hence, we use a Conditional Random Field(CRF) recognition algorithm

(Section 2.3.4), with JointBoost unary terms (Section 2.4.2). [69, 127, 142]. One such model

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 102

is learned for segment labelsc, and a second for hatching levelh. Learning these models is

described in Section 4.4.2.

The CRF objective function includes unary terms that assess the consistency of pixels with

labels, and pairwise terms that assess the consistency between labels of neighboring pixels.

Inferring segment labels based on the CRF model corresponds tominimizing the following

objective function:

E(c) = ∑
i

E1(ci;xi)+∑
i, j

E2(ci ,c j ;xi ,x j) (4.1)

whereE1 is the unary term defined for each pixeli, andE2 is the pairwise term defined for each

pair of neighboring pixels{i, j}, where j ∈ N(i) andN(i) is defined using the 8-neighborhood

of pixel i.

The unary term evaluates a JointBoost classifier that, given the feature setxi for pixel i, deter-

mines the probabilityP(ci |xi) for each possible labelci. The unary term is then:

E1(ci ;x) =− logP(ci |xi). (4.2)

The mapping from features to probabilitiesP(ci |xi) is learned from the training data using the

JointBoost algorithm [142].

The pairwise energy term scores the compatibility of adjacent pixel labelsci andc j , given their

featuresxi andx j . Let ei be a binary random variable representing if the pixeli belongs to a

boundary of hatching region or not. We define a binary JointBoost classifier that outputs the

probability of boundaries of hatching regionsP(e|x) and compute the pairwise term as:

E2(ci ,c j ;xi ,x j) =−ℓ · I(ci,c j) · (log((P(ei |xi)+P(ej |x j)))+µ) (4.3)

whereℓ,µ are the model parameters andI(ci ,c j) is an indicator function that is 1 whenci 6= c j

and 0 whenci = c j . The parameterℓ controls the importance of the pairwise term whileµ

contributes to eliminating tiny segments and smoothing boundaries.

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 103

Similarly, inferring hatching levels based on the CRF model corresponds to minimizing the

following objective function:

E(h) = ∑
i

E1(hi ;xi)+∑
i, j

E2(hi ,h j ;xi ,x j) (4.4)

As above, the unary term evaluates another JointBoost classifier that, given the feature setxi for

pixel i, determines the probabilityP(hi |xi) for each hatching levelh∈ {0,1,2}. The pairwise

term is also defined as:

E2(hi ,h j ;xi ,x j) =−ℓ · I(hi,h j) · (log((P(ei |xi)+P(ej |x j)))+µ) (4.5)

with the same values for the parameters ofℓ,µ as above.

The most probable labeling is the one that minimizes the CRF objective functionE(c) and

E(h), given their learned parameters. The CRFs are optimized usingalpha-expansion graph-

cuts [12]. Details of learning the JointBoost classifiers andℓ,µ are given in Section 4.4.2.

4.3.2 Computing orientations

Once the per-pixel segment labelsc and hatching levelsh are computed, the per-pixel orien-

tationsφ1 andφ2 are computed. The number of orientations to be synthesized is determined

by h. Whenh= 0 (no hatching), no orientations are produced. Whenh= 1 (single hatching),

only φ1 is computed, and, whenh= 2 (cross-hatching),φ2 is computed as well.

Orientations are computed by regression on a subset of the orientation featuresθ for each

pixel. Each clusterc may use a different subset of features. The features used by asegment

are indexed by a vectorσ , i.e., the features indices areσ(1), σ(2), ..., σ(k). Each orientation

feature represents an orientation field in image space, suchas the image projection of principal

curvature directions. In order to respect 2-symmetries in orientation, a single orientationθ is

transformed to a vector as

v = [cos(2θ),sin(2θ)]T (4.6)

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 104

The output orientation function is expressed as a weighted sum of selected orientation features.

f (θ ;w) = ∑
k

wσ(k)vσ(k) (4.7)

whereσ(k) represents the index to thek-th orientation feature in the subset of selected orienta-

tion features,vσ(k) is its vector representation, andw is a vector of weight parameters. There is

an orientation functionf (θ ;wc,1) for each labelc∈ C and, if the class contains cross-hatching

regions, it has an additional orientation functionf (θ ;wc,2) for determining the cross-hatching

directions. The resulting vector is computed to an image-space angle asφ = atan2(y,x)/2.

The weightsw and feature selectionσ is learned by the gradient-based boosting for regression

algorithm of Zemel and Pitassi [155]. The learning of the parameters and the feature selection

is described in Section 4.4.1.

4.3.3 Computing real-valued properties

The remaining hatching properties are real-valued quantities. Lety be a feature to be synthe-

sized on a pixel with feature setx. We use multiplicative models of the form:

y= ∏
k

(akxσ(k)+bk)
αk (4.8)

wherexσ(k) is the index to thek-th scalar feature fromx. The use of a multiplicative model

is inspired by Goodwin et al. [43], who propose a model for stroke thickness that can be

approximated by a product of radial curvature and inverse depth. The model is learned in

logarithmic domain, which reduces the problem to learning the weighted sum:

log(y) = ∑
k

αk log(akxσ(k)+bk) (4.9)

Learning the parametersαk,ak,bk,σ(k) is again performed using gradient-based boosting [155],

as described in Section 4.4.3.

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 105

4.4 Learning

We now describe how to learn the parameters of the functions used in the synthesis algorithm

described in the previous section.

4.4.1 Learning Segmentation and Orientation Functions

In our model, the hatching orientation for a single-hatching pixel is computed by first assigning

the pixel to a clusterc, and then applying the orientation functionf (θ ;wc) for that cluster. If

we knew the clustering in advance, then it would be straightforward to learn the parameters

wc for each pixel. However, neither the cluster labels nor the parameterswc are present in the

training data. In order to solve this problem, we develop a technique inspired by Expectation-

Maximization for Mixtures-of-Experts (described in Section 2.2.5), but specialized to handle

the particular issues of hatching.

The input to this step is a set of pixels from the source illustration with their corresponding ori-

entation feature setθ i , training orientationsφi, and training hatching levelshi . Pixels containing

intersections of strokes or no strokes are not used. Each clusterc may contain either single-

hatching or cross-hatching. Single-hatch clusters have a single orientation function (Equation

4.7), with unknown parameterswc1. Clusters with cross-hatches have two subclusters, each

with an orientation function with unknown parameterswc1 andwc2. The two orientation func-

tions are not constrained to produce directions orthogonalto each other. Every source pixel

must belong to one of the top-level clusters, and every pixelbelonging to a cross-hatching

cluster must belong to one of its subclusters.

For each training pixeli, we define a labeling probabilityγic indicating the probability that

pixel i lies in top-level clusterc, such that∑cγic = 1. Also, for each top-level cluster, we define

a subcluster probabilityβic j , where j ∈ {1,2}, such thatβic1+βic2 = 1. The probabilityβic j

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 106

measures how likely the stroke orientation at pixeli corresponds to a hatching or cross-hatching

direction. Single-hatching clusters haveβic2 = 0. The probability that pixeli belongs to the

subcluster indexed by{c, j} is γicβic j .

The labeling probabilities are modeled based on a mixture-of-Gaussians distribution [11]:

γic =
πcexp(−r ic/2s)

∑cπcexp(−r ic/2s)
(4.10)

βic j =
πc j exp(−r ic j/2sc)

πc1exp(−r ic1/2sc)+πc2exp(−r ic2/2sc)
(4.11)

whereπc, πc j are the mixture coefficients,s,sc are the variances of the corresponding Gaus-

sians,r ic j is the residual for pixeli with respect to the orientation functionj in clusterc, and

r ic is defined as follows:

r ic = min
j∈{1,2}

||ui− f (θ i;wc j)||
2 (4.12)

whereui = [cos(2φi),sin(2φi)]
T .

The process begins with an initial set of labelsγ, β , andw, and then alternates between updat-

ing two steps: themodel update stepwhere the orientation functions, the mixture coefficients

and variances are updated, and thelabel update stepwhere the labeling probabilities are up-

dated.

Model update Given the labeling, orientation functions for each clusterare updated by

minimizing the boosting error function, described in Section 2.4.3, using the initial per-pixel

weightsαi = γicβic j .

In order to avoid overfitting, a set of holdout-validation pixels are kept for each cluster. This set

is found by selecting rectangles of random size and marking their containing pixels as holdout-

validation pixels. Our algorithm stops when 25% of the cluster pixels are marked as holdout-

validation pixels. The holdout-validation pixels are not considered for fitting the weight vector

wc j. At each boosting iteration, our algorithm measures the holdout-validation error measured

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 107

on these pixels. It terminates the boosting iterations whenthe holdout-validation error reaches

a minimum. This helps avoid overfitting the training orientation data.

During this step, we also update the mixture coefficients andvariances of the gaussians in the

mixture model, so that the data likelihood is maximized in this step [11]:

πc = ∑
i

γic/N, s= ∑
ic

γicr ic/N (4.13)

πc j = ∑
i

βic j/N, sc = ∑
i j

βic j r ic j/N (4.14)

whereN is the total number of pixels with training orientations.

Label update Given the estimated orientation functions from the above step, the algorithm

computes the residual for each model and each orientation function. Median filtering is applied

to the residuals, in order to enforce spatial smoothness:r ic is replaced with the value of the

median ofr∗c in the local image neighborhood of pixeli (with radius equal to the local spacing

Si). Then the pixel labeling probabilities are updated according to Equations 4.10 and 4.11.

Initialization The clustering is initialized by a constrained mean-shift clustering process with

a flat kernel, similar to constrained K-means [148]. The constraints arise from a region-growing

strategy to enforce spatial continuity of the initial clusters. Each cluster grows by considering

randomly-selected seed pixels in their neighborhood and adding them only if the difference be-

tween their orientation angle and the cluster’s current mean orientation is below a threshold. In

the case of cross-hatching clusters, the minimum difference between the two mean orientations

is used. The threshold is automatically selected once during pre-processing by taking the me-

dian of each pixel’s local neighborhood orientation angle differences. The process is repeated

for new pixels and the cluster’s mean orientation(s) are updated at each iteration. Clusters com-

posed of more than 10% cross-hatch pixels are marked as cross-hatching clusters; the rest are

marked as single-hatching clusters. The initial assignment of pixels to clusters gives a binary-

valued initialization forγ. For cross-hatch pixels, if more than half the pixels in the cluster are

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 108

assigned to orientation functionwk2, our algorithm swapswk1 andwk2. This ensures that the

first hatching direction will correspond to the dominant orientation. This aids in maintaining

orientation field consistency between neighboring regions.

An example of the resulting clustering for an artist’s illustration of screwdriver is shown in

Figure 4.3 (a). We also include the functions learned for thehatching and cross-hatching

orientation fields used in each resulting cluster.

4.4.2 Learning Labeling with CRFs

Once the training labels are estimated, we learn a procedureto transfer them to new views

and objects. Here we describe the procedure to learn the Conditional Random Field model of

Equation 4.1 for assigning segment labels to pixels as well as the Conditional Random Field of

Equation 4.4 for assigning hatching levels to pixels.

Learning to segment and label Our goal here is to learn the parameters of the CRF energy

terms (Equation 4.1). The input is the scalar feature setx̃i for each stroke pixeli (described

in Appendix B.2) and their associated labelsci, as extracted in the previous step. Following

[143, 126, 69], the parameters of the unary term are learned by running a cascade of JointBoost

classifiers. The cascade is used to obtain contextual features which capture information about

the relative distribution of cluster labels around each pixel. The cascade of classifiers is trained

as follows.

The method begins with an initial JointBoost classifier usingan initial feature set̃x, containing

the geometric and shading features, described in Appendix B.2. The classifier is applied to

produce the probabilityP(ci |x̃i) for each possible labelci given the feature set̃xi of each pixel

i. These probabilities are then binned in order to produce contextual features. In particular, for

each pixel, the algorithm computes a histogram of these probabilities as a function of geodesic

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 109

distances from it:

pc
i = ∑

j:db≤dist(i, j)<db+1

P(c j)/Nb (4.15)

where the histogram binb contains all pixelsj with geodesic distance range[db,db+1] from

pixel i, andNb is the total number of pixels in the histogram binb. The geodesic distances are

computed on the mesh and projected to image space. 4 bins are used, chosen in logarithmic

space. The bin valuespc
i are normalized to sum to 1 per pixel. The total number of bins are

4|C|. The values of these bins are used as contextual features, which are concatenated intõxi

to form a new scalar feature setxi . Then, a second JointBoost classifier is learned, using the

new feature setx as input and outputting updated probabilitiesP(ci |xi). These are used in turn

to update the contextual features. The next classifier uses the contextual features generated by

the previous one, and so on. Each JointBoost classifier is initialized with uniform weights and

terminates when the holdout-validation error reaches to a minimum. The holdout-validation

error is measured on pixels that are contained in random rectangles on the drawing, selected

as above. The cascade terminates when the holdout-validation error of a JointBoost classifier

is increased with respect to the holdout-validation error of the previous one. The unary term is

defined based on the probabilities returned by the latter classifier.

To learn the pairwise term of Equation 4.3, the algorithm needs to estimate the probability

of boundaries of hatching regionsP(e|x), which also serve as evidence for label boundaries.

First, we observe that segment boundaries are likely to occur at particular parts of an image;

for example, pixels separate by an occluding and suggestivecontour are much less likely to be

in the same segment as two pixels that are adjacent on the surface. For this reason, we define

a binary JointBoost classifier, which maps to probabilities of boundaries of hatching regions

for each pixel, given the subset of its featuresx computed from the feature curves of the mesh

(see Appendix B.2). In this binary case, JointBoost reduces toan earlier algorithm called

GentleBoost [35]. The training data for this pairwise classifier are supplied by the marked

boundaries of hatching regions of the source illustration (see Appendix B.1); pixels that are

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 110

marked as boundaries havee= 1, otherwisee= 0. The classifier is initialized with more

weight give to the pixels that contain boundaries of hatching level regions, since the training

data contains many more non-boundary pixels. More specifically, if NB are the total number

of boundary pixels, andNNB is the number of non-boundary pixels, then the weight isNNB/NB

for boundary pixels and 1 for the rest. The boosting iterations terminate when the hold-out

validation error measured on validation pixels (selected as above) is minimum.

Finally, the parametersℓ andµ are optimized by maximizing the following energy term:

ES= ∑
i:ci 6=c j , j∈N(i)

P(ei |x) (4.16)

whereN(i) is the 8-neighborhood of pixeli, andci ,c j are the labels for each pair of neighboring

pixels i, j inferred using the CRF model of Equation 4.1 based on the learned parameters of

its unary and pairwise classifier and using different valuesfor ℓ,µ. This optimization attempts

to “push” the segment label boundaries to be aligned with pixels that have higher probability

to be boundaries. The energy is maximized using Matlab’s implementation of Preconditioned

Conjugate Gradient with numerically-estimated gradients.

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 111

Least-squares Decision Tree
Gaussian

Bayes
Nearest

Neighbors

SVM
Logistic

Regression JointBoost JointBoost
and CRF

no hatching hatching cross-hatching

Figure 4.4: Comparisons of various classifiers for learning the hatchinglevel. The train-

ing data is the extracted hatching level on the horse of Figure 4.2 and feature setx. Left

to right: least-squares for classification, decision tree (Matlab’simplementation based on

Gini’s diversity index splitting criterion), Gaussian Naive Bayes, Nearest Neighbors, Support

Vector Machine, Logistic Regression, Joint Boosting, Joint Boosting and Conditional Random

Field (full version of our algorithm). The regularization parameters of SVMs, Gaussian Bayes,

Logistic Regression are estimated by hold-out validation with the same procedure as in our

algorithm.

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 112

Linear
Regression

Ridge
Regression Lasso Gradient-based

boosting

Figure 4.5: Comparisons of the generalization performance of various techniques for regres-

sion for the stroke spacing. The same training data are provided to the techniques based on the

extracted spacing on the horse of Figure 4.2 and feature setx. Left to right: Linear regression

(least-squares without regularization), ridge regression, Lasso, gradient-based boosting. Fit-

ting a model on such very high-dimensional space without any sparsity prior yields very poor

generalization performance. Gradient-based boosting gives more reasonable results than ridge

regression or Lasso, especially on the legs of the cow, where the predicted spacing values seem

to be more consistent with the training values on the legs of the horse (see Figure 4.2). The

regularization parameters of Ridge Regression and Lasso are estimated by hold-out validation

with the same procedure as in our algorithm.

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 113

Learning to generate hatching levels The next step is to learn the hatching levelsh ∈

{0,1,2}. The input here is the hatching levelhi per pixel contained inside the rendered area (as

extracted during the pre-processing step (Appendix B.1) together with their full feature setxi

(including the contextual features as extracted above).

Our goal is to compute the parameters of the second CRF model used for inferring the hatching

levels (Equation 4.4). Our algorithm first uses a JointBoost classifier that maps from the feature

setx to the training hatching levelsh. The classifier is initialized with uniform weights and

terminates the boosting rounds when the hold-out validation error is minimized (the hold-out

validation pixels are selected as above). The classifier outputs the probabilityP(hi |xi), which

is used in the unary term of the CRF model. Finally, our algorithm uses the same pairwise term

parameters trained with the CRF model of the segment labels to rectify the boundaries of the

hatching levels.

Examples comparing our learned hatching algorithm to several alternatives are shown in Figure

4.4.

4.4.3 Learning Real-Valued Stroke Properties

Thickness, intensity, length, and spacing are all positive, real-valued quantities, and so the

same learning procedure is used for each one in turn. The input to the algorithm are the values

of the corresponding stroke properties, as extracted in thepreprocessing step (Section B.1) and

the full feature setxi per pixel.

The multiplicative model of Equation 4.8 is used to map the features to the stroke properties.

The model is learned in the log-domain, so that it can be learned as a linear sum of log func-

tions. The model is learned with gradient-based boosting for regression (Section 2.4). The

weights for the training pixels are initialized as uniform.As above, the boosting iterations stop

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 114

Artist’s illustration
Our rendering for

input view & object

Figure 4.6: Data-driven line art illustrations generated with our algorithm. From left to

right: Artist’s illustration of a horse. Rendering of the model withour learnt style. Renderings

of new views and new objects.

when the holdout-validation measured on randomly selectedvalidation pixels is minimum.

Examples comparing our method to several alternatives are shown in Figure 4.5.

4.5 Results

The figures throughout our paper show synthesized line drawings of novel objects and views

with our learning technique (Figures 4.1, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14). As can

be seen in the examples, our method captures several aspectsof the artist’s drawing style, better

than alternative previous approaches (Figure 4.1). Our algorithm adapts to different styles

of drawing and successfully synthesizes them for differentobjects and views. For example,

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 115

Artist’s illustration
Our rendering for

input view & object

Figure 4.7: Data-driven line art illustrations generated with our algorithm. From left to

right: Artist’s illustration of a horse with a different style than 4.6. Rendering of the model

with our learnt style. Renderings of new views and new objects.

Figures 4.6 and 4.7 show different styles of illustrations for the same horse, applied to new

views and objects. Figure 4.14 shows more examples of synthesis with various styles and

objects.

However, subtleties are sometimes lost. For example, in Figure 4.12, the face is depicted with

finer-scale detail than the clothing, which cannot be captured in our model. In Figure 4.13, our

method loses variation in the character of the lines, and depiction of important details such as

the eye. One reason for this is that the stroke placement algorithm attempts to match the target

hatching properties, but does not optimize to match a targettone. These variations may also

depend on types of parts (e.g., eyes versus torsos), and could be addressed given part labels

[69]. Figure 4.11 exhibits randomness in stroke spacing andwidth that is not modeled by our

technique.

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 116

Artist’s illustration
Our rendering for

input view & object

Figure 4.8: Data-driven line art illustrations generated with our algorithm. From left to right:

Artist’s illustration of a rocker arm. Rendering of the model with our learnt style. Renderings

of new views and new objects.

Artist’s illustration
Our rendering for

input view & object

Figure 4.9: Data-driven line art illustrations generated with our algorithm. From left to right:

Artist’s illustration of a pitcher. Rendering of the model with our learnt style. Renderings of

new views and new objects.

Selected features We show the frequency of orientation features selected by gradient-based

boosting and averaged over all our nine drawings in Figure 4.15. Fields aligned with principal

curvature directions as well as local principal axes (corresponding to candidate local planar

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 117

Artist’s illustration
Our rendering for

input view & object

Figure 4.10: Data-driven line art illustrations generated with our algorithm. From left to

right: Artist’s illustration of a Venus statue. Rendering of the model with our learnt style.

Renderings of new views and new objects.

Artist’s illustration
Our rendering for

input view & object

Figure 4.11: Data-driven line art illustrations generated with our algorithm. From left to

right: Artist’s illustration of a bunny using a particular style; hatching orientations are mostly

aligned with point light directions. Rendering of the model with our learnt style. Renderings

of new views and new objects.

symmetry axes) play very important roles for synthesizing the hatching orientations. Fields

aligned with suggestive contours, ridges and valleys are also significant for determining orien-

tations. Fields based on shading attributes have moderate influence.

We show the frequency of scalar features averaged selected by boosting and averaged over all

our nine drawings in Figure 4.16 for learning the hatching level, thickness, spacing, intensity,

length, and segment label. Shape descriptor features (based on PCA, shape contexts, shape

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 118

replacements

Artist’s illustration
Our rendering for

input view & object

Figure 4.12: Data-driven line art illustrations generated with our algorithm. From left to

right: Artist’s illustration of a statue. Rendering of the model with our learnt style. Renderings

of new views and new objects.

Artist’s illustration
Our rendering for

input view & object

Figure 4.13: Data-driven line art illustrations generated with our algorithm. From left to

right: Artist’s illustration of a cow. Rendering of the model with our learnt style. Renderings

of new views and new objects.

diameter, average geodesic distance, distance from medialsurface, contextual features) seem

to have large influence on all the hatching properties. This means that the choice of tone is

probably influenced by the type of shape part the artist draws. The segment label is mostly de-

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 119

Artists’

illustrations
S

y
n

th
e

s
is

 f
o

r
n

o
v
e

l
o

b
je

c
ts

Figure 4.14: Data-driven line art illustrations generated with our algorithm based on the

learned styles from the artists’ drawings in Figures 4.1, 4.6, 4.7, 4.10, 4.13.

termined by the shape descriptor features, which is consistent with the previous work on shape

segmentation and labeling [69]. The hatching level is mostly influenced by image intensity,

~V ·~N, ~L ·~N. The stroke thickness is mostly affected by shape descriptor features, curvature,

~L ·~N, gradient of image intensity, the location of feature lines, and, finally, depth. Spacing is

mostly influenced by shape descriptor features, curvature,derivatives of curvature,~L ·~N, and

~V ·~N. The intensity is influenced by shape descriptor features, image intensity,~V ·~N, ~L ·~N,

depth, and the location of feature lines. The length is mostly determined by shape descriptor

features, curvature, radial curvature,~L ·~N, image intensity and its gradient, and location of

feature lines (mostly suggestive contours).

However, it is important to note that different features arelearned for different input illus-

trations. For example, in Figure 4.11, the light directionsmostly determine the orientations,

which is not the case for the rest of the drawings. We include histograms of the frequency of

orientation and scalar features used for each of the drawingin the supplementary material.

Computation time In each case, learning a style from a source illustration takes 5 to 10

hours on a laptop with Intel i7 processor. Most of the time is consumed by the orientation and

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 120

clustering step (4.4.1) (about 50% of the time for the horse), which is implemented in Matlab.

Learning segment labels and hatching levels (4.4.2) represents about 25% of the training time

(implemented in C++) and learning stroke properties 4.4.3 takes about 10% of the training

time (implemented in Matlab). The rest of the time is consumed for extracting the features

(implemented in C++) and training hatching properties (implemented in Matlab). We note that

our implementation is currently far from optimal, hence, running times could be improved.

Once the model of the style is learned, it can be applied to different novel data. Given the

predicted hatching and cross-hatching orientations, hatching level, thickness, intensity, spacing

and stroke length at each pixel, our algorithm traces streamlines over the image to generate the

final pen-and-ink illustration. Synthesis takes 30 to 60 minutes. Most of the time (about 60%)

is consumed here for extracting the features. The implementation for feature extraction and

tracing streamlines are also far from optimal.

4.6 Summary and Future Work

Ours is the first method to generate predictive models for synthesizing detailed line illustrations

from examples. We model line illustrations with a machine learning approach using a set of

features suspected to play a role in the human artistic process. The complexity of man-made

illustrations is very difficult to reproduce; however, we believe our work takes a step towards

replicating certain key aspects of the human artistic process. Our algorithm generalizes to novel

views as well as objects of similar morphological class.

There are many aspects of hatching styles that we do not capture, including: stroke textures,

stroke tapering, randomness in strokes (such as wavy or jittered lines), cross-hatching with

more than two hatching directions, style of individual strokes, and continuous transitions in

hatching level. Interactive edits to the hatching properties could be used to improve our results,

similarly to [120].

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 121

0.0 0.10 0.20 0.30

~kmax,~kmin

~ea,~eb

∇(~L×~N)

∇(~V×~N)

~s

~v

~r

∇a

∇I

∇(~L ·~N)

∇(~V ·~N)

~E

~L

Figure 4.15: Frequency of the first three orientation features selected by gradient-based boost-

ing for learning the hatching orientation fields.The frequency is averaged over all our nine training

drawings (Figures 4.1, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13). The contribution of each feature is

also weighted by the total segment area where it is used. The orientation features are grouped based on

their type: principal curvature directions (~kmax,~kmin), local principal axes directions (~ea,~eb), ∇(~L×~N),

∇(~V×~N), directions aligned with suggestive contours (~s), valleys (~v), ridges (~r), gradient of ambient oc-

clusion (∇a), gradient of image intensity (∇I), gradient of(~L ·~N), gradient of(~V ·~N), vector irradiance

(~E), projected light direction (~L).

Since we learn from a single training drawing, the generalization capabilities of our method to

novel views and objects are limited. For example, if the relevant features differ significantly

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 122

between the test views and objects, then our method will not generalize to them. Our method

relies on holdout validation on randomly selected regions to avoid overfitting; this ignores the

hatching information existing in these regions that might be valuable. Re-training the model

is sometimes useful to improve results, since these regionsare selected randomly. Learning

from a broader corpus of examples could help with these issues, although this would require

drawings where the hatching properties change consistently across different object and views.

In addition, if none of the features or a combination of them cannot be mapped to a hatching

property, then our method will also fail.

Finding what and how other features are relevant to artists’pen-and-ink illustrations is an open

problem. Our method does not represent the dependence of style on part labels (e.g., eyes

versus torsos), as previously done for painterly renderingof images [156]. Given such labels,

it could be possible to generalize the algorithm to take thisinformation into account.

The quality of our results depend on how well the hatching properties were extracted from

the training drawing during the preprocessing step. This step gives only coarse estimates, and

depends on various thresholds. This preprocessing cannot handle highly-stylized strokes such

as wavy lines or highly-textured strokes.

Example-based stroke synthesis [33, 51, 67] may be combinedwith our approach to generate

styles with similar stroke texture. An optimization technique [145] might be used to place

streamlines appropriately in order to match a target tone. Our method focus only on hatch-

ing, and render feature curves separately. Learning the feature curves is an interesting future

direction. We also believe that our learning techniques could be used for analyzing data from

surveys with larger datasets than ours. Another direction for future work is hatching for ani-

mated scenes, possibly based on a data-driven model similarto [70]. Finally, we believe that

aspects of our approach may be applicable to other applications in geometry processing and

artistic rendering, especially for vector field design.

CHAPTER 4. LEARNING HATCHING FOR PEN-AND-INK ILLUSTRATION OF SURFACES 123

replacements

0.0 0.10 0.20 0.30

Curv.

D.Curv.

Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion

PCA

SC

GD

SDF

MSD
Depth

Amb.Occl.

I
~V ·~N
~L ·~N
|∇I |

|∇(~V ·~N)|

|∇(~L ·~N)|

S.Contours
App.Ridges

Ridges

Valleys

Contextual

0.0 0.05 0.10 0.15 0.20

Curv.

D.Curv.
Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion

PCA

SC

GD

SDF

MSD
Depth

Amb.Occl.
I

~V ·~N
~L ·~N
|∇I |

|∇(~V ·~N)|

|∇(~L ·~N)|

S.Contours
App.Ridges

Ridges

Valleys

Contextual

0.0 0.05 0.10 0.15 0.20

Curv.

D.Curv.
Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion

PCA

SC

GD

SDF

MSD
Depth

Amb.Occl.
I

~V ·~N
~L ·~N
|∇I |

|∇(~V ·~N)|

|∇(~L ·~N)|

S.Contours
App.Ridges

Ridges

Valleys

Contextual

Top features used for hatching level Top features used for thickness Top features used for spacing

0.0 0.05 0.10 0.15 0.20 0.25

Curv.
D.Curv.

Rad.Curv.
D.Rad.Curv.
View Curv.

Torsion
PCA

SC
GD

SDF
MSD
Depth

Amb.Occl.
I

~V ·~N
~L ·~N
|∇I |

|∇(~V ·~N)|

|∇(~L ·~N)|

S.Contours
App.Ridges

Ridges
Valleys

Contextual

0.0 0.05 0.10 0.15 0.20

Curv.

D.Curv.
Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion
PCA

SC

GD
SDF

MSD
Depth

Amb.Occl.
I

~V ·~N
~L ·~N
|∇I |

|∇(~V ·~N)|

|∇(~L ·~N)|

S.Contours
App.Ridges

Ridges

Valleys

Contextual

0.0 0.10 0.20 0.30 0.40

Curv.

D.Curv.
Rad.Curv.

D.Rad.Curv.

View Curv.

Torsion
PCA

SC

GD
SDF

MSD
Depth

Amb.Occl.
I

~V ·~N
~L ·~N
|∇I |

|∇(~V ·~N)|

|∇(~L ·~N)|

S.Contours
App.Ridges

Ridges

Valleys

Contextual

Top features used for intensity Top features used for length Top features used for segment label

Figure 4.16: Frequency of the first three scalar features selected by the boosting techniques used

in our algorithm for learning the scalar hatching properties. The frequencyis averaged over all nine

training drawings. The scalar features are grouped based on their type:Curvature (Curv.), Derivatives

of Curvature (D. Curv.), Radial Curvature (Rad. Curv.),Derivative ofRadial Curvature (D. Rad. Curv.),

Torsion, features based on PCA analysis on local shape neighborhoods, features based Shape Context

histograms [10], features based on geodesic distance descriptor [53], shape diameter function features

[124], distance from medial surface features [91], depth, ambient occlusion, image intensity (I),~V ·~N,

~L ·~N, gradient magnitudes of the last three, strength of suggestive contours, strength of apparent ridges,

strength of ridges and values, contextual label features.

Chapter 5

Data-driven computation of surface

attributes for animated scenes

In this chapter, I investigate the second type of geometry processing problems for which learn-

ing algorithms can be useful. These problems involve the efficient, possibly real-time computa-

tion of shape attributes for dynamic, animated scenes. When the shape attributes exhibit strong

correlation to the animation parameters of the shape, learning algorithms can be used to learn

a function from the shape representation to the attributes;in this case, the shape is represented

by a low-dimensional state vector describing its animation.

The approach to learning such mappings begins with computing a set of training pairs{(xi ,yi)},

wherexi are the animation parameters for a mesh andyi are a set of target attributes. Then, a

mapping is learned from the low-dimensional parameterization to target attributes:

y = f (x) (5.1)

This mapping is very high-dimensional, and can also be highly nonlinear. Furthermore, it is

crucial that the mapping can be evaluated fast enough to allow real-time computations of the

attributes during runtime. In some cases, the locality of the mapping can be exploited, e.g., the

124

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES125

target attribute may only be affected by a few nearby joints.

I developed a method that combines dimensionality reduction and regression, while also taking

advantage of locality when possible. Here, I describe the details for the method in the case of

surface curvature attributes (Section 5.1). In [102], we discuss a similar methodology for the

case of surface visibility represented by its spherical harmonics coefficients. Both surface cur-

vature and visibility are attributes that need to be computed in real-time for many applications

in computer graphics. For example, surface curvature estimation is an important component of

object-space line drawing for many types of curves, such as suggestive contours [22]. Comput-

ing surface visibility is fundamental to photo-realistic rendering. Real-time evaluation of the

learned mappings for these attributes also enable real-time execution of these applications for

deforming shapes.

5.1 Data-driven curvature for real-time line drawing of dy-

namic scenes

Here, I will describe our approach for learning mappings from animation parameters to a set

of curvature attributes—namely, curvature tensors and derivatives1. We apply the learned

mappings for real-time line drawing. Line drawing is based on rendering a variety of curves

defined on 3D surfaces, such as suggestive contours [22], ridges and valleys [59, 105, 139],

apparent ridges [66], highlight lines [23] (Figure 5.1). These curves are essential components

of high-quality line drawing of smooth surfaces and requiresurface curvature and curvature

derivatives to be computed everywhere on the surface.

1The work presented in the following sections is also published in ACM Transactions on Graphics, Vol.
28, No. 1, 2009 [70]. Project web page: http://www.dgp.toronto.edu/~kalo/papers/MLcurvature/, ©ACM,
(2009). This is the author’s version of the work. It is postedhere by permission of ACM for your per-
sonal use. The definitive version was published in ACM Transactions on Graphics, Vol. 28, No. 1, 2009,
http://doi.acm.org/10.1145/1477926.1477937

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES126

Figure 5.1: Line drawings of deforming 3D objects, generated in real-time (24 to 80 FPS) by

our system.

Interactive line drawings of static geometry can be rendered in real-time, because curvatures

can be precomputed [21]. However, for dynamic geometry, curvatures must be recomputed

for each frame, since storing all the curvature and derivatives of curvature values per frame or

storing key poses and then interpolating would require prohibitive amounts of storage (Section

5.8). There are several curvature estimation algorithms that rely on simple differential geom-

etry formulas that can be evaluated on meshes very efficiently (e.g., [137, 96, 17]), however

they often suffer from degenerate cases and noisy estimates, and do not compute third-order

surface derivatives [115]. Other fast methods based on focal surface approximations [153] are

also affected by degeneracies and do not apply in parabolic regions (unless refined by slow

non-linear optimization techniques [154]). In general, inorder to maintain robustness to noise,

irregular tessellation, and also to fully compute third-order derivatives, more expensive com-

putations are necessary. Typically, multiple steps of curvature smoothing or feature-preserving

optimization of the curvature tensors are required [115, 72], therefore computing surface cur-

vatures and their derivatives reliably enough is generallytoo slow to be used in real-time (even

for moderate-sized meshes).

An alternative solution for interactive curvature-based line drawing would be to use using GPU-

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES127

based image processing operations [85]. Image-space methods are appealing in that they are

generally simple and easy to implement. However, there are anumber of drawbacks as well:

accuracy is limited by pixel resolution (often resulting injagged or irregular lines), styliza-

tion options are limited (e.g., curves cannot be textured),speed is limited by hardware image

processing performance, and careful setting of user-defined thresholds is required.

Thus, it would be highly desirable to have an object-space algorithm for reliably computing

surface curvature and its derivatives in real-time for animated surfaces that would provide im-

provements in speed, visual quality and stylization options.

In the following sections, I will describe the learning method we followed to achieve this. Our

algorithm can produce animated 3D line drawings at real-time rates for meshes of 100K trian-

gles in a single processor. We employ a series of learning techniques during precomputation so

that only a few megabytes of storage are required per dataset, curvature synthesis is performed

very efficiently and accurately during runtime and generalization capabilities are offered for

novel, unseen animation sequences. With our algorithm, it is now possible to generate accurate

and stylizable curvature-based line drawings of 3D animated surfaces in real-time (Figures 5.1

and 5.2).

The results of our method are nearly indistinguishable fromthe per-triangle tensor fitting

method of Rusinkiewicz [115], with similar temporal coherence, but require an order-of-magnitude

less computation during runtime. We apply our approach to three types of surfaces: skeleton-

based characters, cloth simulation and blend-shape facialanimation. We show the ability of

our system to generalize to novel animation sequences that are not included in the training set.

We demonstrate stroke stylization with real-time chaining(Figures 5.15 and 5.16). In addition,

stroke thickness can be determined as a function of surface curvature.

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES128

Figure 5.2: Real-time renderings generated with our method (principal highlights and sug-

gestive contours for the horse and apparent ridges and valleys for the other figures). For the

hand, we apply textured chained-strokes for stylization.

Valleys+Suggestive Valleys+ Apparent Ridges+ Suggestive Contours+

Contours Apparent Ridges Principal Highlights Principal Highlights

Figure 5.3: Results generated in real-time using our method (top) compared to those gener-

ated with explicit curvature re-calculation (bottom).

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES129

5.2 Related work

Our work is inspired by methods for precomputing deformation and radiance transfer. Example-

based skinning algorithms [86, 97, 149] learn mappings fromskeleton parameters to 3D shapes;

our method for skeleton-based characters learns mappings to surface curvature. For cloth sim-

ulation, our method is in the same spirit with the photorealistic rendering algorithms of James

and Fatahalian [61] and Nowrouzezahraiet al. [104, 103, 102], in which dimensionality reduc-

tion is applied to relate simulation and animation to rendering. To the best of our knowledge,

this thesis presents the first data-driven method for curvature estimation.

5.3 Overview

Our approach to computing surface curvatures has two stages: the preprocessing stage, which

is performed offline, and the runtime synthesis stage, whichis performed in real-time.

Preprocessing.In a preprocessing stage, we begin with an animation sequence, from which

we can compute a set ofM training pairs{(xi ,yi)}, wherexi are the parameters for a mesh

andyi are a set of curvature attributes. The curvatures for these meshes are computed with the

algorithm of Rusinkiewicz [115]. Additional curvature smoothing and optimization steps are

required in order to obtain high-quality results [22, 72].

Then, we learn a mapping from the low-dimensional parameterization to surface curvatures.

For a skeleton-based character, linear regression with a low-order polynomial model is used.

A quadratic model is used for surface curvatures and principal directions and a cubic model is

used for the derivatives of curvature. For cloth simulation, first, a low-dimensional representa-

tion of geometry is discovered and then linear regression isused. For facial animation, neural

network regression maps from the blending parameters to thecurvature space.

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES130

Run-time rendering. During an interactive session, the parametersx are determined for each

frame. The curvaturesy are computed byy = f (x). Then, various rendering options are sup-

ported. The mesh can be rendered with contours, suggestive contours, and any other lines that

requires curvature. Real-time chaining can be performed to provide more stylization options,

such as texturing strokes. Stroke thickness can also be determined as a function of surface

curvature.

Our method for skeleton-based surfaces is described in Section 5.4. Simulated cloth surfaces

are described in Section 5.5, followed by our method for blend-shape facial animation in Sec-

tion 5.6.

5.3.1 Curvature attributes

The surface curvature datay can be represented in different ways. For our application, there are

three primary considerations in choosing a representation. First, we want a spatially smooth

representation that exploits the local correlations in thecurvature field in order to reduce the

size of the model through dimensionality reduction (Section 5.3.2). Second, we want the rep-

resentation to smoothly vary as a function of animation parameters in order to achieve accurate

regression and better temporal coherence. Lastly, we want arepresentation that stores as few

values as possible for each vertex, in order to reduce storage costs. In order to fulfill these

goals, we represent the curvature attributes as follows:

1. The principal curvatures k1 andk2. We use the standard definition wherek1> k2, rather

than|k1|> |k2| [116], since the latter definition introduces temporal discontinuities in the

curvature field (swapping of principal directions), which adversely affects the learning

procedure.

2. The principal direction of maximum curvature ~e1. This direction is represented by

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES131

using its first two components in a local coordinate system. This particular representation

of the curvature attributes is chosen for invariance to rigid transformations of parts of the

surface. While a 1D angular representation (i.e., the angle in the tangent plane of each

vertex) would be more compact, this parametrization would have singularities at 2π.

The local coordinate systems are determined by first segmenting the surface into rigid

segments and then performing PCA on the vertices of each segment. For skeleton-based

characters, the segmentation is computed by applying mean-shift clustering [19] to the

skinning weights. For cloth simulation, rigid components are found using the method

of James and Twigg [62]. At run-time, the third component of~e1 and the other princi-

pal direction~e2 can be computed from this representation and the per-vertexnormals.

Per-vertex normals are computed in a standard manner per-frame, i.e., as the weighted

average of incident face normals. In order to improve spatial smoothness, we also adjust

the principal directions to match the segment’s coordinatesystem orientation. The local

rigid coordinate frame is aligned to a reference mesh edge and normal vector (which are

selected to match closely the PCA directions) for each segment. Then, in subsequent

frames, we orient the principal directions to match their previous orientation in order to

achieve temporal coherence.

3. The derivatives of curvatures.These derivatives form a 2×2×2 tensor, which, due to

symmetry, can be represented by four values.

We will learn a separate mapping (y = f (x)) from the animation parametersx to each of the

eight curvature attributes listed above.

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES132

5.3.2 Dimensionality reduction

The attribute vectory for a mesh is very high-dimensional. However, as there are significant

spatial correlations in the curvatures, dimensionality reduction can be employed to significantly

compress these vectors, based on the discussion of Section 2.5. In this case, dimensionality

reduction also helps to denoise unstable attributes (such as principal directions near umbilical

points), since noisy data are not captured by the first few principal components, since they

correspond to larger variance in the data. Thus, noisy data are not represented in the low-

dimensional subspace.

We use the ICA technique [9, 20, 14] for dimensionality reduction (Section 2.5.2). More

specifically, we use the FastICA variant [56], which maximizes non-gaussianity by using the

approximation of negentropy. An alternative option would be to use PCA, but as we discussed

in Section 2.5.2, while PCA has the property that it is least-squares optimal for compressing

the training data, this does not guarantee that it will generalize to new shapes not included in

the training data. In fact, we find that ICA does generalize better because it prefers sparse

bases, yielding localized basis functions corresponding to structure in the data, such as folds,

wrinkles, and other similar structures (Figure 2.6). Similarly, it has been often noted in the

literature that ICA applied to image data yields localized features, e.g., [7, 9]. In contrast,

the PCA bases are global: the first components contain a mixture of many distinct folds and

wrinkles that are less likely to co-occur for novel poses.

5.4 Skeleton-based deformations

Our method for skeleton-based curvature prediction exploits the special structure of skinned

geometry. Specifically, we note that the skeleton’s joint angle values provide a natural parame-

terization, and so we will use them as the inputsx to the regression. Furthermore, the curvature

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES133

Ground truth (20 ms) Our prediction (1.4 ms)

Figure 5.4: Left: Typical plots of curvature and derivatives of curvature at avertex as a func-

tion of one joint angle, for the muscle mesh. The vertex shown is the one with highest variance

in principal curvature k1 during training. The quadratic model is more suitable than asimple

linear model, while a cubic model is more appropriate for the derivatives of curvature compo-

nents.Top right: Comparison of principal curvatures produced by the method ofRusinkiewicz

[2004], as compared to those produced by our method.Bottom right:Comparison of principal

directions. The most significant differences in principal direction estimates occur at umbilical

points where the directions are unstable. We also report the running times for Rusinkiewicz’s

and our method.

attributes we wish to predict depend only locally on joint values. For example, the angle of an

elbow affects the skin only within its nearby support area, and not the rest of the body. This is

similar to the locality of weights used in example-based skinning algorithms (e.g., [97, 149]).

Our method for skeleton-based characters works as follows.First, we gather the training data,

and represent it as described in the next section. We predictcurvature as a function of joint

angles, using a polynomial regression model described in Section 5.4.2. For each vertex, we

determine which joints have a significant influence on the curvature at the vertex by applying a

statistical test (Section 5.4.3). To simplify the regression, we perform dimensionality reduction

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES134

on the curvature attributes of the influenced vertices per joint (Section 5.4.4). Finally, we apply

regression to build the mapping from animation parameters to curvature (Section 5.4.5).

5.4.1 Training

We begin with a set of training poses. These poses may, for example, correspond to a typical

animated sequence for this character. Following Wang et al.’s scale/shear regression [149], we

represent a posex as a vector ofbones, where each bone is parameterized by the associated

joint and its parent joint angles. Each joint is representedas three Euler rotation angles with

respect to the corresponding axis of rotation in its local coordinate frame. Therefore, each

bone has 6 degrees of freedom. We represent each element ofx as cos(θ/2), whereθ is a joint

angle. This representation is motivated by the fact that thediscrete mean curvature at an edge

depends on the cosine of half of the dihedral angle [109], andthus these values were found to

be better for predicting curvature.

For each training posei, we compute the corresponding surface attributesyi. Note that some

vertices can be treated as rigid, such as vertices with neighborhoods influenced only by one

bone. We detect vertices with curvature variation less than0.5% of the maximum curvature

variation in the data. These vertices are treated as having constant curvature and removed from

the learning process. In the Mr. Fit model (Figure 5.7), about 25% of the vertices are treated as

rigid.

5.4.2 Regression model

In order to select an appropriate regression model, we first consider the case of a character with

only a single joint. As shown in Figure 5.4, we find that the curvature at the vertices around a

joint can be approximated very well by a quadratic function of the joint angle, while a cubic

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES135

Figure 5.5: Left: Typical smooth skinning weights for an elbow joint.Right: Curvature

attribute weights (wj,v) from the elbow joint as determined by our method. Note that fewer

curvatures require input from this joint; additionally, the distribution of weights is noticeably

different from the skinning weights. We observed that blending the curvatures with skinning

weights between different joints resulted in significant errors and lower runtime speed. With

our weighting scheme, the weights of the joints on the curvature of vertices were distributed

more appropriately.

is sufficient for derivative of curvature. We found that higher-order models (such as B-splines)

are more powerful than necessary for articulated data, thusrequiring more storage and running

time for the same-quality results while also exhibiting poorer generalization.

Hence, we will perform regression with the model

y = Vφ(x) (5.2)

whereV is a matrix of regression weights. For surface curvatures, we use quadratic features:

φ(x) = [1,x1, ...,xK,x
2
1, ...,x

2
K]

T (5.3)

while, for derivatives of curvature, we use cubic features:

φ(x) = [1,x1, ...,xK,x
2
1, ...,x

2
K,x

3
1, ...,x

3
K]

T (5.4)

whereK is the total number of joint angles. We omit the bilinear termsxix j for i 6= j and other

higher-order terms, as we have found that these lead to worsegeneralization, due to overfitting.

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES136

5.4.3 Determining which joints influence curvature at each vertex

In general, the curvature attributes at a vertex can be affected by more than one joint, namely, all

joints with nonzero skinning weight at that vertex. Joints with nonzero weights at neighboring

vertices can also affect curvature. However, the curvaturecan often be predicted using only a

subset of these joints. In order to reduce the model size, we need to determine a subset of joints

to be used for regression at each vertex. That is, we find the joints which have a significant

effect on the curvature at vertexv. This is a feature selection problem that can be treated with

the boosting for regression technique that was discussed inSection 2.4.3. However, we used a

much simpler technique, because the number of joints to process is very small (compared to the

high-dimensional spaces we had in the case of learning stroke properties for line illustrations in

the previous chapter), and the regression model to be learned is not that complex. The technique

we used is a statistical test that is applied at each vertex. This statistical test is performed based

on prediction of mean curvatureκ = (k1+k2)/2. The joints selected to influence each vertex

based on mean curvature will be used for all other curvature attributes.

Specifically, for each vertex, we fit the mean curvature values for each training posei by least-

squares regression, minimizing:

EFULL = ∑
i
||κi−aTφ(x[v]i)||2 (5.5)

wherex[v]i are theK elements (joint angles) ofxi that influence vertexv (as determined by

the skinning weights),φ is a quadratic feature vector (Equation 5.3), anda are the regression

weights. Then this regression is repeated using only individual joints as inputs (as in Section

5.4.2). Regression on jointj (i.e., using the six elements of its angles and its parent joint

angles as the inputsx[v]i) gives another residualE j . An F-test [150] is then applied to determine

whether to keep the joint’s influence: this test simply determines whether including a joint

makes a significant improvement to the residual. Specifically, theF statistic is:

F =
(E j −EFULL)/(9J−6)

EFULL/(N−9J)
(5.6)

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES137

Ground Truth 95% of variance 90% of variance zero-order

0.8MB, 1.4ms 0.5MB, 1.1ms 0.2MB, 0.01ms

Figure 5.6: Ridges and Valleys for muscle dataset with respect to decreasing variance cap-

tured by the basis. Ridges and Valleys based on ground truth curvature data is on the left. A

zero-order prediction based only on the mean of the curvature data is also depicted on the right

for comparison. A reasonable choice that balances the trade-off between speed and accuracy

is selecting the number of components based on 95% of the variance. The size of the model

and running times per frame are also shown.

whereJ is the number of joints for this vertex with non-zero skinning weights andN is the

number of training poses. The corresponding joint will thenbe kept for the regression forv if

F is greater than the critical value for theF distribution forp> 0.05.

This test is repeated for all joints with nonzero skinning weights at this vertex; those that pass

the test are deemed as influencing this vertex. If all the joints fail the F-test, then the one with

smallest residualE j is kept. In practice, we observe that two joints are sufficient for most

vertices in most cases. Although it is possible that a joint of a bone will affect the curvature at

a vertex for which it has zero skinning weight, smoothness ofthe skinning weights implies that

the effect of the bone is negligible. In our experiments, this statistical test typically halves the

size of the learned model and speeds up run-time curvature prediction by 150-200%. We also

experimented with boosting for regression to select the subset of joints that influence curvature

at each vertex; it had similar performance in both results and execution time.

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES138

5.4.4 Dimensionality reduction

Due to the large number of vertices, directly learning the mapping to all the curvature attributes

per vertex would require estimating and storing an impractical number of weights. Instead, we

exploit the spatial coherence of the curvature attributes and perform regression on a reduced-

dimensional model, as described below. The following process is performed eight times, once

for each curvature attribute.

For each jointj, we define a vectory(j) consisting of the values of the curvature attribute to be

predicted from this joint. One such vectory(j)
i is computed for each posei in the training set

and contains the attribute to be predicted (e.g.,k1). Because this vectory(j) is high-dimensional

(its dimensionality is equal to the number of vertices influenced by the joint), we apply ICA to

the training data to obtain a reduced representation:

y(j) = W jz+ ȳ (5.7)

All terms on the right-hand side are determined by the FastICAalgorithm [56]. We keep the

first D independent bases, whereD is set to the number of the eigenvalues required to capture

95% of the variance ofW. This threshold is selected empirically to balance the trade-off

between speed and accuracy (Figure 5.6).

5.4.5 Regression

We use least-squares regression to map from the animation parametersx to their corresponding

valuesz in the low-dimensional space of curvature attributes. Specifically, we solve for the

weightsV that minimize
M

∑
i=1
||zi−V jφ(x

(j)
i)||2 (5.8)

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES139

Ground Truth 100 training frames50 training frames 25 training frames 20 training frames

Figure 5.7: Suggestive contours for Mr. Fit dataset with respect to the number of training

examples. Suggestive contours based on ground truth curvature data are on the left. Our

system can accurately synthesize surface curvatures usinga few training examples.

wherex(j) are the six elements ofx that depend on jointj. Each joint now provides a separate

predictor of the curvature at a particular vertexv, i.e.,

ỹv, j(x) = W jV jφ(x(j))+ ȳv (5.9)

where the subscriptv indexes rows specific to that vertex. The predictor ˜yv, j(x) can be viewed

as an estimate ofyv. (Note that each jointj will have its ownW andV matrices).

We create the final predictor ofyv by linearly combining these predictors in a manner similar

to boosting [11].

y∗v = fv(x) =
Ĵ

∑
j=1

w j,vỹv, j(x) (5.10)

whereĴ is the number of joints with nonzero influence on this vertex (as determined in Section

5.4.3). One option for determining the weightsw is by least-squares fitting. However, we

have obtained better results by weighting the predictors according to their fit to the training

data. Specifically, letr j = ∑i(yi,v− ỹv, j(x))2 be the residual of thej-th predictor. Then, we

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES140

Figure 5.8: Left: Plot of % misclassified faces for the suggestive contour drawings for the

Mr. Fit test sequences versus number of training examples (the number of ICA components

is chosen to correspond with the 95% of the variance of the curvature data). More precisely,

we compute the percentage of mesh faces that are not identifiedas having or not having a

suggestive contour. Note that the test error is smoothly decreasing and is relatively small even

for a small number of training examples. The minimal amount of training data is 19 training

poses for character animation sequences since there are at most 6 DOFs and the feature vector

is cubic for derivatives of curvature.Right: Plot of % misclassified faces for ridge and valley

drawings for the muscle dataset versus the variance of the curvature data captured by our

basis. The zero-order prediction had an error of 6.25%.

set the weight for predictorj proportional to the sum of the residuals for all other predictors,

normalized to sum to 1:

w j,v =
∑k6= j rk

(Ĵ−1)∑Ĵ
k=1 rk

(5.11)

where Ĵ is the number of predictors. This can be thought of as similarto the linear blend

skinning process, but averaging target curvatures rather than target poses. We visualize our

resulting weights in Figure 5.5.

5.4.6 Run-time evaluation

During run-time, given a new posex, the curvature attributes for each vertex are computed by

applying Equation 5.10. Curvature prediction is visualizedin Figure 5.4. We also provide error

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES141

Ground truth (91 ms) Our prediction (1.7 ms)

Figure 5.9: Left: Typical plots of the first ICA component of curvature and derivatives of

curvature data for a cloth simulation with respect to the firstICA component of the animation

state vector. A quadratic and a cubic model are more appropriate for fitting curvatures and

derivatives of curvatures respectively.Top right:Comparison of principal curvatures produced

by the method of Rusinkiewicz [2004] and smoothed, as compared to those produced.Bottom

right: Comparison of principal directions. We also report running times for both methods.

analysis with respect to the number of ICA components and number of training examples used

in Figure 5.7. Example skeleton-based renderings are shownin Figures 3.1, 5.2, 5.3, 5.6, 5.7,

5.16 and in the accompanying video. We also show examples of generalization of our method

to novel animation sequences in the accompanying video.

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES142

5.5 Cloth simulation

To learn curvatures for cloth simulation, we begin with an animated cloth sequence(s1, ..,sM)

as training data. Our goal is to be able to compute curvaturesy for a new cloth shapes. Because

no low-dimensional state vector is provided for the cloth, we apply dimensionality reduction

to the animation state to obtain one. We will learn a mapping from this low-dimensional space

derived from the current cloth shapes (Section 5.5.1) to the low-dimensional space of surface

curvatures (Section 5.5.2).

5.5.1 Dimensionality reduction for cloth state

We apply ICA to the 3D cloth shapes{si} to obtain animation parameters{xi} such thats=

Ax + s̄ [11, 61]. For this step, we represent the cloth states in terms of dihedral angles. For

example, we typically find that 50 basis vectors are sufficient to represent 95% of the variation

for the horse cloth with 10K vertices (and thus 20K dihedral angles) providing a good trade-off

between speed and prediction accuracy.

In addition, ICA is applied to curvature data to obtain a reduced representation as well:

y = Wz+ ȳ (5.12)

5.5.2 Regression

As for articulated characters, we use least-squares regression with quadratic features to map

from the low-dimensional animation statex to the corresponding low-dimensional surface cur-

vaturesz. More specifically, we estimate weightsV to minimize:

M

∑
i=1
||zi−Vφ(xi)||

2 (5.13)

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES143

Ground Truth ICA 95% PCA 95% PCA 99% zero-order prediction

4.0MB,1.5ms 4.0MB,1.5ms 7.1MB,2.9ms 0.1MB,0.01ms

Figure 5.10: Suggestive contours for a novel frame of cloth with respect tothe basis used

corresponding to the given variance.From left to right: We show results for ground truth,

ICA with number of base vectors corresponding to 95% of the variance of the curvature data,

PCA capturing 95% of the variance and zero-order prediction.The sparsity and locality of

ICA, as depicted in Figure 2.6, offers better line drawing results. Even if the number of basis

is increased for PCA (99% correspond to three times more coefficients), the result does not

improve much.

Ground 500 training 250 training 175 training 100 training

Truth frames frames frames frames

Figure 5.11: Apparent ridges for a novel frame of cloth with respect to the number of training

examples.

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES144

Figure 5.12: Left: Plot of % misclassified faces for apparent ridges drawing for the curtain

test sequence versus number of training examples (the number of ICA components is chosen

to correspond the 95% of the variance of the curvature data).The minimal amount of training

data is 97 training poses for character animation sequencessince the dimensionality of the

animation state vector is 32 and the feature vector is cubic for derivatives of curvature (the

minimal amount of training data depends on the dimensionality of the reduced animation state

vector deduced in the first step. Typically, for keeping 95% of the animated geometry, this

varies from 30 to 100 in our examples).Right: Plot of % misclassified faces for apparent

ridges drawing for the same dataset versus variance of curvature data captured by the basis

for curvature. The zero-order prediction had error 20.58%.

5.5.3 Run-time evaluation

Given a new cloth shapes, generating curvatures requires the following steps. First, the dihe-

dral angles are projected to the ICA subspace to obtain the low-dimensional state. Then, the

new curvaturesy∗ are predicted for the vertices of the cloth as:

y∗ = f (x) = WVφ(x)+ ȳ (5.14)

Example cloth renderings using our method are shown in Figures 3.1, 5.2, 5.3 and in the ac-

companying video. In Figure 5.10 and 5.11, we also provide error analysis as a function of the

number of independent bases and the number of training examples used respectively. Given

training data covering a range of motions, our model can still predict the curvature when the pa-

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES145

rameters of the dynamics (e.g., an air field or a turbulence field) controlling the cloth animation

change. We show the generalization of our method in the accompanying video.

5.6 Blend-shape facial animation

In the case of blend-shape facial animation, we assume we aregivenM low-dimensional weight

vectorsx, each of which can be used to generate a 3D face shapesby blending. For each train-

ing pose, we compute the surface curvature attributesy. Unlike with skeleton-based characters

and cloth, in the case of facial animation, we did not find a simple linear relationship between

the blending parameters and the curvature attributes (Figure 5.13). We employ Artificial Neural

Network (ANN) regression to fit this nonlinear map.

5.6.1 Neural Network Regression

As before, the learning process starts by reducing the curvature data with ICA,y = Wz+ ȳ,

once for each of the eight curvature attributes. We then perform ANN regression [11] to learn

a nonlinear mapping from the dimensionality-reduced shapex to the dimensionality-reduced

curvaturez; one such regression is performed for each of the ICA coefficients of all the 8

curvature attributes. The ANN for each attribute has the form:

g(x) =
L

∑
ℓ=1

wℓtanh
(

bT
ℓ x+b0

)

+w0 (5.15)

whereL is the number of neurons,wℓ andbℓ areL pairs of weight vectors, andw0 andb0

are bias terms. The weights are obtained by optimizing the following regularized least-squares

objective:

E(w,b) = ∑
i
||zi−g(xi)||

2+λ
L

∑
ℓ=1

(

||wℓ||
2+ ||bℓ||

2) (5.16)

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES146

Ground truth Our prediction

(750 ms) (23 ms)

Figure 5.13: Left: Typical plots of the first ICA component of curvature and derivatives of

curvature for a face animation with respect to one of the blending parameters. In this case, a

quadratic or a cubic model cannot approximate the data well. On the other hand, non-linear

regression with ANNs is more appropriate in this case. The number of neurons is selected

with cross-validation.Middle: Comparison of principal curvatures produced by the method

of Rusinkiewicz [2004] and smoothed, as compared to those produced by our ANN.Right:

Comparison of principal directions.

whereλ is a smoothing parameter andL is the number of neurons. Optimization is performed

by 5000 iterations of the BFGS algorithm with cubic line search [100]. The weightsw and

b are initialized by sampling from a uniform distribution over −1/K to 1/K for the elements

of wℓ (whereK is the number of blending parameters) and over−1/L to 1/L for bℓ. The

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES147

Figure 5.14: Left: Plot of % misclassified faces for suggestive contours for theface test se-

quence versus the number of training examples (the number ofICA components is chosen to

correspond the 95% of the variance of the curvature data).Right: Plot of % misclassified

faces for suggestive contour drawings for the same dataset versus the variance of curvature

data captured by the basis. The zero-order prediction had anerror of 14.85%.

smoothing parameterλ and the number of neuronsL is chosen by cross-validation [11] in a

preprocessing step.

5.6.2 Run-time evaluation

Given a new face with blending parametersx, we compute the surface curvatures as follows:

y∗ = f (x) = Wg(x)+ ȳ (5.17)

We show our curvature synthesis results in Figure 5.3 and in the accompanying video.

5.7 Stylization

Our default rendering style entails detecting surface curves (such as contours and suggestive

contours) defined as zero-sets [22, 52]. Each mesh face yields a line segment, which is rendered

in OpenGL. The curvatures generated by our method can also beused for stroke stylization:

following Goodwin et al. [43], we make line thicknessT a function of depthz and radial

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES148

curvatureκr : T = clamp(c/(z(κr +ε))), wherec andε are user-defined constants, and clamp(·)

clamps the thickness to a user-defined range.

Additional stylization effects are possible by chaining curves on the surface; we modify the

method of randomized contour detection of Markosianet al. [94] for zero-set contours and

suggestive contours. For each frame, the algorithm iterates over every face in the mesh. When

a face is detected that contains a contour or suggestive contour (represented as a line segment),

the algorithm “walks” along the mesh, following the contouror suggestive contour until it ends

or loops. This walking is performed in two directions from the starting face. This produces a

chain of line segments (one for each face). Visibility for each point on the chain is computed

using a reference ID image, and visible portions of chains are rendered with textured triangle

strips [101].

Plain Stylization Stroke Texturing

Figure 5.15: Regular curvature-modulated stylization (left) and textured chained-strokes

(right), using apparent ridges and valleys.

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES149

Figure 5.16: More textured chained-strokes for Master Pai dataset, using apparent ridges and

suggestive contours.

5.8 Results

We test our method on ten datasets, including skeleton-based characters, cloth and facial an-

imation (Figures 3.1, 5.2 and 5.3 and the accompanying video). Curvatures computed with

our method have very low error (Figure 5.3, 5.8, 5.12, 5.14).Visual differences between our

curvatures and ground truth are negligible (Figures 5.4, 5.9 and 5.13); differences in final line

drawings are also negligible. As ground truth, we used Rusinkiewicz’s method plus curvature

smoothing when necessary [115] and Kalogerakiset al.’s method [72].

As a baseline comparison, we compare with the performance ofRusinkiewicz’s method that is

efficient and can fully compute both curvatures and derivatives-of-curvature for line drawings.

Our curvature calculation at runtime is about 10 times faster than this method. However, this

comparison is somewhat misleading: in order to generate smooth and more temporally coher-

ent line drawings for many datasets, a few rounds of curvature and derivatives of curvature

smoothing are required based on vector field diffusion [25] (also implemented in the trimesh2

library [116]) or robust statistical estimates [72]. Theseoperations add significantly to run-time

computation. Simple mesh smoothing can be done in advance but eliminates surface detail and

alters the mesh.

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES150

Thus, our method is approximately 10 times faster than Rusinkiewicz’s method (e.g., for

smooth and regularly sampled meshes), but in most cases, it is about 20-50 times faster than

performing all the necessary smoothing or optimization steps for high-quality smooth and tem-

porally coherent line drawings. More specifically, in our experiments, we smoothed the deriva-

Dataset Number of Rusinkiwicz’s plus smoothing Our Model

name Vertices method (ms) /optimization Method (ms) size (MB)

Mr. Fit 20536 81 240 7.9 10.72

Master Pai 11850 29 87 3.2 5.21

Muscle 5256 20 105 1.4 0.8

Hand 9284 25 227 2.6 4.05

Angela 25462 119 930 14 26.07

Curtain 2401 16 91 1.7 4.2

Flag 3285 19 101 2.5 5.0

Horse cloth 7921 41 529 5.0 11.9

Draping cloth 3969 26 124 2.8 4.8

Face 40767 207 750 23 32.66

Table 5.1: Running times (in sec) for curvature estimation with our method (fifth column)

compared to an explicit re-estimation with Rusinkiewicz’s method (third column) and explicit

re-estimation with Rusinkiewicz’s method plus the necessarycurvature smoothing or Kaloger-

akiset al.’s optimization technique (fourth column). Note that smoothand plausible line draw-

ings require curvature smoothing in many cases that cannot be performed in advance. In both

cases, we exclude the vertices whose curvatures do not change significantly (less than 1% of

maximum variance). Timings are captured on a 2GHz Intel Core Duo Processor (no paral-

lelization is used for any of the above methods). We also report the size of our learned model

(last column).

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES151

tives of curvature for Mr. Fit, Master Pai and face using vector field diffusion. We smoothed

the curvatures for the muscle, draping, curtain, and flag datasets. We used Kalogerakiset al.’s

method to robustly compute the curvatures and their derivatives for the Angela, hand and horse

cloth datasets that seemed to be more noisy. We present running times for our method ver-

sus Rusinkiewicz’s method and the total curvature re-estimation time including the necessary

curvature smoothing in Table 5.1.

An alternative is to precompute curvatures for all frames and store them, for cases where gen-

eralization to new frames is not necessary. However, this would be prohibitively expensive;

e.g., storing all curvatures for the Mr. Fit dataset (50K faces and 2000 frames) would require

about 1 Gb of storage, whereas our method requires 10.7 Mb at run-time. Nearest-neighbor

interpolation of curvature values based e.g., on a regularly-sampled grid of examples would

also need orders-of-magnitude larger storage (at least 300Mb) than our technique and with no

generalization capability to novel poses. Note that such interpolation requires an exponential

amount of storage with respect to the number of DOFs and wouldquickly result in huge model

representations when many DOFs are present.

For the case of cloth, approximately 30% of the time is spent on the projection to the ICA basis

for the cloth shape. Then, 65% of the time is spent on the ICA re-projection of curvatures.

The remainder is used for the model regression and the re-projection of principal directions to

the global coordinate system. For face and skeleton-based characters, about 90% of the time

is spent on the ICA re-projection of curvatures and the remainder is used by the rest of the

operations.

CHAPTER5. DATA -DRIVEN COMPUTATION OF SURFACE ATTRIBUTES FOR ANIMATED SCENES152

5.9 Summary, Limitations and Future work

We have presented a method for learning mappings from animation parameters to target at-

tributes of deformable shapes, when these attributes are correlated to the animation of the

shape. Here, we focused in the case of surface curvature, which has several applications to

NPR. Curvature is a fundamental component of digital geometryprocessing, hence, we be-

lieve many previously off-line techniques—such as real-time hatching with smoothed direc-

tions [52], exaggerated shading [117], apparent relief [147], curvature-domain shape process-

ing [27], and dynamic model simplification [49]—can be made real-time for dynamic geome-

try.

The major limitation of our approach is the need for trainingdata and a preprocessing step,

along with storage space for the learned mappings. This is typical with many real-time ren-

dering applications that are based on offline precomputation steps [131, 61]. The most crucial

goals in such approaches are efficiency during runtime and compactness of the model, which

are fully achieved by our method.

Another important limitation of our approach is that the abovementioned learning method can

be applied when the target attributes are spatially and temporally coherent with respect to

the animation parameters. The generalization capabilities of our method to novel animation

sequences also rely on the training data; i.e., the trainingdata should be sufficient to cover

a range of motions based on the analysis and examples we provided in this chapter. If the

testing data cover completely different ranges of motion, then our method will not generalize.

For example, if an elbow joint is not active during the training sequence, our method will

not predict the curvatures around this joint for animation sequences where this joint is active;

our method will not generalize from a cloth falling onto a table to a flag animation. This

dependence on the training data is typical of data-driven methods [61, 149].

Chapter 6

Conclusion and Future Work

This thesis introduced machine learning algorithms for geometry processing by example. Us-

ing machine learning, I tackled two types of problems. First, I proposed algorithms for learn-

ing complex functions of shape involving several differentgeometric or/and appearance-based

features. These functions map to target properties on whichhard geometry processing tasks

depend, such as shape segmentation and line illustrations.The parameters of the functions

are learned automatically using boosting learning techniques and Conditional Random Fields

based on the provided training examples. The estimated parameters incorporate several aspects

of the user’s style and preferences for the task. The learnedmodels can apply to large databases

of shapes repetitively, without needing to perform any manual re-tuning. As a result, several

significant improvements are achieved over the state-of-the-art techniques; in many cases, the

algorithms produce results of comparable quality of those produced of humans.

Second, I proposed algorithms for learning functions of shape from animation parameters.

These function map to target shape attributes, that need to be computed efficiently for real-

time geometry processing and rendering tasks. When these attributes are temporally and spa-

tially coherent with respect to the animation parameters, these functions can be learned using

153

CHAPTER 6. CONCLUSION AND FUTURE WORK 154

compact models. Then, they can be evaluated very efficientlyduring runtime. For the case of

surface curvature, our proposed technique is at least an order-of-magnitude faster than state-

of-the-art techniques that re-compute it at each frame geometrically.

The proposed learning methods have also their limitations.First, they require from the user

to specify a consistent set of training examples. Although this represents some workload for

the user, example-based techniques offer a more automated and potentially natural workflow

which does not requires manual parameter tuning. On the other hand, the user has to provide all

the necessary training examples; this may not be always technically feasible. In addition, some

design effort is required to come up with a good learning algorithm in the first place. In ad-

dition, there are no theoretical guarantees on the generalization performance of the algorithms

in a deterministic sense. The learning step also usually requires lots of computing power and

time. However, once the models are learned, they can be applied to novel data very efficiently.

There are also specific limitations to each application presented in this thesis, as mentioned in

Sections 3.6, 4.6, 5.9.

On the other hand, the limitations are not unreasonable and can be easily tolerated by choos-

ing the appropriate strategy for formulating the learning problem together with the appropriate

learning techniques. For this reason, I presented the general steps and considerations for de-

veloping learning techniques for geometry processing tasks in Chapter 2.

There are lots of exciting future work directions for applying machine learning to geometry

processing problems. First of all, this research could be extended to support learning of func-

tions that map to many other interesting target shape properties. For example, automatically

inferring an animation skeleton including its joints and their location as well as the skinning

weights from examples could be an interesting future direction. In addition, inferring the tex-

ture parameters and placement constraints, given an exemplar database of textured meshes

could be an interesting possibility.

CHAPTER 6. CONCLUSION AND FUTURE WORK 155

Another important extension would be to also infer missing parts in a mesh or in an entire

scene. This could be particularly useful for 3D modeling, where a learning algorithm could

automatically suggest to the modeler a list of potential parts to augment a shape together with

their potential locations. Such approach would further automate the ’Modeling by Example’

framework presented in [37].

The vision behind all these techniques for learning functions of shape by example is to develop

automated pipelines where the user creates, textures, edits and animates a shape, based on pre-

existing training databases of shapes that serve as examples for various styles and preferences.

Such pipelines would considerably decrease the user’s workload and facilitate the consistent

processing of large numbers of shapes.

The applications of machine learning may not only be limitedto cases of learning functions to

target shape properties. Perhaps one of the most challenging questions in geometry processing

is how to find maps between shapes that best demonstrate theirsimilar structure and semantics.

This is very useful for shape categorization and retrieval,morphing, rigging, segmentation,

modeling to name a few applications. For example, in the caseof our approach to mesh seg-

mentation and labeling, we assumed that we know the categoryof the test mesh. Based on this

assumption, we simply applied the CRF model trained from meshes of the same category. This

can become a severe limitation, especially if we want to label a large database of shapes of

many different categories. Learning a low-dimensional representation of shape descriptors that

would characterize semantically and structurally similarshapes could be an interesting future

work direction.

Hopefully, the ideas of this thesis will help other researchers for developing machine learning

techniques for many other geometry processing problems.

Appendix A

Features used For Learning Mesh

Segmentation and Part Labeling

A.1 Unary Features

For each facei in a mesh, we compute a 651+35|C |-dimensional feature vectorxi to be used

in the Unary Energy Term (Equation 3.2). Before computing anyfeatures, we translate the

mesh so that its mass center lies at the origin and we normalize the scale of the mesh according

to the 30th percentile of geodesic distances between all pairs of vertices. The features are as

follows:

a) Curvature features:Curvatures have been used for partial matching (e.g., [38]).Around each

face, we fit cubic patches of various geodesic radii (1%,2%,5%,10% relative to the median

of all-pairs geodesic distances). The patches are fitted using the face centers and normals and

every sample is weighted with its face area. Letk1 andk2 be the principal curvatures of a patch.

We include the following features:k1, |k1|, k2, |k2|, k1k2, |k1k2|, (k1+ k2)/2, |(k1+ k2)/2|,

k1−k2, yielding 36 features total.

156

APPENDIXA. FEATURES USEDFOR LEARNING MESHSEGMENTATION AND PART LABELING157

b) PCA features:We compute the singular valuess1,s2,s3 of the covariance of local face

centers (weighted by face area), for various geodesic radii(5%,10%,20%,30%,50%), and add

the following features for each patch:s1/(s1+ s2+ s3), s2/(s1+ s2+ s3), s3/(s1+ s2+ s3),

(s1+ s2)/(s1+ s2+ s3), (s1+ s3)/(s1+ s2+ s3), (s2+ s3)/(s1+ s2+ s3), s1/s2, s1/s3, s2/s3,

s1/s2+s1/s3, s1/s2+s2/s3, s1/s3+s2/s3, yielding 75 features total.

c) Shape diameter:The Shape Diameter Function (SDF) [124] is computed using cones of

angles 30, 60, 90, 120. For each cone, we get the weighted average, median, and squared mean

of the samples. We include these shape diameters and their logarithmized versions with differ-

ent normalizing parametersα = 1, α = 2, α = 4, α = 8. This yields 60 features representing

different moments and approximations of the local shape diameter.

d) Distance from medial surface:For each of the cones above, we compute the diameter of

the maximal inscribed sphere touching each face center and the corresponding medial surface

point is roughly its center [91]. Then we send rays from this point uniformly sampled on a

Gaussian sphere, gather the intersection points and measure the ray lengths. As with the shape

diameter features, we use the weighted average, median and squared mean of the samples, we

normalize and logarithmize them with the same above normalizing parameters. This yields 60

features.

e) Average Geodesic Distance:The Average Geodesic Distance (AGD) function has been used

for shape matching [53, 157]. The function measures how “isolated” each face is from the

rest of the surface e.g., limbs have usually higher AGD than other parts in humanoid mod-

els. The AGD for each face is computed by averaging the geodesic distance from its face

center to all the other face centers. In our case, we also consider the squared mean and the

10th,20th, ...,90th percentile. Then, we normalize each of these 11 statisticalmeasures by

subtracting its minimum over all faces.

f) Shape contexts:Shape contexts have been used for 2D shape matching [10]. Foreach face,

APPENDIXA. FEATURES USEDFOR LEARNING MESHSEGMENTATION AND PART LABELING158

we measure the distribution of other faces (weighted by their area) in 5 logarithmic geodesic

distance and 6 uniform angle bins, where angles are measuredrelative to the normal of each

face. The geodesic distance bins cover a distance range from0 to the 95th percentile of all-

pairs geodesic distances on the mesh and the angle bins covera angle range from 0 to 180

degrees.

g) Spin images:Spin images [64] are created with a fixed 10×10 bin resolution (bin size 0.3),

yielding 100 features.

h) Orientation features:We also include thex,y,z coordinates of each face center in the case

that the training dataset is oriented.

i) Contextual label features:The above features provide a feature vectorx̃, which are used

to learn contextual features, as described in Section 3.2.3. The output of a JointBoost clas-

sifier provides per-face probabilitiesP(c|x̃). The contextual features are histograms of these

probabilities around each face:

pl
i = ∑

j:db≤dist(i, j)<db+1

a j ·P(c j = l) (A.1)

where the binb contains all facesj with distance range[db,db+1] from face i. The a j is

the area of facej, normalized by the sum of face areas in the mesh. The distances between

faces are measured from shortest parts (thus, approximating geodesic distances), as well as the

Principal Component Axes and dominant symmetry axes of the mesh (measured in absolute

values, since the principal axes are uniquely defined up to their sign). We useB= 5 ranges of

distances[db,db+1) wheredb are chosen in the logarithmic space of[0,max
i
(max

j
(dist(i, j)))],

yielding 35|C | contextual features.

APPENDIXA. FEATURES USEDFOR LEARNING MESHSEGMENTATION AND PART LABELING159

A.2 Pairwise Features

For each pair of adjacent facesi and j, the following 191-dimensional feature vectoryi j is

computed, for use in the Pairwise Energy Term (Section 3.2.2). We chose features that are

potentially indicative of boundaries between parts.

a) Dihedral angles: Let ωi j be the exterior dihedral angle between facesi and j. The scalar

feature is given as min(ωi j/π,1). We also compute the average of the dihedral angles around

each edge at geodesic radii of 0.5%, 1%, 2%, 4% of the median of all-pairs geodesic distances

in the mesh. We then exponentiate each of the above features with each exponent in the range

1 to 10. This yields 50 dihedral angle features in total.

b) Curvature and third-order surface derivatives:We first compute the curvature and the

derivative-of-curvature tensor per mesh vertex at geodesic radii of 0.5%, 1%, 2%, 4% of the

median of all-pairs geodesic distances. For each scale, we include the principal curvatures and

the curvature derivatives along the principal directions (in order to assign curvature to each

edge, we average the corresponding curvature values of its vertices). This yields 16 features.

b) Shape diameter differences:For each pair of adjacent faces, we include the absolute values

of the differences between their corresponding 60 shape diameter features (as described above).

d) Distance from medial surface differences:Similarly, we include the absolute difference of

the 60 distance-from-medial-surface features between adjacent faces (as described above).

e) Contextual label features:We also use pairwise contextual features, as described in Section

3.2.3. The above features form an initial feature vectorỹi j . We learn a JointBoost classifier

p(ci 6= c j |ỹi j), and then bin them, as with the unary contextual features. Here, we bin them

based only on geodesic distances in logarithmic space up to 5% of the median of all-pairs

geodesic distances in the mesh. This yields 5 pairwise contextual features in total.

Appendix B

Properties and Features used For

Learning Pen-And-Ink Illustrations

B.1 Image Preprocessing

Given an input illustration drawn by an artist, we apply the following steps to determine the

hatching properties for each stroke pixel. First, we scan the illustration and align it to the

rendering automatically by matching borders with brute force search. The following steps are

sufficiently accurate to provide training data for our algorithms.

Intensity: The intensityIi is set to the grayscale intensity of the pixeli of the drawing. It is

normalized within the range[0,1].

Thickness: Thinning is first applied to identify a single-pixel-wide skeleton for the drawing.

Then, from each skeletal pixel, a Breadth-First Search (BFS) is performed to find the nearest

pixel in the source image with intensity less than half of thestart pixel. The distance to this

pixel is the stroke thickness.

Orientation: The structure tensor of the local image neighborhood is computed at the scale

160

APPENDIXB. PROPERTIES ANDFEATURES USEDFOR LEARNING PEN-AND-INK ILLUSTRATIONS161

of the previously-computed thickness of the stroke. The dominant orientation in this neighbor-

hood is given by the eigenvector corresponding to the smallest eigenvalue of the structure ten-

sor. Intersection points are also detected, so that they canbe omitted from orientation learning.

Our algorithm marks as intersection points those points detected by a Harris corner detector

in both the original drawing and the skeleton image. Finally, in order to remove spurious in-

tersection points, pairs of intersection points are found with distance less than the local stroke

thickness, and their centroid is marked as an intersection instead.

Spacing: For each skeletal pixel, a circular region is grown around the pixel. At each radius

size, the connected components of the region are computed. If at least 3 pixels in the region are

not connected to the center pixel, with orientation withinπ/6 of the center pixel’s orientation,

then the process halts. The spacing at the center pixel is setto the final radius.

Length: A BFS is executed on the skeletal pixels to count the number of pixels per stroke. In

order to follow a single stroke (excluding pixels from overlapping cross-hatching strokes), at

each BFS expansion, pixels are considered inside the currentneighborhood with similar orien-

tation (at mostπ/12 angular difference from the current pixel’s orientation).

Hatching Level: For each stroke pixel, an ellipsoidal mask is created with its semi-minor axis

aligned to the extracted orientation, and major radius equal to its spacing. All pixels belonging

to any of these masks are given labelHi = 1. For each intersection pixel, a circular mask is also

created around it with radius equal to its spacing. All connected components are computed

from the union of these masks. If any connected component contains more than 4 intersection

pixels, the pixels of the component are assigned with labelHi = 2. Two horizontal and vertical

strokes give rise to a minimum cross-hatching region (with 4intersections).

Hatching region boundaries: Pixels are marked as boundaries if they belong to boundaries

of the hatching regions or if they are endpoints of the skeleton of the drawing.

We perform a final smoothing step (with a Gaussian kernel of width equal to the median of the

spacing values) to denoise the properties.

APPENDIXB. PROPERTIES ANDFEATURES USEDFOR LEARNING PEN-AND-INK ILLUSTRATIONS162

B.2 Scalar features

There are 1204 scalar features (x̃ ∈ℜ760) for learning the scalar properties of the drawing. The

first 90 are mean curvature, gaussian curvature, maximum andminimum principal curvatures

by sign and absolute value, derivatives of curvature, radial curvature and its derivative, view-

dependent minimum and maximum curvatures [66], geodesic torsion in the projected viewing

direction [23]. These are measured in three scales (1%, 2%, 5% relative to the median of

all-pairs geodesic distances in the mesh) for each vertex. We also include their absolute val-

ues, since some hatching properties may be insensitive to sign. The above features are first

computed in object-space and then, projected to image-space.

The next 110 features are based on local shape descriptors, also used in [69] for labeling parts.

We compute the singular valuess1,s2,s3 of the covariance of vertices inside patches of various

geodesic radii (5%, 10%, 20%) around each vertex, and also add the following features for

each patch:s1/(s1 + s2 + s3), s2/(s1 + s2 + s3), s3/(s1 + s2 + s3), (s1 + s2)/(s1 + s2 + s3),

(s1+s3)/(s1+s2+s3), (s2+s3)/(s1+s2+s3), s1/s2, s1/s3, s2/s3, s1/s2+s1/s3, s1/s2+s2/s3,

s1/s3 + s2/s3, yielding 45 features total. We also include 24 features based on the Shape

Diameter Function (SDF) [124] and distance from medial surface [91]. The SDF features are

computed using cones of angles 60, 90, and 120 per vertex. Foreach cone, we get the weighted

average of the samples and their logarithmized versions with different normalizing parameters

α = 1, α = 2, α = 4. For each of the cones above, we also compute the distance ofmedial

surface from each vertex. We measure the diameter of the maximal inscribed sphere touching

each vertex. The corresponding medial surface point will beroughly its center. Then we send

rays from this point uniformly sampled on a Gaussian sphere,gather the intersection points and

measure the ray lengths. As with the shape diameter features, we use the weighted average of

the samples, we normalize and logarithmize them with the same above normalizing parameters.

In addition, we use the average, squared mean, 10th,20th, ...,90th percentile of the geodesic

distances of each vertex to all the other mesh vertices, yielding 11 features. Finally, we use 30

APPENDIXB. PROPERTIES ANDFEATURES USEDFOR LEARNING PEN-AND-INK ILLUSTRATIONS163

shape context features [10], based on the implementation of[69]. All the above features are

first computed in object-space per vertex and then, projected to image-space.

The next 53 features are based on functions of the rendered 3Dobject in image space. We

use maximum and minimum image curvature, image intensity, and image gradient magnitude

features, computed with derivative-of-gaussian kernels with σ = 1,2,3,5, yielding 16 features.

The next 12 features are based on shading under different models:~V ·~N,~L ·~N (both clamped

at zero), ambient occlusion, where~V, ~L, and~N are the view, light, and normal vectors at a

point. These are also smoothed with gaussian kernels ofσ = 1,2,3,5. We also include the

corresponding gradient magnitude, the maximum and minimumcurvature of~V ·~N and~L ·~N

features, yielding 24 more features. We finally include the depth value for each pixel.

We finally include the per pixel intensity of occluding and suggestive contours, ridges, valleys

and apparent ridges extracted by the rtsc software package [118]. We use 4 different thresh-

olds for extracting each feature line (the rtsc thresholds are chosen from the logarithmic space

[0.001,0.1] for suggestive contours and valleys and[0.01,0.1] for ridges and apparent ridges).

We also produce dilated versions of these features lines by convolving their image with gaus-

sian kernels withσ = 5,10,20, yielding in total 48 features.

Finally, we also include all the above 301 features with their powers of 2 (quadratic features),

−1 (inverse features),−2 (inverse quadratic features), yielding 1204 features in total. For the

inverse features, we prevent divisions by zero, by truncating near-zero values to 1e− 6 (or

−1e− 6 if they are negative). Using these transformations on the features yielded slightly

better results for our predictions.

APPENDIXB. PROPERTIES ANDFEATURES USEDFOR LEARNING PEN-AND-INK ILLUSTRATIONS164

B.3 Orientation features

There are 70 orientation features (θ) for learning the hatching and cross-hatching orientations.

Each orientation feature is a direction in image-space; orientation features that begin as 3D

vectors are projected to 2D. The first six features are based on surface principal curvature

directions computed at 3 scales as above. Then, the next six features are based on surface

local PCA axes projected on the tangent plane of each vertex corresponding to the two larger

singular values of the covariance of multi-scale surfaces patches computed as above. Note

that the local PCA axes correspond to candidate local planar symmetry axes [128]. The next

features are:~L×~N and~V×~N. The above orientation fields are undefined at some points (near

umbilic points for curvature directions, near planar and spherical patches for the PCA axes,

and near~L ·~N = 0 and~V ·~N = 0 for the rest). Hence, we use globally-smoothed direction based

on the technique of [52]. Next, we include~L, and vector irradiance~E [4]. The next 3 features

are vector fields aligned with the occluding and suggestive contours (given the view direction),

ridges and valleys of the mesh. The next 16 features are image-space gradients of the following

scalar features:∇(~V ·~N), ∇(~L ·~N), ambient occlusion and image intensity∇I computed at 4

scales as above. The remaining orientation features are thedirections of the first 35 features

rotated by 90 degrees in the image-space.

Bibliography

[1] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin, and

Claudio T. Silva. Point set surfaces. InVIS ’01: Proceedings of the conference on

Visualization ’01, 2001.

[2] Marc Alexa and Wolfgang Muller. Representing animationsby principal components.

In Eurographics, 2000.

[3] Dragomir Anguelov, Ben Taskar, Vassil Chatalbashev, Daphne Koller, Dinkar Gupta,

Geremy Heitz, and Andrew Ng. Discriminative Learning of Markov Random Fields for

Segmentation of 3D Scan Data. InCVPR, 2005.

[4] James Arvo. Applications of irradiance tensors to the simulation of non-lambertian

phenomena. InProc. SIGGRAPH, pages 335–342, New York, NY, USA, 1995. ACM.

[5] M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, and A. Tal. Mesh Segmenta-

tion - A Comparative Study. InProc. SMI, 2006.

[6] Marco Attene, Bianca Falcidieno, and Michela Spagnuolo.Hierarchical Mesh Segmen-

tation Based on Fitting Primitives.Vis. Comput., 22(3), 2006.

[7] M. Bartlett, J. Movellan, and T. Sejnowski. Face recognition by independent component

analysis.IEEE Transations on Neural Networks, 13(6):1450–1464, 2002.

165

BIBLIOGRAPHY 166

[8] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectraltechniques for embedding

and clustering. InAdvances in Neural Information Processing Systems, volume 14,

pages 585–591, 2002.

[9] Anthony J. Bell and Terrence J. Sejnowski. The independent components of natural

scenes are edge filters.Vision Research, 37:3327–3338, 1997.

[10] S. Belongie, J. Malik, and J. Puzicha. Shape Matching andObject Recognition Using

Shape Contexts.IEEE Trans. Pattern Anal. Mach. Intell., 24(4), 2002.

[11] Christopher M. Bishop.Pattern Recognition and Machine Learning. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 2006.

[12] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast Approximate Energy Minimization

via Graph Cuts.IEEE Trans. Pattern Anal. Mach. Intell., 23(11), 2001.

[13] Leo Breiman. Random forests.Mach. Learn., 45(1), 2001.

[14] Yong Cao, Petros Faloutsos, and Fréd́eric Pighin. Unsupervised Learning for Speech

Motion Editing. InProceedings of the Symposium on Computer Animation 2003, pages

225–231, 2003.

[15] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and

T. R. Evans. Reconstruction and representation of 3d objects with radial basis functions.

In SIGGRAPH ’01, pages 67–76, 2001.

[16] Xiaobai Chen, Aleksey Golovinskiy, and Thomas Funkhouser. A Benchmark for 3D

Mesh Segmentation.ACM Trans. Graphics, 28(3), 2009.

[17] David Cohen-Steiner and Jean-Marie Morvan. Restricted delaunay triangulations and

normal cycle. InProceedings of the Symposium on Computational Geometry 2003,

pages 312–321, 2003.

BIBLIOGRAPHY 167

[18] Forrester Cole, Aleksey Golovinskiy, Alex Limpaecher,Heather Stoddart Barros, Adam

Finkelstein, Thomas Funkhouser, and Szymon Rusinkiewicz. Where Do People Draw

Lines?ACM Trans. Graph., 27(3), 2008.

[19] Dorin Comaniciu and Peter Meer. Mean shift: a robust approach toward feature space

analysis.IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603–

619, 2002.

[20] Pierre Comon. Independent component analysis, a new concept? Signal Processing,

36(3):287–314, 1994.

[21] Doug DeCarlo, Adam Finkelstein, and Szymon Rusinkiewicz. Interactive rendering

of suggestive contours with temporal coherence. InProceedings of the International

symposium on Non-photorealistic animation and rendering 2004, pages 15–24, 2004.

[22] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz, and Anthony Santella. Sug-

gestive Contours For Conveying Shape.ACM Trans. Graph., 22(3), 2003.

[23] Doug DeCarlo and Szymon Rusinkiewicz. Highlight lines for conveying shape. In

NPAR, 2007.

[24] Pierre Demartines and Jeanny Herault. Curvilinear component analysis: A self-

organizing neural network for nonlinear mapping of data sets. IEEE Trans Neural Netw,

1(8), 1997.

[25] Udo Diewald, Tobias Preusser, and Martin Rumpf. Anisotropic diffusion in vector field

visualization on euclidean domains and surfaces.IEEE Transactions on Visualization

and Computer Graphics, 6(2):139–149, 2000.

[26] Pinar Duygulu, Kobus Barnard, Nando de Freitas, and David Forsyth. Object Recog-

nition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary. In

BIBLIOGRAPHY 168

Proc. ECCV, 2002.

[27] Michael Eigensatz, Robert W. Sumner, and Mark Pauly. Curvature-domain shape pro-

cessing.Computer Graphics Forum (Eurographics Proceedings), 27(2):241–250, 2008.

[28] Gershon Elber. Line Art Illustrations of Parametric and Implicit Forms. IEEE TVCG,

4(1):71–81, 1998.

[29] Wei-Wen Feng, Byung-Uck Kim, and Yizhou Yu. Real-time data driven deformation

using kernel canonical correlation analysis.ACM Trans. Graph., 27(3), 2008.

[30] Martin A. Fischler and Robert C. Bolles. Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography. pages

726–740, 1987.

[31] Shachar Fleishman, Daniel Cohen-Or, and Cláudio T. Silva. Robust moving least-

squares fitting with sharp features.ACM Trans. Graph., 24(3), 2005.

[32] Arthur Flexer. Statistical evaluation of neural network experiments: Minimum require-

ments and current practice. InCybernetics and Systems, pages 1005–1008, 1996.

[33] William T. Freeman, Joshua Tenenbaum, and Egon Pasztor. Learning style translation

for the lines of a drawing.ACM Trans. Graph., 22(1):33–46, 2003.

[34] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In

Thirteenth International Conference on Machine Learning, 1996.

[35] J. Friedman, T. Hastie, and R. Tibshirani. Additive Logistic Regression: a Statistical

View of Boosting.The Annals of Statistics, 38(2), 2000.

[36] Hongbo Fu, Daniel Cohen-Or, Gideon Dror, and Alla Sheffer. Upright Orientation of

Man-made Objects.ACM Trans. Graph., 27(3), 2008.

BIBLIOGRAPHY 169

[37] Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William Kiefer,

Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. Modeling by example.ACM

Trans. Graph., 23(3), 2004.

[38] Ran Gal and Daniel Cohen-Or. Salient Geometric Features for Partial Shape Matching

and Similarity.ACM Trans. Graph., 25(1), 2006.

[39] Joao Gama and Pavel Brazdil. Cascade Generalization.Mach. Learn., 41(3), 2000.

[40] Aleksey Golovinskiy and Thomas Funkhouser. RandomizedCuts for 3D Mesh Analysis.

ACM Trans. on Graph., 27(5), 2008.

[41] Aleksey Golovinskiy and Thomas Funkhouser. ConsistentSegmentation of 3D Models.

Proc. SMI, 33(3), 2009.

[42] Aleksey Golovinskiy, Vladimir G. Kim, and Thomas Funkhouser. Shape-based Recog-

nition of 3D Point Clouds in Urban Environments. InProc. ICCV, 2009.

[43] Todd Goodwin, Ian Vollick, and Aaron Hertzmann. Isophote Distance: A Shading

Approach to Artistic Stroke Thickness. InProc. NPAR, pages 53–62, 2007.

[44] Arthur L. Guptill. Rendering in Pen and Ink. Watson-Guptill, edited by Susan E. Meyer,

1997.

[45] J. Hamel and T. Strothotte. Capturing and Re-Using Rendition Styles for Non-

Photorealistic Rendering.Computer Graphics Forum, 18(3):173–182, 1999.

[46] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. Robust Statistics:

The Approach Based on Influence Functions. Wiley-Interscience, 1986.

[47] Trevor Hastie, Robert Tibshirani, and Jerome Friedman.The Elements of Statistical

Learning:. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2009.

BIBLIOGRAPHY 170

[48] Xuming He, R.S. Zemel, and M. A. Carreira-Perpiñán. Multiscale Conditional Random

Fields for Image Labeling. InProc. CVPR, volume 2, 2004.

[49] Paul S. Heckbert and Michael Garland. Optimal triangulation and quadric-based surface

simplification.Computational Geometry Theory and Applications, 14:49–65, 1999.

[50] Aaron Hertzmann, Charles E. Jacobs, Nuria Oliver, Brian Curless, and David H. Salesin.

Image Analogies.Proc. SIGGRAPH, 2001.

[51] Aaron Hertzmann, Nuria Oliver, Brian Curless, and StevenM. Seitz. Curve Analogies.

In Proc. EGWR, 2002.

[52] Aaron Hertzmann and Denis Zorin. Illustrating smooth surfaces. InProc. SIGGRAPH,

pages 517–526, 2000.

[53] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, andTosiyasu L. Kunii. Topology

Matching for Fully Automatic Similarity Estimation of 3d Shapes. InSIGGRAPH, 2001.

[54] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural

networks.Science, 313(5786):504–507, July 2006.

[55] Qixing Huang, Martin Wicke, Bart Adams, and Leonidas Guibas. Shape Decomposition

Using Modal Analysis.J. Computer Graphics Forum, 28, 2009.

[56] A. Hyvärinen. Fast and Robust Fixed-Point Algorithms for Independent Component

Analysis. IEEE Transations on Neural Network, 10(3):626–634, 1999.

[57] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and applications.

Neural Networks, 13(4-5), 2000.

[58] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A Sketching Interface

for 3d Freeform Design. InSIGGRAPH, 2007.

BIBLIOGRAPHY 171

[59] Victoria Interrante, Henry Fuchs, and Stephen Pizer. Enhancing Transparent Skin Sur-

faces with Ridge and Valley Lines. InProceedings of the 6th conference on Visualization

1995, pages 52–59, 1995.

[60] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adap-

tive mixtures of local experts.Neural Comput., 3(1), 1991.

[61] Doug L. James and Kayvon Fatahalian. Precomputing interactive dynamic deformable

scenes.ACM Transactions on Graphics, 22(3):879–887, 2003.

[62] Doug L. James and Christopher D. Twigg. Skinning mesh animations.ACM Transac-

tions on Graphics, 24(3):399–407, 2005.

[63] Pierre-Marc Jodoin, Emric Epstein, Martin Granger-Piché, and Victor Ostromoukhov.

Hatching by Example: a Statistical Approach. InProc. NPAR, pages 29–36, 2002.

[64] Andrew Johnson and Martial Hebert. Using Spin Images for Efficient Object Recogni-

tion in Cluttered 3D Scenes.IEEE Trans. PAMI, 21(5):433–449, 1999.

[65] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the em

algorithm.Neural Comput., 6(2), 1994.

[66] Tilke Judd, Fŕedo Durand, and Edward Adelson. Apparent ridges for line drawing. ACM

Trans. Graph., 26(3), 2007.

[67] Robert Kalnins, Lee Markosian, Barbara Meier, Michael Kowalski, Joseph Lee, Philip

Davidson, Matthew Webb, John Hughes, and Adam Finkelstein.WYSIWYG NPR:

drawing strokes directly on 3D models. InProc. SIGGRAPH, pages 755–762, 2002.

[68] Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. Learning 3D Mesh Seg-

mentation and Labeling.ACM Transactions on Graphics, 29(3), 2010.

BIBLIOGRAPHY 172

[69] Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. Learning 3d mesh seg-

mentation and labeling.ACM Trans. Graph., 29(3), 2010.

[70] Evangelos Kalogerakis, Derek Nowrouzezahrai, Patricio Simari, James McCrae, Aaron

Hertzmann, and Karan Singh. Data-driven curvature for real-time line drawing of dy-

namic scene.ACM Transactions on Graphics, 28(1), 2009.

[71] Evangelos Kalogerakis, Derek Nowrouzezahrai, Patricio Simari, and Karan Singh. Ex-

tracting lines of curvature from noisy point clouds.Special Issue of the Elsevier

Computer-Aided Design journal on Point-Based ComputationalTechniques, 41(4):282–

292, 2009.

[72] Evangelos Kalogerakis, Patricio Simari, Derek Nowrouzezahrai, and Karan Singh. Ro-

bust statistical estimation of curvature on discretized surfaces. InProceedings of the

Eurographics/ACM Siggraph Symposium on Geometry Processing, 2007.

[73] S. Katz, G. Leifman, and A. Tal. Mesh segmentation usingfeature point and core ex-

traction.Visual Computer, 21(8), 2005.

[74] Sagi Katz and Ayellet Tal. Hierarchical Mesh Decomposition Using Fuzzy Clustering

and Cuts.ACM Trans. Graphics, 2003.

[75] Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. Poisson surface reconstruc-

tion. In Proc. SGP, pages 61–70, 2006.

[76] SungYe Kim, Insoo Woo, Ross Maciejewski, , and David S. Ebert. Automated Hedcut

Illustration using Isophotes. InProc. Smart Graphics, 2010.

[77] Yongjin Kim, Jingyi Yu, Xuan Yu, and Seungyong Lee. Line-art Illustration of Dynamic

and Specular Surfaces.ACM Trans. Graphics, 2008.

BIBLIOGRAPHY 173

[78] Scott Konishi and A.L. Yuille. Statistical Cues for Domain Specific Image Segmentation

With Performance Analysis.Proc. CVPR, 2000.

[79] Vladislav Kraevoy, Dan Julius, and Alla Sheffer. ModelComposition From Interchange-

able Components. InProc. PG, 2007.

[80] Paul Kry, Doug James, and Dinesh Pai. Eigenskin: real time large deformation character

skinning in hardware. InProc. SCA, pages 153–159, 2002.

[81] Sanjiv Kumar and Martial Hebert. Discriminative RandomFields: A Discriminative

Framework for Contextual Interaction in Classification. InProc. ICCV, 2003.

[82] John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional Random

Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. InICML,

2001.

[83] Yu-Kun Lai, Shi-Min Hu, Ralph R. Martin, and Paul L. Rosin. Fast Mesh Segmentation

Using Random Walks. InACM symposium on Solid and Physical Modeling, 2008.

[84] Guillaume Lavoúe and Christian Wolf. Markov Random Fields for Improving 3D Mesh

Analysis and segmentation. InEurographics workshop on 3D object retrieval, 2008.

[85] Yunjin Lee, Lee Markosian, Seungyong Lee, and John F. Hughes. Line drawings via

abstracted shading.ACM Transactions on Graphics, 26(3):18, 2007.

[86] J. P. Lewis, Matt Cordner, and Nickson Fong. Pose space deformation: a unified ap-

proach to shape interpolation and skeleton-driven deformation. In SIGGRAPH 2000

Proceedings, pages 165–172, 2000.

[87] Xin Li, Xianfeng Gu, and Hong Qin. Surface matching using consistent pants decom-

position. InACM Symposium on Solid and Physical Modeling, 2008.

BIBLIOGRAPHY 174

[88] E. Lim and David Suter. Conditional Random Field for 3D Point Clouds With Adaptive

Data Reduction. InCyberworlds, 2007.

[89] Hsueh-Yi Sean Lin, Hong-Yuan Mark Liao, and Ja-Chen Lin.Visual Salience-Guided

Mesh Decomposition.IEEE Transactions on Multimedia, 9(1), 2007.

[90] Rong Liu and Hao Zhang. Segmentation of 3D Meshes ThroughSpectral Clustering. In

Proc. PG, 2004.

[91] Rong F. Liu, Hao Zhang, Ariel Shamir, and Daniel Cohen-Or.A Part-Aware Surface

Metric for Shape Analysis.Computer Graphics Forum, (Eurographics 2009), 28(2),

2009.

[92] Eric B. Lum and Kwan-Liu Ma. Expressive line selection byexample. The Visual

Computer, 21(8):811–820, 2005.

[93] Alan P. Mangan and Ross T. Whitaker. Partitioning 3D Surface Meshes Using Water-

shed Segmentation.IEEE Trans. on Vis. and Comp. Graph., 5(4), 1999.

[94] Lee Markosian, Michael A. Kowalski, Samuel J. Trychin,Lubomir D. Bourdev, Daniel

Goldstein, and John F. Hughes. Real-Time NonphotorealisticRendering. InSIGGRAPH

1997 Proceedings, pages 415–420, 1997.

[95] T. Mertens, J. Kautz, J. Chen, P. Bekaert, and F. Durand. Texture transfer using geometry

correlation. InProceedings of Eurographics Symposium on Rendering, 2006.

[96] Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. Discrete differential-

geometry operators for triangulated 2-manifolds. InVisualization and Mathematics III,

pages 35–57. 2002.

[97] Alex Mohr and Michael Gleicher. Building efficient, accurate character skins from

examples.ACM Transactions on Graphics, 22(3):562–568, 2003.

BIBLIOGRAPHY 175

[98] Daniel Munoz, Nicolas Vandapel, and Martial Hebert. Directional Associative Markov

Network for 3-D Point Cloud Classification. InProc. 3DPVT, 2008.

[99] Sreerama K. Murthy. Automatic construction of decision trees from data: A multi-

disciplinary survey.Data Min. Knowl. Discov., 2(4), 1998.

[100] Jorge Nocedal and Stephen J. Wright.Numerical Optimization. Springer-Verlag, 1999.

[101] J. D. Northrup and Lee Markosian. Artistic Silhouettes: A Hybrid Approach. InPro-

ceedings of the International symposium on Non-photorealistic animation and rendering

2000, pages 31–38, 2000.

[102] Derek Nowrouzezahrai, Evangelos Kalogerakis, and Eugene Fiume. Shadowing dy-

namic scenes with arbitrary BRDFs. InEurographics 2009 (To Appear), 2009.

[103] Derek Nowrouzezahrai, Evangelos Kalogerakis, Patricio Simari, and Eugene Fiume.

Shadowed relighting of dynamic geometry with 1d BRDFs. InEurographics 2008 Pro-

ceedings, 2008.

[104] Derek Nowrouzezahrai, Patricio Simari, Evangelos Kalogerakis, Karan Singh, and Eu-

gene Fiume. Compact and efficient generation of radiance transfer for dynamically

articulated characters. InProceedings of the GRAPHITE 2007, pages 147–154, 2007.

[105] Yutaka Ohtake, Alexander Belyaev, and Hans-Peter Seidel. Ridge-valley lines on

meshes via implicit surface fitting.ACM Transactions on Graphics, 23(3):609–612,

2004.

[106] Cengiz Oztireli, Gael Guennebaud, and Markus Gross. Feature preserving point set

surfaces based on non-linear kernel regression. InEurographics 2009, pages 493–501,

2009.

BIBLIOGRAPHY 176

[107] Jonathan Palacios and Eugene Zhang. Rotational Symmetry Field Design on Surfaces.

ACM Trans. Graph., 2007.

[108] Yuri Pekelny and Craig Gotsman. Articulated Object Reconstruction and Markerless

Motion Capture from Depth Video.J. Computer Graphics Forum, 27:399–408, 2008.

[109] K. Polthier. Polyhedral surfaces of constant mean curvature. PhD thesis, TU-Berlin,

2002.

[110] Emil Praun, Hugues Hoppe, Matthew Webb, and Adam Finkelstein. Real-Time Hatch-

ing. In Proc. SIGGRAPH, 2001.

[111] Lutz Prechelt. A quantitative study of experimental evaluations of neural network learn-

ing algorithms: Current research practice. In4th Intl. Conf. on Artificial Neural Net-

works, pages 223–227, 1995.

[112] Frank Rosenblatt.The Perceptron: A Perceiving and Recognizing Automaton. Report

No. 85-460-1, New York: Cornell Aeronautical Laboratory, First edition, first issue,

1957.

[113] Peter J. Rousseeuw. Least median of squares regression. Journal of the American Sta-

tistical Association, 79(388):871–880, 1984.

[114] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction by locally

linear embedding.Science, 290(5500):2323 – 2326, 2000.

[115] Szymon Rusinkiewicz. Estimating Curvatures and Their Derivatives on Triangle

Meshes. InProceedings of the International Symposium on 3D Data Processing, Vi-

sualization and Transmission 2004, pages 486–493, 2004.

[116] Szymon Rusinkiewicz. Trimesh2 library. http://www.cs.princeton.edu/gfx/proj/trimesh2/,

2007.

BIBLIOGRAPHY 177

[117] Szymon Rusinkiewicz, Michael Burns, and Doug DeCarlo. Exaggerated shading for

depicting shape and detail.Proc. SIGGRAPH, 25(3):1199–1205, 2006.

[118] Szymon Rusinkiewicz and Doug DeCarlo. rtsc library.

http://www.cs.princeton.edu/gfx/proj/sugcon/, 2007.

[119] Takafumi Saito and Tokiichiro Takahashi. Comprehensible Rendering of 3-D Shapes.

In Proc. SIGGRAPH, pages 197–206, 1990.

[120] Michael P. Salisbury, Sean E. Anderson, Ronen Barzel, and David H. Salesin. Interactive

pen-and-ink illustration. InSIGGRAPH ’94: Proceedings of the 21st annual conference

on Computer graphics and interactive techniques, pages 101–108, 1994.

[121] Mirko Sattler, Ralf Sarlette, and Reinhard Klein. Simple and efficient compression

of animation sequences. InProceedings of the 2005 ACM SIGGRAPH/Eurographics

symposium on Computer animation, pages 209–217, 2005.

[122] Yaar Schnitman, Yaron Caspi, Daniel Cohen-or, and Dani Lischinski. Inducing Seman-

tic Segmentation From an Example. InProc. ACCV, 2006.

[123] Ariel Shamir. A Survey on Mesh Segmentation Techniques.Computer Graphics Forum,

26(6), 2008.

[124] Lior Shapira, Shy Shalom, Ariel Shamir, Richard H. Zhang, and Daniel Cohen-Or. Con-

textual Part Analogies in 3D Objects.International Journal of Computer Vision, In

Press.

[125] S. Shlafman, A. Tal, and S. Katz. Metamorphosis of Polyhedral Surfaces Using Decom-

position. InEurographics, 2002.

[126] J. Shotton, M. Johnson, and R. Cipolla. Semantic Texton Forests for Image Categoriza-

tion and Segmentation. InProc. CVPR, 2008.

BIBLIOGRAPHY 178

[127] Jamie Shotton, John Winn, Carsten Rother, and Antonio Criminisi. TextonBoost for

Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly

Modeling Texture, Layout, and Context.Int. J. Comput. Vision, 81(1), 2009.

[128] Patricio Simari, Evangelos Kalogerakis, and Karan Singh. Folding Meshes: Hierarchical

Mesh Segmentation Based on Planar Symmetry. InSGP, 2006.

[129] Patricio Simari, Derek Nowrouzezahrai, Evangelos Kalogerakis, and Karan Singh.

Multi-objective shape segmentation and labeling.Computer Graphics Forum, 28(5),

2009.

[130] Mayank Singh and Scott Schaefer. Suggestive Hatching. In Proc. Computational Aes-

thetics, 2010.

[131] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed Radiance Transfer for Real-

Time Rendering in Dynamic, Low-Frequency Lighting Environments. InProc. SIG-

GRAPH, pages 527–536, 2002.

[132] Peter-Pike J. Sloan, Rose Charles F., and Michael F. Cohen. Shape by example. In

Proceedings of the 2001 symposium on Interactive 3D graphics, pages 135–143, 2001.

[133] Olga Sorkine and Daniel Cohen-Or. Least-squares meshes.

[134] Charles V. Stewart. Robust parameter estimation in computer vision.SIAM Rev., 41(3),

1999.

[135] Tobias Isenberg William M. Andrews Wei Chen Mario Costa Sousa David S. Ebert

SungYe Kim, Ross Maciejewski. Stippling by example. InProceedings of the 7th

international symposium on Non-photorealistic animation and rendering (NPAR), 2009.

[136] Charles Sutton and Andrew McCallum. Piecewise pseudolikelihood for efficient training

of conditional random fields. InProceedings of the 24th international conference on

BIBLIOGRAPHY 179

Machine learning, pages 863–870, 2007.

[137] G. Taubin. Estimating the tensor of curvature of a surface from a polyhedral approxi-

mation. InProceedings of the Fifth International Conference on Computer Vision 1995,

1995.

[138] Joshua B. Tenenbaum, Vin Silva, and John C. Langford. A global geometric framework

for nonlinear dimensionality reduction.Science, 290(5500):2319–2323, 2000.

[139] Jean-Philippe Thirion and Alexis Gourdon. The 3D marching lines algorithm.Graphical

Models and Image Processing, 58(6):503–509, 1996.

[140] Robert Tibshirani. Regression shrinkage and selectionvia the lasso. Journal of the

Royal Statistical Society, 58:267–288, 1994.

[141] M. E. Tipping. Sparse Bayesian Learning and the Relevance Vector Machine.J. Ma-

chine Learning Res., (1):211–244, 2001.

[142] Antonio Torralba, Kevin P. Murphy, and William T. Freeman. Sharing Visual Features

for Multiclass and Multiview Object Detection.IEEE Trans. Pattern Anal. Mach. Intell.,

29(5), 2007.

[143] Zhuowen Tu. Auto-context and its Application to High-level Vision Tasks. In

Proc. CVPR, 2008.

[144] Zhuowen Tu, Xiangrong Chen, Alan Yuille, and Song-Chun Zhu. Image Parsing: Uni-

fying Segmentation, Detection, and Recognition.International Journal of Computer

Vision, 63(2), 2005.

[145] Greg Turk and David Banks. Image-guided streamline placement. InSIGGRAPH, 1996.

BIBLIOGRAPHY 180

[146] Greg Turk and James F. O’brien. Modelling with implicit surfaces that interpolate.ACM

Trans. Graph., 21(4), 2002.

[147] Romain Vergne, Pascal Barla, Xavier Granier, and Christophe Schlick. Apparent relief:

a shape descriptor for stylized shading. InProceedings of the International symposium

on Non-photorealistic animation and rendering 2008, 2008.

[148] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained k-means

clustering with background knowledge. InICML, 2001.

[149] Robert Y. Wang, Kari Pulli, and Jovan Popović. Real-time enveloping with rotational

regression.ACM Transactions on Graphics, 26(3):73, 2007.

[150] Sanford Weisberg.Applied Linear Regression. Wiley/Interscience, 3rd edition edition,

2003.

[151] Georges Winkenbach and David Salesin. Computer-generated pen-and-ink illustration.

In Proc. SIGGRAPH, pages 91–100, 1994.

[152] Georges Winkenbach and David Salesin. Rendering parametric surfaces in pen and ink.

In Proc. SIGGRAPH, pages 469–476, 1996.

[153] Shin Yoshizawa, Alexander Belyaev, Hideo Yokota, and Hans-Peter Seidel. Fast and

faithful geometric algorithm for detecting crest lines on meshes. InPacific Graphics

2007 Proceedings, pages 231–237, 2007.

[154] Jingyi Yu, Xiaotian Yin, Xianfeng Gu, Leonard McMillan, and Steven Gortler. Focal

surfaces of discrete geometry. InProceedings of the Symposium on Geometry Processing

2007, pages 23–32, 2007.

[155] Richard Zemel and Toniann Pitassi. A gradient-based boosting algorithm for regression

problems. InNeural Information Processing Systems, 2001.

BIBLIOGRAPHY 181

[156] Kun Zeng, Mingtian Zhao, Caiming Xiong, and Song-Chun Zhu. From image parsing

to painterly rendering.ACM Trans. Graph., 29, 2009.

[157] Eugene Zhang, Konstantin Mischaikow, and Greg Turk. Feature-based Surface Param-

eterization and Texture Mapping.ACM Trans. Graph., 24(1), 2005.

